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Abstract—Analyzing and modeling the performance and en-
ergy consumption of hybrid Edge Computing systems with
embedded devices and Artificial Intelligence (AI) accelerators
is crucial, yet challenging due to the lack of systematic methods
and tools for measuring and estimating energy consumption. We
address this gap by introducing a systematic methodology and a
toolset to benchmark AI accelerators and their host devices with
inference workloads representing mock Convolutional Neural
Network (CNN) models with varying input sizes, network sizes,
layer types, and kernel sizes. The primary contributions of this
work include the development of the benchmarking methodology,
the creation and analysis of a comprehensive dataset comprising
power benchmark results, and the development of a predictive
model for estimating the energy consumption of ML workloads
on the Coral TPU (Tensor Processing Unit) accelerator connected
to the edge device. The dataset, generated from extensive testing
on the deployed topology, is released and can be used for
further studies that seek to enhance the energy efficiency and
performance optimization for Edge Computing applications.

Index Terms—power modeling, edge computing, AI

I. INTRODUCTION

As the number of Internet of Things (IoT) devices in-
creases [3], Edge Computing plays a key role for efficient
data processing and management. The latter is underlined by
the rapidly increasing demand for Edge Computing hardware,
which accounts for more than 43% of the total Edge Comput-
ing market revenue in 2023 [5]. The increased hardware ca-
pabilities allow the deployment of AI applications, like image
classification, at the edge. Towards improving inference tasks,
AI accelerators have become widespread in edge deployments,
enabling more advanced on-device AI processing and much
faster inferences. However, the rapid adoption of such devices
raises concerns about their overall energy consumption and
highlights the necessity for energy-efficient solutions.

To improve AI workload efficiency and understand their
energy demands, it is essential to develop new methods for
accurately measuring and estimating the power consumption
of AI-enabled edge devices under certain conditions, arising in
the context of practical deployment of AI applications in edge
environments [12]. For example, traditional methods [6] apply
to computing devices for estimating the power consumption
based on resource utilization metrics or performance counters
but fall short in the case of AI accelerators, like Coral TPU or
Intel Neural Compute Stick 2 (NCS2). These accelerators are
only designed to perform inference tasks operating as black
boxes, without exposing any relevant information in terms of

resource utilization [9]. This requires alternative approaches
for the devices’ power estimation when performing inference.

A series of studies tried to evaluate and forecast the energy
consumption and the performance of AI/ML models running
on edge accelerators [2], [8], [9], highlighting the correlation
between the model size and accelerator’s performance met-
rics, such as latency, energy consumption, etc. These studies
evaluate only the AI accelerators without taking into account
their relationship with the rest of the edge device components
and the effects these have on AI workload performance and
power consumption. Specifically, several factors impact the
utilization metrics of both the accelerator and the edge device,
affecting the overall energy consumption of AI accelerator-
enabled edge devices. These factors include the parameters of
the model, input size, connection type (e.g., USB V2 or V3)
and its configurations. The latent correlations between these
parameters and the edge device utilization metrics as well as
the energy consumption are yet to be fully explored.

This observation motivates this work, which aims to explore
the following research questions: RQ1: How do the different
ML model parameters influence the power consumption of
the overall system, and separately the edge device and the
respective accelerator?; RQ2: How do other performance met-
rics like inference time are influenced by the different model’s
parameters?; and RQ3: Can we create AI models that estimate
the power consumption and inference time while providing
the feature importance of the selected CNN models’ inference
parameters? Answering the above questions highlights the
main contributions of our work, which are: (i) formulating
the energy consumption of an accelerator-enabled edge device,
including power modeling of both the edge device and AI
accelerator; (ii) conducting systematic benchmarks following
a device-agnostic methodology on a Raspberry Pi 4 with a
Coral TPU accelerator and creating a comprehensive publicly
available dataset1 with utilization and performance metrics;
(iii) performing exploratory analysis to reveal correlations
between CNN models and power consumption and training
estimation models for power and performance.

The rest of the paper is structured as follows: Sec. II presents
the related work. Sec. III formulates the energy modeling on
AI-enabled edge devices, and Sec. IV includes our experimen-
tal setup. Sec. V and VI present our benchmarking methods

1 https://bit.ly/44LRV88

https://bit.ly/44LRV88


and exploratory analysis, respectively. Moreover, Sec. VII
shows our prediction models, and VIII concludes the paper.

II. RELATED WORK

There is a plethora of research papers that examine the
energy consumption and latency implications of ML/AI work-
loads. For example, Trihinas et al. [12] investigate how AI
workloads influence the energy consumption and carbon emis-
sion of edge devices giving guidance for future research and
evaluation tools, but without the introduction of AI accelera-
tors. Tu et al. [13] propose a novel measurement study for the
energy characterization of a set of mobile phone devices with
different hardware characteristics that can perform inference
on the chip. In [11], the authors performed a set of benchmarks
on GPU-equipped devices, for the evaluation of the TensorRT
optimizations applied in terms of inference performance on a
set of images. However, these works leave unexplored the en-
ergy consumption and performance of AI accelerator-enabled
edge devices, focusing solely on mobile phone chipsets, ML-
inference on CPUs or powerful GPUs, or ML training tasks.

Concentrating more on the reduction of the CNN mod-
els’ computational complexity, Blott et al. [1] explore the
effectiveness of various algorithmic optimization techniques,
such as pruning and quantization across a variety of AI
accelerators. Other systems try to predict the performance of
CNN and Deep Learning (DL) models on heterogeneous GPU-
enabled systems [2], [14]. For example, EDLAB, an end-to-
end benchmark designed to assess the performance of edge
AI/ML accelerators, proposed in [8]. Making use of a similar
approach, the authors of [9] introduced PETET, a predictive
modeling framework that employs ML techniques to forecast
the performance and power consumption of TPU-based appli-
cations. In [10], the authors apply a systematic benchmark
methodology to a set of edge devices with heterogeneous
characteristics, to extract useful insights relating to the oper-
ational efficiency of those devices when performing inference
on images with Neural Network (NN) models of different
architectural characteristics. Although these works are more
relevant to our research, they ignore the power demands of
the host device and do not examine the hidden dependencies
between the edge device’s resource utilization metrics, the
connected AI accelerator, and the AI workload latency.

III. ENERGY & POWER CONSUMPTION FORMULATION

In this section, we formally define the energy and power
consumption equations of an AI accelerator-enabled edge
device. Firstly, the energy consumption, denoted as E and
measured in Joules (J), represents the energy required for
a computing system to complete a specified workload [7],
[12]. The energy consumption is described by the following
equation (1): E = P · t, where P denotes the power con-
sumption in Watts (W), which is the rate at which energy
is used by the device, and t is the duration in seconds (s)
required to perform the task. The power consumption (P )
of a computing system is determined by both its idle and
dynamic power profiles, namely P = Pdyn +Pidle (2), where

Pidle is the minimum level of power that the system needs to
be functional, and Pdyn is the power demand of the system
while it is performing its computational load. In the case
of accelerator-enabled edge devices, the system includes two
computing devices that collaborate with each other, namely,
the edge node (node) and the accelerator (acc). Consequently,
the overall power demand of an AI-enabled edge computing
device can be defined by P (system) = P (node) + P (acc),
where P (node) is the power consumption of the edge node
and P (acc) is the respective value for the device’s AI ac-
celerator. Considering the equation 2, the power demands of
each device can be decomposed into the idle and the dynamic
power consumption as defined by P (node) = Pdyn(node)
+ Pidle(node) (3), and P (acc) = Pdyn(acc) + Pidle(acc) (4)
Specifically, Pdyn(node) and Pidle(node) present the dynamic
and idle power consumption of the edge node, and Pdyn(acc)
and Pidle(acc) the respective values for the accelerator.

The static idle power consumption can be easily defined, ei-
ther by the manufacturer of the device or by simply measuring
the power consumption of the respective device when it does
not perform any computation. Next, we formulate the dynamic
power modeling as Pdyn(x) = Putil(U(x)) (5), which is
the power consumption function that calculates the power
based on the utilization level of the component x, where the
utilization level U(x) of component x is defined as the fraction
of the Used to Available Total Resources and provided by
U(x) = Total ResourcesUsed

Total AvailableResources ∗ 100 (6). In order to find the
parameters of the Pdyn(node) function for an edge device, we
can perform repeatable benchmarks on the components, like
the CPU, with different levels of utilization while capturing
the overall power consumption of the node. Having both
power consumption for different levels of utilization and the
Pidle(node), we can fit these measurements in regression
models. For example, CPU utilization follows a linear trend
with power consumption in Raspberry PI 4 as we demonstrate
in Section V-B.

Unfortunately, we can not follow the same approach for an
AI accelerator. Specifically, the current state-of-the-art accel-
erators do not allow access to their utilization metrics. Thus,
we cannot use Eq. 5 to identify the relationship between the
accelerator’s utilization and its power consumption. Knowing
that the deployed workload on a system influences its utiliza-
tion metrics [9], we can infer the level of the accelerator’s
utilization based on the type of the deployed AI/ML model
and its parameterization. So, the P (acc) can be described as
P (acc) = Pdyn(f(workload))+Pidle(acc), where Pidle(acc)
is constant, depending on the initial configuration of the accel-
erator (e.g., USB connection type), and f(workload), which
is a black-box function that determines the effects of different
AI/ML parameterization on the accelerator’s utilization, and,
consequently, power consumption.

IV. EXPERIMENTAL SETUP

In this section, we describe our experimental setup that cov-
ers a variety of Edge deployment scenarios. For example, let us
consider a municipality deploying an urban traffic management
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Fig. 1. Experimental Setup Overview.

system for video analysis to identify accidents. Instead of
sending the stream to the Cloud, which is costly and slow,
battery-powered, solar-rechargeable edge devices are placed
around the city for on-site object detection and classification.
In this scenario, forecasting the energy consumption and the
AI performance is crucial for the selection of the respective AI
model because (i) the devices solely rely on their renewable
resources and batteries; and (ii) the administrators need real-
time responses. Thus, a variety of CNN model architectures
should be evaluated, since they provide better results than other
object classification and detection techniques.

Having as a driver the previous scenario, we use a Raspberry
Pi 4 Model B as the edge device under test due to its
widespread usage and its ability to run complex calculations.
Connected to it, via USB is the Google Coral TPU accelerator,
selected for its efficiency in running TensorFlow Lite models2.
Coral TPU can be operational on both USB V2 & V3 and
also provides two different execution runtime modes, namely
maximum (MAX) and standard (STD). These separate ver-
sions determine TPU’s operating frequency, with MAX mode
running at a frequency of up to 500 MHz, and STD mode
(default) running at a reduced frequency of up to 250 MHz.

The edge node’s power consumption is monitored via a
Meross smart plug3, which allows real-time power usage
metrics collection via its API (Fig. 1). For resource usage
monitoring, we deploy a Netdata4 agent on the device designed
to collect real-time (per second) metrics and the data were
stored to a remote Prometheus5 time-series storage server.

V. BENCHMARK AND ANALYSIS METHODOLOGY

A. Identification of Idle Power

Firstly, we focus on the identification of the idle power
consumption of the edge device Pidle(node) and accelerator
Pidle(acc). Thus, we leave the system running in idle mode
with various configurations for 10 minutes and we capture the
power consumption. The configurations include (i) the edge
device without the accelerator; (ii) the connection of the TPU
on different USB ports (V2/V3); and (iii) the configuration of
the TPU in different modes (STD/MAX). The edge device’s
idle power consumption was found to be 3.1W (both mean
and median values). Figure 2 depicts the box plots of power
consumption for the edge device when the TPU is connected.

2 https://www.tensorflow.org/lite 3 https://meross.com/en-gc/smart-plug/
4 https://www.netdata.cloud 5 https://prometheus.io

Fig. 2. Idle Power Consumption of the system with TPU connected.
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Fig. 3. CPU utilization VS power consumption, with fitting line.

Interestingly, we observe that the TPU mode seems not to in-
fluence the power consumption distribution in both connection
types USB V2 and V3 and that is because frequency scaling is
performed only when the TPU performs a task and not in idle
mode. On the contrary, the USB type contributes to the idle
power consumption of the accelerator-enabled edge device. So,
USB V2 has 3.46W as the mean power consumption and 3.7W
as the median, and USB V3 has 4.58W as both the median and
mean. Since the mean and median differences are negligible,
we use the mean idle values for the rest of our analysis.
B. Edge Device Dynamic Power Consumption

Next, we focus on finding the dynamic power consump-
tion of the edge device. Previous studies [7] analyzing the
power consumption of edge devices and more specifically the
Raspberry Pi 4 device indicated that the main contributor to
the overall power consumption is the CPU which is in line
with the associated studies performed on high-end servers [6].
For that reason, we solely focus on CPU utilization and its
contribution to the power consumption of the edge device.

While the power estimation tools, can be used to estimate
the power consumption of hardware components and com-
puting nodes [6], they are dependent on the underlying CPU
architecture to work and cannot be applied to ARM-based
devices. To tackle this issue, our methodology creates a new
power consumption device model by following an iterative
approach and stressing the device’s CPU employing 1, 2, and
4 cores respectively when executing the stress command 6.The
benchmark results (Fig. 3) indicate a linear relationship be-
tween the CPU utilization rate and the CPU’s power calculated
after subtracting the system’s idle from the overall power
consumption. The linear relationship is represented in Eq 7
after applying a regression analysis to the collected results.

Pdyn(rpi4) = 0.025 ∗ UCPU (rpi4) + 0.17 W (7)

C. Parameterization & Compilation of CNN models

At this step, we generate CNN models with different char-
acteristics and architectural variations. Specifically, we change
four main parameters:
Input size: This mostly influences the amount of computation
required for the first convolutional layer, so we need to
examine how this affects the overall power consumption and

6 https://linux.die.net/man/1/stress
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inference time. For this feature, we adjust the input size of the
models across different resolutions of grayscale images rang-
ing from low resolution 144p (256×144) to 4K (3840x2160)
and filled with random values in the range [0,1]. In this
round of experiments, the network size was formed by 5
convolutional layers with each layer composed of 10 filters
and the kernel size remained fixed at 3.
Kernel size: This defines the types of patterns the network
can effectively learn. Smaller kernels may focus on finer
details, while larger kernels capture more global features.
This characteristic intuitively influences the computational
complexity, thus we create models with the kernel size being
between 1 and 20. For this round of experiments, the input
size remained fixed at 1280x720 and the network size was the
same as in the case of variable input size.
Number of filters: The distribution of filters in the network
plays an important role in its ability to recognize patterns
on inputs and its accuracy during object detection and image
classification. However, larger in size models require more
energy due to the higher computational complexity. To capture
this behavior, we created models with an increasing number
of filters per layer and the number of layers, to cover a wide
spectrum of CNN formats. If otherwise stated, the input size
used for the trials was 96x96 and the kernel size was set at 1.
Layer type: We used 3 different types of layers that can be
found in real-world CNN models, namely: (i) Convolutional
layers; (ii) Convolutional layers followed by activation func-
tions; and (iii) Depthwise Separable layers. Below we provide
a short description for each layer type we used in this study.

• Convolutional layers are the foundation of CNN mod-
els, responsible for feature extraction from input data.
Studying these blocks helps to establish a baseline for
understanding how basic convolution operations affect the
power needs and performance of AI accelerators.

• Convolutional followed by activation functions, help to
assess the additional computational and power overhead
introduced by applying non-linear transformations after
convolution operations. In our benchmarks, we make use
of a Gated Linear Unit (GLU) activation function.

• Depthwise Separable represents a more advanced and ef-
ficient convolution operation that decomposes a standard
convolution into a depthwise convolution followed by a
pointwise convolution. This reduces the computational
complexity and parameter count, potentially offering sig-
nificant energy savings on hardware accelerators.

For model creation, we made use of the publicly available
coral-benchmark library7 by making the necessary adjustments
to the underlying code, since the benchmark was tailored to
measure only the inference time between the CNN model’s
layers. To optimize the models’ deployment, and make them
compatible with TPU, we apply quantization to the models,
reducing their precision to 8-bit integers. The next step is the
model compilation, where we use the Edge TPU Compiler8,

7 https://github.com/fmfi-compbio/coral-benchmark
8 https://coral.ai/docs/edgetpu/compiler

which compiles a TensorFlow Lite model (.tflite file) into a
format that is compatible with the TPU.

D. Extracted Datasets, Analysis & Model Training
The next stage involves the inference procedure of the

already created models with 1000 random inputs based on
their input size while monitoring the resource utilization and
total power consumption of the deployment. We repeat this
procedure for four different setups regarding the type of USB
port that was used for connecting the TPU accelerator to the
edge device (USB V2/V3) and the mode that the TPU was
operating (STD/MAX). This allows us to explore the dynamics
that USB V3 provides when it comes to the bitrate of data
and at what cost, in terms of energy consumed and also the
effectiveness of running the TPU on maximum mode using a
higher clock speed for the cost of some additional power.

Then, we retrieve the results from the storage server based
on the recorded timestamps and calculate the average resource
utilization and power consumption from each run that are fur-
ther used in our exploratory analysis and models’ training. We
create 2618 distinct points in the generated dataset consisting
of 18 columns including inter alia the input features mentioned
above, the average static power consumption of the system,
CPU and TPU power consumptions, inference time per input,
the joules consumed per input, etc.

Finally, we train multiple regression models, for power
consumption and inference time as target metrics, using k-fold
cross-validation and selecting the one with the least reported
error using the Mean Absolute Error metric. Using PyCaret9

ML library, we iteratively optimize AI/ML models by applying
hyperparameter tuning and perform a post-training analysis on
feature importance explaining the selected models’ results.

VI. EXPLORATORY ANALYSIS RESULTS

A. Kernel & Input Size
In Fig. 4, we deployed 3 different metrics (total average

static power, inference time, and joules per input) against the
increasing input size in MBytes. We can observe that power
is not significantly impacted by input size and this is most
probably explained by the fact that input size defines the
computation needed on the first convolutional layer and for
large in size networks this could be negligible. However, the
energy that is spent as the input size increases is strongly
connected to the time needed to process a single input. Since
the power remains stable and also recalling Eq. 1, we can
intuitively understand that the energy needed is defined by the
linear relationship that characterizes the inference time and
input size. After breaking down the overall power consumption
into CPU and TPU power (Fig. 5) we can observe that the CPU
power is constantly higher than that of TPU although both
remain relatively stable meaning that the power needed for the
CPU to handle pre-processing and communication is higher
than the respective power needed by TPU to run inference for
the selected CNN used in this round of benchmarks. Moreover,
the power needed by the CPU is almost the same for the two

9 https://pycaret.org
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Fig. 4. Metrics vs Input Size.

Fig. 5. CPU & TPU power vs Input Size for USB types.

USB types while in the case of USB V3, the TPU requires
more power than when connected to the USB V2 port. That is
due to the fact that USB V3 provides faster data transfer rates
to the TPU in order to process the input faster and therefore
reduces the inference time per input and energy needed as
shown in Fig. 4. Therefore we conclude that USB V3 is more
energy efficient as the network’s input size increases.

The relevant results for the increasing kernel size are pre-
sented in Fig. 6 and 7. The same pattern as in the case of input
size can be observed in this case, however with a smoother
linear relationship between the kernel size and the energy
consumption, which is strongly related to the inference time.
After examining the relevant graphs for the two USB types,
we observe that for both types, as the kernel size increases,
the TPU power tends to increase while the CPU power tends
to decrease at the same rate and at a faster rate for USB 3.0. A
larger kernel size typically means more complex convolutions
to cover a wider spectrum of the input image. This translates
to more TPU overhead and also more CPU wait time until
underlying convolutions are completed minimizing the CPU
overhead. For USB V3, this transition is more sharp as its
data rate seems to increase power consumption steeply.

B. Accelerator Connectivity
Next, we examine the effect of the USB connection port

version on power consumption and inference duration. We
already highlighted that the idle power consumption of USB
V2 is less than V3 (Fig. 2), so here we solely focus on the
power consumption during the inference period. Fig. 8 shows
the distribution of the system’s overall power consumption
when performing inference over USB V2 and V3. The ma-
jority of points fall at 4.8 to 5.2W for USB V2 and for USB
V3 power consumption is evenly distributed in the range of
5.2 to 6.2W. Interestingly, there is an increased number of
points at 4.3W for USB V2, and, also, there is a significant
difference in the lower and upper bounds of the two USB

Fig. 6. Metrics vs Kernel Size.

Fig. 7. CPU & TPU power vs Kernel Size for USB types.

Fig. 8. Power Distribution Histograms for USB types.

Fig. 9. Mean Power Consumption for USB types.

Fig. 10. Mean Inference Duration for USB types.

types. The latter indicates the difference on the data rates
that characterize the two USB types, which directly affect
the CPU and TPU utilization rates and the respective power
consumption. The same observation was extracted for each
block type of our experiments, with the mean average power
consumption of different block types for both USB V2 and
V3 maintaining consistent patterns (Fig. 9), without significant
deviations meaning that the USB type is dominating the layers’
block type in terms of the average power consumption.

Examining the average inference duration (Fig. 10), we
observe significant differences between the two USB types
with an increase of more than 5 seconds on average in all
the cases. At the block type level, GLU (Gated Linear Unit)
filters run over USB V2 show the most noticeable differences
due to the computational overhead of the activation functions
following each convolutional layer. The difference in inference
time is understated in the case of USB V3 suggesting that
for CNNs where activation functions are dominating among
layers, USB V3 is suggested for reduced inference times.



Fig. 11. Power consumption distribution of TPU modes & USB types.

Fig. 12. Inference duration distribution of TPU modes & USB types.

C. TPU modes

To compare the two TPU modes, we made use of a small
dataset part including smaller in-size CNNs since we noticed
that the accelerator stops operating when its temperature
increases after a specific point which is caused by larger
networks with more activation functions and as noted by the
manufacturer10. Fig. 11 and 12 present the density distributions
of different configurations (USB connectivity & TPU mode)
for the power consumption and inference time per input,
respectively. Based on the results of the power consumption
density plot, the distribution is characterized mainly by the
USB type, and more specifically USB V3 shows a wider
range of values with all the peak values falling within the
range of 5-5.5W. This variability is expected given the TPU’s
capability to dynamically adjust the data rate when connected
via USB V3. In the case of inference time per input, it is
evident that USB V3 has superior performance with peaks at
around 0.002s relative to 0.048s in the case of USB V2. Also,
MAX TPU modes show narrower distributions providing more
stable inference performance. In combination with USB V3,
this results in optimal performance by fully utilizing the higher
data rates that USB V3 offers.

D. CPU utilization & Power Consumption

We plotted the CPU utilization and power consumption of
the system for different block types based on the total number
of filters in the CNN in Fig. 13 and 14, respectively. The
darkness of the data points represents the number of layers
that form the neural network. According to the CPU plot,
there is a clear trend of decreasing before flattening as the
number of filters increases over USB V2. The trend in USB
V3 is slightly different, where there is a slight increase after
some point before flattening. This behavior indicates that as
the number of filters increases, the CPU takes more time
to transfer the data to the TPU for processing, resulting in
lowering the CPU utilization caused by the fact that the TPU
needs more time for the inference. For large CNN models
after a specific point, the models cannot fit in TPU memory
and therefore the data are partially transferred and processed
so the CPU utilization remains stable after that point. In the
case of USB V3, where the capacity of the link is larger, the
CPU usage remains at a higher level as expected. Interestingly,

10 https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf

Fig. 13. CPU utilization VS total filters for different configurations.

Fig. 14. Power consumption VS total filters for different configurations.

there are some data points (for less than 100K filters with large
number of layers) where CPU utilization reaches lower levels.
These cases highlight that these models fit in the TPU memory
in contrast to the respective light blue points (same number
of filters but fewer layers) that cannot fit in TPU memory due
to a higher number of computational parameters in total. This
is due to the complexity of convolutional filters in each layer
which involve more computational parameters than in the case
where the filters were distributed to a higher number of layers.
This is due to the fact that a valid padding [4] is applied to the
generated CNNs, meaning that the spatial dimensions of the
feature maps are decreased with each layer moving forward.

The system’s power consumption has the same trend in
all cases, where there is an increase in the static power
consumption as the CNN size increases up to a specific peak
point before steadily lowering and remaining at the same
levels. The increase in the power pulling of the overall system
is caused by the TPU as the CNN size increases and as long as
it fits in the TPU’s main memory. After that point, it decreases
until reaching the TPU’s maximum capacity; from that point
onward the static power consumption of the system remains
relatively stable. Moreover, as the network size increases the
TPU takes more time to process incoming data so CPU
utilization remains idle for more time leading to a decrease
in the overall system power. Finally, USB V3 trials remain at

https://coral.ai/static/files/Coral-USB-Accelerator-datasheet.pdf


Fig. 15. Power consumption of CPU/TPU VS total filters for USB types.

Fig. 16. Joules per input VS total filters.

higher levels of power than USB V2, which is expected due
to the higher idle consumption that characterizes USB V3.

E. Power Consumption of CPU & TPU
By using the aforementioned CPU power model (Sec. V),

we isolate the power that is allocated to the TPU accelerator,
and we plotted the results for the respective power consump-
tions relevant to the number of filters in Fig. 15 for USB V2
and USB V3. In both cases, we observe that for small CNNs,
the CPU power is higher than the TPU power, since the CPU
needs more power to load the model and data to the TPU rather
than the TPU itself to load the model and process the data.
However, as the CNN size increases, the TPU suppresses the
relevant CPU power but up to a specific point before starting to
drop again and reaching the CPU level where it is maintained.
The CPU power indicates dropped CPU usage as the CNN size
increases as it takes more time for the TPU processing. After
approximately 10k filters, the CPU needs to partially load the
model to the accelerator for performing inference so both the
CPU & TPU utilization remain stable.

F. Joules per Input
For the estimation of ’Joules per input’ in each round of

benchmarks, we keep track of the average static power of the
system, as well as the inference time in seconds needed to
complete the inference for each provided input. The energy
consumed to process each input by the model under study is
a function (Eq. 1) of the static power and time. The respective
results in comparison with the total number of filters are
presented in Fig. 16. The left plot depicts the small models
(up to 1250 filters) and the right plot depicts the large models

Regression Model MAE MSE RMSE MAPE
Power Consumption Models

Extra Trees 0.089 0.025 0.158 0.016
CatBoost 0.093 0.024 0.153 0.017
Random Forest 0.096 0.030 0.169 0.017
Light Gradient Boosting 0.104 0.030 0.17 0.018
Decision Tree 0.113 0.047 0.210 0.020

Inference Duration Models
Extra Trees 0.25 28.44 2.59 0.12
CatBoost 0.35 32.94 2.92 2.15
Random Forest 0.57 36.79 4.23 0.31
Decision Tree 0.60 65.01 5.36 0.25
Light Gradient Boosting 1.32 52.48 6.13 11.92

TABLE I
COMPARISON OF REGRESSION MODELS

(up to 40960 filters). The size of the points shows the number
of filters in each layer. As we can observe in the left plot, the
relationship between the two metrics is linear for small CNN
models. However, in the case of large models, the relationship
is polynomial depending on the number of filters used in each
layer when the number of layers is constant. When the number
of layers is increasing and the number of filters in each layer
is constant, the relationship is linear. Considering that the
power needs remain stable for large models based on Fig. 14,
we conclude that the inference time defines the relationship
between energy and the CNN size.

VII. ESTIMATORS & FEATURE IMPORTANCE ANALYSIS
A. Estimators Training & Evaluation

Next, we train multiple models for power consumption and
inference duration estimation using the collected data and
the provided CNN architecture characteristics. To optimize
the models’ accuracy, hyperparameter tuning was conducted
(see Sec. V). Specifically, we evaluated 18 models with diverse
hyperparameters for the generation of each model. Due to the
limited paper space, Table I reports the error metrics of the
best models sorted by the MAE for power consumption and
inference duration estimation. In both cases, the best model
is the Extra Trees model, with its MAE and MAPE (Mean
Average Percentage Error) being 0.089 and 1.6% respectively
for the power consumption estimator and 0.25, 12% for
the inference duration estimator, followed by Catboost and
Random Forest. That is because Extra Trees handles better
categorical variables that exist in our generated dataset and
complex data interactions by structuring feature relationships
using underlying decision trees and fine-tuning those trees’
depths. We use MAE to select the most accurate models
because the ’inference time’ output target has a decimal
precision and might vary across a broad range and MAE helps
to directly measure the average impact of prediction errors.
In the case of the power consumption model, MAE is equally
effective even if the range of values is smaller since it provides
an absolute measure of the error in the same unit as the target
variable, which in this case is measured in Watts. The rest of
the list includes Decision Tree and Gradient Boosting models,
in a different order between power and inference time models.

B. Feature Importance Analysis
Power consumption: The USB type dominates with a feature
importance score of 0.51 due to the different operational



characteristics of the two USB types and more specifically the
operational efficiency of USB V3 over V2, designed for higher
transfer rates over the USB channel which has a significant
impact on the overall system power consumption. The second
most important feature is the number of filters per layer
scoring 0.14. This is related to the computational intensity
of convolutional layers, where a higher number of filters in
each layer, increases the parallel processing within the CNNs
and therefore increases the overall power consumption. The
rest of the features in the plot are related the overall capacity
of the network in terms of the total filters across it and the
total number of layers with scores 0.12 and 0.07 respectively.
Inference time: When it comes to the inference time per
provided input, the most dominant feature is the number of
filters per layer with a score of 0.37, implying that the number
of computations within each layer is strongly related to the
inference time. A higher number of filters per layer implies
more computations per convolution operation meaning higher
inference time. The influence of USB type with a 0.25 score
in this case has a beneficial influence on the inference time per
input, meaning that the usage of USB V3 over V2 translates
to a lower processing time. The next important feature is the
use of activation functions after each convolutional layer with
GLU scoring 0.18, which incorporates additional computa-
tional steps and therefore more processing time is required
relevant to the other two block types used in the benchmarking
procedure. The total number of filters follows with 0.10 and
defines the operational complexity of the network, meaning
more filters across all layers also increases the inference time.

VIII. CONCLUSION

In this study, following a comprehensive device-agnostic
benchmark methodology, we examined the power consumption
and inference performance of AI accelerator-equipped edge
devices, specifically the Google Coral TPU connected to a
Raspberry Pi 4. By varying the CNN model’s characteristics
and TPU’s configurations, we analyzed how these factors in-
fluence the edge system’s power efficiency and computational
speed. Specifically, by answering the RQ1, highlighted that (i)
the Input Size & Kernel Size do not influence the device’s
overall power needs, but, in the case of Kernel Size, the
power needs of TPU & CPU are changing (especially, when
TPU is connected to USB V3) even if the overall power
is stable (Sec. VI-A); (ii) USB type and TPU modes seem
to influence both the overall power needs, as well as the
separate TPU & CPU power demands (Sec. VI-B and VI-C);
and (iii) interestingly, the power demand of each subsystem
(TPU/CPU) follows a slightly different pattern based on USB
type when we change the number and types of CNN fil-
ters (Sec. VI-E). In terms of RQ2 we found that (i) the infer-
ence time increases linearly with Input and Kernel Size, and,
similarly, influences the energy (Joules per input), with USB
V2 having the worst results; (ii) USB type is the most crucial
parameter in terms of performance (duration and power), while
TPU MAX mode provides more stable inference latency; and
(iii) CNN parameters, namely ’filters per layer’ and ’number

of layers’, have a linear trend with energy demands for small
networks, while for large networks correlation is again linear
for the latter but exponential for the former (Sec. VI-F).
Regarding RQ3, our best model (Extra Trees) exhibits the
lowest error for both the power consumption and inference
duration estimators. After our feature importance analysis, we
conclude that the TPU’s operating conditions, like the USB
connection type, the CNN’s number of layers, and filters per
layer are important for the power consumption estimation in
contrast to the input and kernel sizes that seem to influence
less the system’s energy dynamics. Finally, the datasets and the
results generated from our effort is publicly available providing
opportunities for future research, while our future directions
involve the testing of real-world AI edge workloads, a tool
for extracting the characteristics of CNNs and estimating their
energy consumption, and the evaluation of our methods on
various accelerators and edge devices.
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