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Monitoring Elastically Adaptive Multi-Cloud Services
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Abstract—Automatic resource provisioning is a challenging and complex task. It requires for applications, services and underlying
platforms to be continuously monitored at multiple levels and time intervals. The complex nature of this task lays in the ability of the
monitoring system to automatically detect runtime configurations in a cloud service due to elasticity action enforcement. Moreover,
with the adoption of open cloud standards and library stacks, cloud consumers are now able to migrate their applications or even
distribute them across multiple cloud domains. However, current cloud monitoring tools are either bounded to specific cloud platforms
or limit their portability to provide elasticity support. In this article, we describe the challenges when monitoring elastically adaptive
multi-cloud services. We then introduce a novel automated, modular, multi-layer and portable cloud monitoring framework. Experiments
on multiple clouds and real-life applications show that our framework is capable of automatically adapting when elasticity actions are
enforced to either the cloud service or to the monitoring topology. Furthermore, it is recoverable from faults introduced in the monitoring
configuration with proven scalability and low runtime footprint. Most importantly, our framework is able to reduce network traffic by
41%, and consequently the monitoring cost, which is both billable and noticeable in large-scale multi-cloud services.

Index Terms—Cloud Computing, Elasticity, Resource Provisioning, Cloud Monitoring, Application Monitoring
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1 Introduction

Cloud computing is dominating the interests of orga-
nizations across multiple business domains by provid-

ing on-demand virtualized infrastructure in a pay-as-you-use
model [11]. Cloud adoption is driven by elasticity [27], that is
the ability of the cloud to adapt to workload changes by au-
tomatically (de-)provisioning resources so that the allocated
resources always match the current demand [20]. A common
approach followed by elasticity controllers is to employ a
control loop, often referred to as a MAPE-K loop [21], to
manage resource allocation for deployed cloud services. The
first step in the loop is to gather monitoring information
regarding cloud-service performance and then, analyse it and
decide if an elasticity action should be enforced. However,
automatic resource provisioning [6] is challenging due to the
fact that monitoring elastic cloud services is not trivial [38]
and is still considered an open research problem [1].

Monitoring is essential for capturing the performance and
understanding the behavior of deployed cloud services and the
underlying infrastructure. Organizations acquire monitoring
facilities to: (i) make decisions regarding resource allocation
and tune their applications accordingly [13] [39]; (ii) detect
and prevent security breaches or network problems [31]; and
(iii) verify service level agreements (SLAs) [15]. To support
these, a monitoring system must be able to monitor hetero-
geneous types of information at different time granularities,
ranging from low-level system metrics (i.e., CPU usage, net-
work traffic) to high-level application-specific metrics (i.e.,
throughput, latency). Furthermore, the recipients of moni-
toring metrics may vary or overlap in a multi-tenant envi-
ronment [31]. For instance, a particular metric (e.g., network
utilization) can be accessed -frequently and simultaneously-
by many entities (e.g., cloud service stakeholder, resource
provisioner, cloud provider) but interpreted differently.
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With the wide adoption of open cloud standards [12] [38]
and library stacks [24] the interest of cloud consumers to
migrate their applications from one cloud to another (i.e., due
to better pricing or availability) has significantly increased.
Additionally, cloud consumers are now combining resource
offerings from various vendors and distributing their cloud
services across multiple cloud domains. For instance, hybrid
clouds are gaining consumer interests with security con-
cerns [11] [27], as data are kept on premises in private clouds
while compute needs are outsourced to public cloud offerings.
Cloud providers typically provide advanced proprietary moni-
toring facilities, which are made available to customers [3] [33]
as Monitoring-as-a-Service offerings. Alternatively, general-
purpose monitoring tools [9] [14] [19] can serve cloud mon-
itoring needs through highly specialized configurations or
extensions. However, current cloud monitoring systems are
bounded to operating on specific cloud platforms. Also, cloud
consumers are obliged to use and configure multiple moni-
toring systems if interested in distributing their applications
across multiple cloud providers; this, makes application mi-
gration even more challenging. Therefore, it is desirable for
cloud service stakeholders to seek for a monitoring system
that is both platform-independent and interoperable allowing
it to operate seamlessly across multiple cloud domains.

Despite the inherent ability of cloud platforms to provide
elasticity and resources on-demand [39], monitoring systems
were neither designed to facilitate the needs of elastic cloud
services nor do they provide adequate elasticity support.
Instead, re-contextualization [7] is required when the service
topology adapts due to the enforcement of elasticity actions
(e.g. new VM allocated to cloud service) or when obtained
resources are re-configured (e.g. new disk attached to a VM).
To avoid re-contextualization, current monitoring tools re-
sort to information acquired either from special components
deployed on the physical infrastructure [22], the underlying
hypervisor [9] or via the cloud provider through a directory
service [14]. These approaches may perform acceptably well
for small and slowly changing topologies but they cannot be
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considered in scenarios with large-scale and highly adaptive
multi-cloud services where rapid elasticity is the case and not
the exception.

In this article, we address the above challenges by fo-
cusing on the issues that arise when monitoring elastically
adaptive multi-cloud services. We introduce JCatascopia,
an open-source1, fully-automated, multi-layer and platform-
independent cloud monitoring framework. JCatascopia runs
in a non-intrusive and transparent manner to any underlying
cloud as neither the metric collection process nor metric
distribution and storage are dependent on the underlying
platform. JCatascopia uses a novel variation of the publish
and subscribe communication protocol to dynamically detect,
without any human intervention or dependence to the hyper-
visor, when monitoring instances have been (de-)provisioned
due to elasticity actions. This diminishes the need for re-
contextualization when providing elasticity support, by re-
flecting at all time the current topology and resource con-
figuration. In addition, JCatascopia provides metric filtering
to reduce the communication overhead for metric distribution
and storage, and generates high-level application metrics dy-
namically by aggregating and grouping low-level metrics.

This article substantially extends our previous work [37],
as follows: (i) We extend the JCatascopia communication
protocol, to accommodate runtime VM re-configuration for
horizontal and vertical elastic scaling (e.g. attach a new IP
to VM) and we add the functionality to overcome network
connectivity problems; (ii) JCatascopia has been re-designed
as a modular system and is now capable of being deployed
in different elastic monitoring topologies to better suit user
and service provider needs; (iii) JCatascopia, as an elastic
and self-managed system itself, is now able to automatically
scale at runtime by an elasticity controller; (iv) We extend
the JCatascopia communication protocol to consider failures,
describing how the monitoring topology can automatically
recover from faults; also, we showcase how we monitor the
monitoring system; (v) Finally, we present an extensive com-
parison of our framework to other monitoring tools based
on complex real-life testbeds, deployed on four public and
private cloud platforms. Results show that the JCatascopia
framework is capable of supporting automated cloud resource
provisioning systems with proven interoperability, scalability,
fault-tolerance and with a small runtime footprint. Most
importantly, our framework is able to reduce network traf-
fic by 41%, and consequently the monitoring cost, which is
noticeable, billable and increases fast in large-scale elastic and
distributed multi-cloud deployments.

The rest of this article is structured as follows: Section 2
presents a study of the related work. Section 3 presents the de-
sign, architecture and novelties incorporated to JCatascopia.
Section 4 presents an evaluation of our system, while Section
5 concludes this article and outlines the future work.
2 State-of-the-Art & Related Work
Cloud specific monitoring tools such as Amazon Cloud-
Watch [3], Paraleap AzureWatch [30] and RackSpace Cloud-
Kick [33] provide Monitoring-as-a-Service to cloud consumers.
Despite the fact that these tools are easy to use and well-
integrated with the underlying platform, their biggest disad-
vantage is that they are commercial and proprietary which

1. https://github.com/CELAR/cloud-ms

limits their operation to specific cloud providers. Thus, these
tools lack in terms of portability and interoperability. To
address portability, Rak et al. [34] introduce the mOSAIC
cloud monitoring system which collects metrics in a cloud-
independent manner via the mOSAIC API. However, this
system is limited to specific cloud platforms supported by the
EU-funded mOSAIC project and is a centralized monitoring
approach intended only for small-scale deployments.

General purpose monitoring tools such as Gan-
glia [19], Nagios [26], Zabbix [43] and GridICE [5] are tra-
ditionally used by system administrators to monitor fixed
or slowly changing distributed infrastructures, such as com-
puting grids and clusters. Cloud providers tend to adopt
such solutions to monitor their platforms as well. However,
cloud platforms have different requirements than comput-
ing grids [15] [18], as they consist of multiple layers and
service paradigms (IaaS, PaaS, SaaS) providing users with
on-demand resources through an infinite pool of virtual
resources. This makes the aforementioned monitoring tools
unsuitable for rapidly elastic and dynamic cloud deployments,
where VMs are deployed for several minutes on a number
of physical nodes and after a short interval migrate to other
nodes or are terminated.

To address the limitations mentioned above, several ap-
proaches have been proposed. For example, sFlow integrates
with Ganglia to monitor VM clusters. Xiang et al. [42]
introduce VMDriver, which provides an interface to access
metrics in an OS-independent manner but requires from
the hypervisor to install a monitoring driver on each guest
VM. Montes et al. [25] propose GMonE, a general-purpose
monitoring tool applicable to all cloud layers. GMonE allows
monitoring instances to be deployed at any level of the cloud
and provides a pluggable interface where users can inject their
own custom metrics to monitoring agents. However, GMonE
cannot detect at runtime service topology changes due to
elasticity action enforcement or resource configurations. Quoc
et al. [32] propose DoLen, a multi-cloud monitoring tool
for distributed cloud services but as a centralized approach
it is suitable only for small-scale deployments. Calero et
al. [2] introduce MonPaaS, a distributed and agent-less cloud
monitoring solution, where a dedicated monitoring server is
allocated per application. MonPaaS is not platform indepen-
dent, as it is tightly coupled to Openstack. In addition, while
scalability is claimed, with the use of only one monitoring
server per application, intra-service monitoring is bounded by
the monitoring intensity and number of running instances.

In regards to elasticity, a handful of academic approaches
attempt to propose solutions for elasticity support but require
for special entities at the physical level or depend on the un-
derlying hypervisor to detect topology configurations. Thus,
these approaches limit their portability at different levels of
the cloud in favor of elasticity support. Specifically, Carvalho
et al. [14] propose the use of passive checks by each physical
host to notify the central monitoring server about the virtual
instances that are currently instantiated. Katsaros et al. [22]
extend Nagios through the implementation of NEB2REST, a
REST event broker utilized to provide elasticity capabilities
through an abstraction layer between monitoring agents and
the management layer. Clayman et al. [9] introduce Lattice,
an interesting cloud monitoring framework, which monitors
not only physical hosts but also virtual instances. Lattice can
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be utilized to monitor elastically adaptive environments. In
particular, the process of determining the existence of new
VMs is performed at the hypervisor level. A controller is the
responsible entity for retrieving a list of running VMs from
the hypervisor, detecting if new VMs have been added or
removed. Thus, in contrast to our solution, while Lattice offers
elasticity support it moves the dependency to the hypervisor
layer as it is tightly coupled to Xen hypervisor. In turn, Lattice
cannot monitor applications distributed across multiple cloud
providers due to its limited multicast network communication
model. Moreover, Lattice features an excessive runtime foot-
print in contrast to our solution.

Another approach is Panoptes [40], which utilizes a
pub/sub communication model between agents and servers to
enhance private cloud monitoring performance. In contrast to
our solution, Panoptes requires a broker (similar to a directory
service), which acts as a central contact point for newly instan-
tiated monitoring agents to: (i) contact and request a list of
available monitoring servers; (ii) notify all monitoring servers
of their existence, and (iii) wait for monitoring servers to
start the subscription process, which is a significant overhead
for rapidly elastic environments (see Section 3.3.1). Finally,
Varanus [41] is an interesting monitoring tool which leverages
a multi-tier P2P architecture to achieve in situ monitoring
of the monitoring infrastructure based solely on resource
utilization. However, as we show later, resource utilization is
not always the monitoring bottleneck.

Based on the above, we believe that none of the exist-
ing solutions can be considered as a complete approach to
provide elastic multi-cloud monitoring alongside an elasticity
controller. In addition, although monitoring autonomicity
is initially studied, it is still far from being considered as
achieved. Therefore, to address the above limitations we have
designed the JCatascopia multi-cloud monitoring framework.

3 JCatascopia: Design and Features
In this section, we introduce the design, architecture and key
features of JCatascopia.

3.1 Platform Independence and Interoperability
JCatascopia is an open-source and elastic monitoring frame-
work designed to provide cloud-independence and interoper-
ability of the monitoring process. Specifically, JCatascopia
can be utilized to monitor: (i) federated cloud environ-
ments where cloud services are distributed across multiple
clouds [32]; and (ii) cloud bursting environments where cloud
services deployed on a private cloud, burst to a public cloud
when resource demand increases [35].

JCatascopia achieves platform-independence by satisfy-
ing the following requirements. First, its components (i.e.
monitoring agents, servers, etc.) are portable, meaning they
are capable of running on any physical machine or VM in-
stances. To this end, JCatascopia components are developed
in Java with none of their functionality being dependent on
OS or machine libraries, with the only requirement being a
Java installation (v1.6+). In Sections 3.2.x all JCatascopia
components and their features are described in detail. Each
component presents clear Java interfaces and abstractions
for their features and endpoints. This allows features to be
customizable and extensible, while the clear endpoints (e.g.
Metric Interface) allow integration between JCatascopia and

Fig. 1: JCatascopia Abstract Architecture

other systems (e.g. elasticity controller). For example, the
Monitoring Database Interface (see Section 3.2.4) is extensible
to allow developers or systems to utilize the metric storage
backend of their choice via the Database Interface endpoint.

Second, its metric collection process is not dependent on
cloud provider APIs or OS libraries. JCatascopia is designed
to provide multi-level cloud monitoring and is capable of
collecting heterogeneous metrics of different granularity across
multiple levels of the cloud. Specifically, system-level metric
collection, such for CPU, memory, disk and network utiliza-
tion, is handled via the Java runtime management interface2,
so that metric collection does not pass directly through OS-
dependent endpoints (e.g. /proc/* for UNIX). Nonetheless,
users are free to create OS-dependent metric collectors via its
Java API. Moreover, JCatascopia is enhanced with a metric
rule mechanism, which allows developers or cloud entities
(e.g. elasticity controller) to request for aggregated metrics
or to compose high-level metrics from low-level metrics via a
directive-based language introduced in Section 3.5.

Third, the communication between monitoring compo-
nents, especially in the case of elasticity support, is capable
of being handled over a mixture of networks and is not
dependent on any cloud provider services or brokers. In
contrast to other self-adaptive general-purpose monitoring
tools [9] [14] [22], JCatascopia provides fully-automated elas-
ticity support. Neither special entities deployed on physical
nodes nor information from the hypervisor or any other cen-
tral repository regarding the current running virtual instances
are required. In Section 3.3, we present a mechanism based
on a variation of the pub/sub protocol to dynamically detect
at runtime elasticity action enfocement. In Section 3.4, we
describe how the monitoring topology is automatically re-
configured in the presence of network failures or when mon-
itoring servers are (de-)provisioned. We embrace the ZMQ
message framework3 to implement the JCatascopia communi-
cation mechanism which is built on top of ZMQ sockets. These
sockets provide JCatascopia with abstract asynchronous mes-
sage queues over public and private network interfaces for
multiple messaging patterns. Unlike other message oriented
middleware, ZMQ sockets run without a dedicated message
broker. This is important since JCatascopia is designed as a
brokerless and completely de-centralized system. Moreover,
ZMQ allows JCatascopia to maintain its portability as the
ZMQ Java bindings are OS-independent.

2. Java runtime management interface: goo.gl/WLIhdT
3. ZMQ Java library: https://github.com/zeromq/jeromq
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3.2 Architecture and Components
Figure 1 depicts an abstract overview of JCatascopia moni-
toring framework architecture. JCatascopia follows an agent-
based, producer-consumer architectural approach. Specifically,
metric collectors, named Monitoring Probes (Section 3.2.1),
gather metrics from the cloud element they reside on (e.g.
VM or physical node) and performance metrics from deployed
cloud services. Monitoring Agents (Section 3.2.2) are responsi-
ble for coordinating the metric collection process by managing
Monitoring Probes and disseminating collected metrics to
Monitoring Servers over the communication pane. Monitoring
Servers (Section 3.2.3) are in charge of receiving, processing
and storing metrics to the database backend of choice via
the respective Database Interface (Section 3.2.4). If enabled
by the user, Monitoring Servers can be accessed through a
Web Interface. Communication over the monitoring topol-
ogy follows the JCatascopia Communication Protocol (Sec-
tion 3.3). This, enables automatic Monitoring Agent discovery
and removal, and automatic resource configuration discovery
(e.g. elastic IP attachment to VM) at runtime. Monitoring
Servers, distributed even across multiple clouds, comprise the
Monitoring Topology (Section 3.4). The Monitoring Topology
is configurable with users able to select the topology fit for
their needs. Moreover, the Topology is elastically scalable with
“monitoring the monitoring system” capabilities (Section 4.5
& 4.6). Finally, as we show in our evaluation (Section 4.5),
JCatascopia is scalable as it can cope with an increasing
number of monitoring metrics and instances.

In the following, a more elaborative description of the
components comprising JCatascopia is provided.
3.2.1 Monitoring Probes
Monitoring Probes are metric collectors responsible for
collecting low-level metrics from VMs or physical machines
and performance metrics from deployed cloud services. Probes
feature both a push and pull metric delivery mechanism.
Monitoring Agents benefit from the push mechanism by avoid-
ing the overhead of constantly checking for metric updates.
Thus, metrics can be collected at different time granularities
as the collection process of each Probe is decoupled from
other Probes. On the other hand, users or other interested
parties (e.g. elasticity controller), may use the Monitoring
Agent API to immediately pull Probe metric updates. Probes
logically group multiple metrics together, in order to reduce
the monitoring overhead when accessing common resources.
For example, consider a Probe monitoring a load balancer
which exposes values for its active sessions, response time and
error rate, via a single REST call in JSON format. A JCatas-
copia Probe is able to share resources (i.e., HTTP connection,
JSON parser) and reduce the computation overhead when
collecting these metrics, whereas other monitoring tools (e.g.
nagios [26]), which isolate each metric, require three REST
calls and JSON parsers to accomplish the same task.

A metric filtering mechanism is introduced at Probe level.
This allows users to attach filters to metrics (e.g. F=1%) . At
runtime, the filter mechanism checks collected metrics and if
metric values are in the range [prevV alue−F, prevV alue+F ]
they will be discarded in place rather than being distributed
through the network. Developers can take advantage of the
JCatascopia Probe API4, which provides an interface to the

4. Probe API and Repository available at https://goo.gl/kpFhMj

Fig. 2: JCatascopia Monitoring Agent
necessary abstractions that hide the complexity of Probe
functionality when implementing Monitoring Probes. Mon-
itoring Probes run independently from each other and can
be deployed dynamically without the need to restart the
monitoring process. If a Probe encounters a problem (e.g.
unexpected termination) the metric collection of other Probes
is not affected. Finally, Monitoring Agents encapsulate in
their core a dynamic java class loader, which allows Probes to
be dynamically plugged-in as lightweight monitoring threads,
in two ways: (i) by compiling the Monitoring Agent with
the source code of the Probe in the probe directory; or (ii)
externally, by feeding the Monitoring Agent with the location
(as a file path or URL) of the Probe bundled as a jar either
via its config file or at runtime via its API.
3.2.2 Monitoring Agents
Monitoring Agents are light-weight monitoring instances
deployable on cloud elements to be monitored, such as VMs
or physical nodes. Monitoring Agents are responsible for
managing the metric collection process on the respective cloud
element, which includes processing and distributing metrics
originating from Probes to Monitoring Server(s). An Agent is
considered as the probe manager for the element it is deployed
on. A Monitoring Agent is responsible for Monitoring Probe
(de-)activation and configuration, according to user-defined
parameter requests. Figure 2 depicts the internal architecture
of a Monitoring Agent and its (sub-)components.

Initially, when a Monitoring Agent is deployed (see Section
3.3.1), the Controller establishes a connection to its respected
Monitoring Server(s), as part of the agent announcement
process. Once a connection and metric stream is established,
monitoring metrics are published and made available for
consumption. JCatascopia is able to control the message
flow between Agents and Servers, adapting, if needed, to
network transmission failures by re-connecting, re-scheduling
and re-sending messages. New metric values are added to the
Monitoring Agent Metric Queue either directly by Monitoring
Probes or by the Controller, via the Listener, which listens
for metric requests from other processes. The Controller
also listens for probe parameter configuration requests (e.g.
configure Probe collecting period) originating from either a
Monitoring Server or by users via the JCatascopia REST
API. Metrics are dequeued by Metric Collectors and processed
by Metric Processors. Metric processing refers to preparing
a message for distribution with the latest collected metrics.
Initially, a metric is converted to a human readable format in a
semi-structured manner and then Monitoring Agent metadata
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Fig. 3: JCatascopia Monitoring Server

are added to the message. The number of Collectors and
Processors is customizable by simply changing the default
values defined in the Agent configuration file (located in the
installation directory).

After processing, metrics are passed to the Aggregator. The
Aggregator is responsible for grouping metrics into messages
and performing aggregation functions based on user-defined
policies (i.e. AVG, MEAN). Aggregation is an important
feature aiming at reducing network traffic from constantly
transmitting metrics over the network. Built into JCatascopia
is a time-based (e.g. distribute collected metrics every X
seconds) and a volume-based policy (e.g. distribute metrics if
message size exceeds X KB). Multiple aggregation policies can
be utilized together (e.g. both of the above policies), with poli-
cies being configured through the Agent config file. Developers
are free to create and attach their own custom aggregation
policies by adhering to the aggregation interface. When an
aggregation policy is satisfied, the message is distributed to
all interested parties. Of course, aggregation is a trade-off
between efficiency and accuracy. For this reason, in contrast
to other monitoring tools, JCatascopia’s Aggregator is fully
configurable with users able to select which policies to enable.
3.2.3 Monitoring Servers
Monitoring Servers are the entities responsible for receiving,
processing and storing monitoring metrics to the Monitoring
Database. Monitoring Servers handle metric and configura-
tion requests, delegating them to the appropriated Monitoring
Agents. The communication between Monitoring Agents and
Monitoring Servers is accomplished by utilizing a variation
of the traditional publish and subscribe (pub/sub) messaging
paradigm that reduces the related network communication
overhead (see Section 3.3.1). A Monitoring Server processes
received monitoring metrics and forms high-level metrics
based on Metric Rules upon user request (see Section 3.5).
Monitoring Servers are deployable on either physical nodes or
virtual instances without having to reside in the same cloud
platform with their Monitoring Agents. In particular, since
JCatascopia is interoperable, both Monitoring Agents and
Servers can be distributed across different cloud platforms.
Using multiple Monitoring Servers is optional. However, sus-
tainability, fault-tolerance and scalability can be improved if
metric traffic is directed through multiple Monitoring Servers.
Figure 3 depicts the internal architecture of a Monitoring
Server and its (sub-)components. Listeners are the entities
listening for (i) incoming Monitoring Agent connections, (ii)
newly collected metrics, and (iii) API requests from other in-
terested parties (e.g. elasticity controller or users). Monitoring
Agent connection and termination requests are handled by

the Controller, which parses requests and stores in suitable
data structures (Agent and Metric Map) metadata describ-
ing the Agent and the collected metrics. After establishing
a connection, an Agent publishes metric messages to the
respected metric stream. Listeners receive incoming metric
messages and enqueue them to the Metric Queue. Messages
are dequeued from the Metric Queue and processed by Metric
Processors. The number of Processors is customizable, by
changing the default value defined in the Server configuration
file. Processing messages refers to the task of parsing the
message, decomposing it to grab the metrics in a message and
updating the metric data structure. The metric data structure
stores metric metadata and their latest reported values.

If a Monitoring Database is attached to the Monitoring
Server, received metrics are stored via the Database Interface
to the database. Also, if a Monitoring Server acts as an
intermediate in a hierarchical topology (see Section 3.4), met-
rics are aggregated (if needed) and distributed to Monitoring
Servers higher in the hierarchy. The Rule Manager, depicted
in Fig. 3, is part of the rule mechanism, which is based on
the JCatascopia Rule Language introduced in Section 3.5.
The Rule Manager allows users and cloud entities (i.e. Billing
entity) to apply expressions (e.g. cpuTotal = 1− cpuIdle) on
low-level metrics to create new high-level metrics. The Rule
Manager, retrieves Rule requests from the Control Queue and
updates existing Metric Rule values based on the updating
period specified by the user via the JCatascopia REST API.

3.2.4 Monitoring Database Interface
JCatascopia offers users the ability to use the database solu-
tion of their choice to handle metric insertion and extraction.
To this end, it provides a Database Interface to a database
backend. Currently, JCatascopia supports two database back-
ends: MySQL and CassandraDB. The MySQL implemen-
tation provides users and entities (i.e. elasticity controller)
the ability to perform various types of complex queries on
monitoring data, such as table joins. A Cleanup Daemon is
available to extract and process old monitoring data to reduce
the size of database and query response time. The Cleanup
Deamon is activated either when the size of the database
exceeds a specified by the user threshold or when a time
interval expires. The NoSQL CassandraDB interface allows
for fast writes and reads on recent metrics with also the ability
to add a configurable Time-To-Live expiration parameter to
inserted metrics, eliminating the need of a Cleanup Daemon.

3.3 JCatascopia Communication Protocol
3.3.1 Monitoring Agent Discovery and Removal
To support an automated elasticity controller, which adapts
elastically cloud service deployments, Monitoring Agents
must be both re-configurable and dynamically deployable
at runtime. Specifically, when a newly provisioned virtual
instance is added to a deployment, a new Monitoring Agent
must be configured and added to this virtual instance. In
turn, the monitoring system must be notified for this addition.
Similarly, the monitoring system must also be aware when a
Monitoring Agent has been removed due to the removal of a
previously allocated virtual instance.

In the classic publish and subscribe message pattern, en-
tities, referred to as subscribers, initially express interest and
subscribe to an event stream of another entity, referred to
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Fig. 4: Dynamic Agent Discovery and Removal Process

as the publisher. A subscriber can be interested in receiving
event notifications from multiple publishers. When events are
generated, the publisher distributes them to its subscribers,
eliminating the need of the subscriber to constantly poll the
publisher to check if new events are available. Due to the
reduced overhead from eliminating polling, this approach has
been adopted by a number of monitoring systems [14] [32] [40].
However, this approach introduces the following limitations
when monitoring rapidly elastic cloud service environments:
(i) The addition of a new metric publisher (Monitoring Agent)
requires for every potential subscriber (Monitoring Servers)
to be notified of the new publisher’s existence by a broker (or
directory service) storing the network locations of Monitoring
Agents and Servers. Then, interested subscribers will initiate
the subscription process. This features a significant overhead
in a highly adaptive large-scale environment where rapidly
provisioned Monitoring Agents must contact all Monitoring
Servers in the deployment; (ii) In a similar manner, when de-
provisioning a Monitoring Agent, each and every subscriber
must be notified and the metric stream(s) must be closed.

In our approach (Fig. 4) we differ from the classic pub/sub
protocol by allowing Monitoring Agents to (dis-)appear dy-
namically and rapidly due to elasticity actions. Specifically,
we vary the message pattern as follows: (i) Monitoring Servers
bind to a network interface, awaiting for incoming requests;
and (ii) Monitoring Agents, which are the metric publishers,
initiate the subscription process by immediately contacting
interested Monitoring Servers of their existence with a SUB-
SCRIBE message5. Afterwards, Monitoring Agents send a
METADATA message to the interested Monitoring Servers
including information such as the metrics they are responsible
to collect and their agent id. Finally, after the subscription
process is complete, Monitoring Agents can start publishing
metrics to the established metric stream. With the proposed
variation, the Monitoring Server is agnostic to the network
location of its Monitoring Agents, allowing them to appear
and disappear dynamically in a flexible manner by eliminating
the need: (i) to restart or reconfigure the Monitoring System;
(ii) to depend on the underlying hypervisor; and (iii) to
require a directory service that contains these locations.

A Monitoring Agent is removed from the topology when
either: (i) a scaling down action is issued to the VM it resides
on; or (ii) due to a user shutdown request via the Monitoring
Agent API or the OS (process is killed). In any case, upon

5. Determining how a Monitoring Agents knows to which Monitor-
ing Servers to connect to is described in Section 3.4

Fig. 5: Agent Automatic Reconnect and Metadata Update

Monitoring Agent termination a java shutdown hook is trig-
gered. This shutdown hook initiates the agent termination
process which gracefully stops Monitoring Agent functionality.
Specifically, it immediately notifies the Monitoring Server(s)
associated with it, that it is shutting down via a TERM mes-
sage (Fig. 4). In contrast to heartbeat monitoring, this allows
for Monitoring Agent removals to be rapidly discovered. Most
importantly, in contrast to other solutions [40] which require
1 TERM message to the pub/sub broker and N messages
to notify each Monitoring Server that the Agent is leaving
the topology, our solution only requires M TERM messages,
where M is the number of Monitoring Servers the Agent is
assigned to (usually M << N).
3.3.2 Agent Automatic Reconnect and Metadata Update
JCatascopia takes into consideration realistic special-case sce-
narios which may be considered as exceptions to the smooth
functioning of the monitoring process.

The first scenario considered is the presence of network
connectivity issues between a Monitoring Agent and its re-
spective Monitoring Server(s). For monitoring systems, if an
Agent is unavailable for a specified period of time, then the
connection is dropped. Afterwards, any incoming message or
metric streams from the Monitoring Agent are marked as ma-
licious and ignored with the Agent not having any knowledge
that the metric values sent are discarded. The only way to re-
establish the connection is to terminate and re-instantiate the
Monitoring Agent. However, if a JCatascopia Agent (Fig. 5a)
sends metric values or issues a request to a Monitoring Server
after the connection is dropped, the Monitoring Server will
reply with a RECONNECT message. This allows the Monitor-
ing Agent to re-establish the connection (and re-authenticate)
without the need to restart the monitoring process or the
interference of a system admin.

The second scenario that we take into consideration relates
to the uncertainties imposed due to re-contextualization such
as in the case where the IP address of a VM is changed
at runtime (elastic IPs are a form of vertical scaling). This
scenario is not extreme, since a number of cloud providers offer
elastic ip services [4] [28] by (de-)allocating network interfaces
to/from virtual instances on the fly without restarting the
instance. To address this, JCatascopia Agents periodically
update their metadata (i.e. IP addresses or available metrics)
and then send a METADATA message to the Monitoring
Server as depicted in Figure 5b. The limitation of this ap-
proach is that a request (e.g. a metric pull request) issued from
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Fig. 6: Monitoring Topology Configurations

Fig. 7: Monitoring Agent Placement
a Monitoring Server to an Agent of a VM that just changed
IP, will fail if the Agent metadata has not yet been updated.
The error space can be shortened if the service issuing the
configuration (e.g. elasticity controller) informs the Monitor-
ing Agent of this by triggering either the updateAgentIP() or
updateALLAgentMetadata() API calls. The same approach is
followed when the IP of a Monitoring Server is changed with
the addition of one more step: after an IP address update,
the Monitoring Server notifies its respected Agents with a
METADATA message containing the new IP address.

3.4 Monitoring Topology
JCatascopia as a modular system is comprised of the following
components: Probes, Agents, Servers, Database Interface, Web
Interface. JCatascopia grants users, service developers and
monitoring providers (all noted as monitoring stakeholders)
flexibility and freedom in the monitoring process. Specifically,
monitoring stakeholders are free to configure the overlay
network interconnecting Monitoring Agents and Servers to
better suit their needs, focusing on scalability, locality or logic
of separation. It is important to note that the utilized mon-
itoring topology is transparent to the underlying Monitoring
Agents, and consequently to user VMs. This means that no
reconfiguration is required when the topology adapts or when
substituted, even at runtime, with a different configuration.
Figure 6 depicts three different topology configurations that
can be considered by stakeholders for different purposes.

Figure 6a depicts a hierarchical topology, where the
Monitoring Servers, and consequently their respective Moni-
toring Agents, are logically grouped together, forming a tree.
Metrics processed from Monitoring Servers lower in the hier-
archy can either be forwarded to Monitoring Servers higher
in the hierarchy as is or aggregated presenting an overview
of their branch. Additionally, a JCatascopia Web Interface
and a Monitoring Database can be attached to any interme-

diate Monitoring Server collecting insights for the health and
performance of the topology up to that point. Specifically, in
Figure 6a, Cloud Service B features a dedicated Web Interface
and Monitoring Database. As a side note, Monitoring Servers
do not need to utilize the same Database Interface, e.g.
Monitoring Servers lower in the hierarchy may use a relational
database while others utilize a NoSQL database.

In contrast to the previous topology, Figure 6b depicts
a Peer-2-Peer topology, where Monitoring Servers are
distributed across the network forming a P2P gossip network.
For JCatascopia, gossip is a compressed message exchanged
between peers to periodically discover the state of other
Monitoring Servers participating in the network, as well as the
number of Monitoring Agents assigned to each peer and their
network location. In this arrangement, all Monitoring Servers
(peers) have the same monitoring responsibilities (e.g. receive,
process, store metrics) with some peers also acting as seeds.
A Seed is responsible for bootstrapping new peers joining
the network and monitoring the health of the Monitoring
Servers assigned to it, in par with P2P distributed database
communication protocols [23]. Seeds are not a single point
of failure nor do they serve any other special purposes. This
topology benefits from automatic horizontal scaling based on
the load imposed to the monitoring tier, if combined with an
elasticity controller. In Section 4.5 and 4.6 we show how to
monitor and scale an elastic monitoring system.

A hybrid topology featuring a combination of two or
more topologies is another configuration supported by JCatas-
copia. Figure 6c depicts a hybrid topology where clusters of
Monitoring Servers follow a hierarchical topology internally,
although externally a P2P topology is used. This provides
developers of multiple applications a high-level monitoring
overview of their applications via the same web interface.

In addition to allowing developers configure the monitor-
ing topology, JCatascopia provides developers with the ability
to implement and integrate their own Monitoring Agent
placement policies. Specifically, when a new Monitoring
Agent attempts to establish a connection to the monitoring
network, the placement policy is used to determine candidate
Monitoring Server(s) for connection. Such placement policies
may include: (i) assigning Monitoring Agents to Servers based
on fairness, thus following a round-robin distribution; (ii)
based on locality, where Monitoring Agents are assigned to the
closest, in terms of latency, Monitoring Server(s) or in a multi-
cloud scenario, to Monitoring Servers in the same availability
zone; and (iii) based on Monitoring Server utilization, where
agents are load-balanced amongst Monitoring Servers. To
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Fig. 8: Topology Reconfiguration After Server Fault

accommodate placement before the subscription process, a
Monitoring Agent is notified by a seed node which Monitoring
Servers are valid candidates for connection, as depicted in
Figure 7. It must be noted, that an Agent upon deployment,
may attempt to join the network via any Monitoring Server,
and the request will be redirected to a seed node. Hence, no
previous knowledge of seed location is required beforehand
from Monitoring Agents.

3.4.1 Monitoring Topology Automatic Recoverability
Monitoring Servers, as Monitoring Agents, are subject to
faults and network uncertainties. In a dynamic and elastic
cloud environment, where users deploy their services and leave
resource provisioning to be handled automatically [8], the
monitoring system should not become a bottleneck or require
manual configuration when the monitoring topology exibits
problems due to sudden Monitoring Server unavailability.
To accommodate such issues, JCatascopia undertakes the
task of monitoring itself. Monitoring Servers, as depicted in
Fig. 8, exchange periodically gossip containing the network
location and status of Agents assigned to each peer. When
a Monitoring Server is unavailable, its respective seed nodes
rebalance the topology by requesting from the Monitoring
Agents assigned to the faulty Server to reconnect to other
Monitoring Server(s) based on the Monitoring Agent place-
ment policy. This process is fully-automated and requires no
human intervention. In addition, because seed nodes have no
other special purpose and peers send gossip to multiple seeds
(e.g. 3), if a seed node becomes unavailable, it is treated just
as another peer failure. Moreover, rebalancing is not triggered
only in faulty scenarios but also in the background after the
(de-)allocation of a Monitoring Server to always reflect the
current state by re-distributing the monitoring load.

3.5 Metric Rule Language
There are cases where entities are not interested in viewing
monitoring metrics of a single instance but instead require an
overview of the overall system or parts of it. Such a case is
when an elasticity controller is required to autoscale a tier
comprised of several VMs (e.g. database cluster) of a cloud
service topology. In this case, the focus of the controller is
shifted from single instances to an aggregated performance
overview of the tier itself. To address this issue, we introduce
a Metric Rule Language, which can be utilized to:
• Aggregate and group low-level metrics originating from

single instances. For example, one may be interested in
calculating the daily number of error responses issued
from a web server by summing the collected errorCount
metric: SUM(errorCount);

• Generate high-level metrics dynamically at runtime from
low-level metrics. For example, Availability can be de-
fined from low-level metrics by applying the formula
Availability = 1− downtime/uptime.

A Metric Rule Mechanism is embedded in each
Monitoring Server and can be reached by users either
through the Monitoring Server REST API or graphically
via the JCatascopia Web Interface. It must be noted that
when utilizing the Web Interface, users do not need to
have knowledge of the Metric Rule Language since every-
thing is done graphically and later mapped in the back-
ground to respective JCatascopia directives. We describe
Metric Rules as triplets with the following main elements:

{Filter, Members, Action}
The Filter is the part of the rule where a new metric is de-

fined. The definition of a new metric consists of the operations
(e.g. +, - ,*, /) to be applied to low-level metrics, collected
from Monitoring Agents, and optionally a grouping function
(e.g. AVG, SUM, MIN, MAX). The IDs of the selected Agents
are specified in the Members part of the metric rule. Metric
Rules may be updated at anytime (e.g. when a scale in/out
action occurs) via a simple REST API call without the need
to create a new rule each time. Figure 9 depicts the metric
rule language in BNF. An exemplary Filter to create a new
metric, named DBthroughput, which calculates the average
throughput of a database cluster can be defined, by:

(i) the throughput of each node from the low-level metrics
readps and writeps (reads/writes per second) as follows:

DBthroughput = readps+writeps
(ii) the aggregated throughput over each of the N nodes

comprising the data cluster to find the average throughput:
DBthroughput = AVG(readps+writeps)

When a Metric Rule Filter is violated, the Action specified
is enforced. Actions are either time-based (notify periodically)
or event-based (notify if threshold is violated). An example of
a time-based action, where the subscriber is notified periodi-
cally every 25 seconds is the following:

ACTION = PERIOD(25)
An example of an event-based action where the subscriber

requests to be notified only if the newly created metric reports
values lower that 25% or higher than 75% is the following:

ACTION = NOTIFY(<25,>=75)
With this approach, an elasticity controller does not need

to poll the monitoring system to constantly check metric
values as it is notified only when a violation occurs.

Finally, the complete example of a metric rule that cal-
culates the average database throughput of a distributed
database comprised of N nodes from the low-level metrics
readps and writeps, notifying the subscriber when its values
are lower that 25% or higher than 75%, is the following:

DBthroughput = AVG(readps+writeps)
MEMBERS = [agentID1, ... ,agentIDN]

ACTION = NOTIFY(<25,>=75)

4 Evaluation
In this section, we showcase JCatascopia by presenting: (i) its
core functionality while monitoring real multi-cloud services
deployed on both public and private clouds; (ii) a runtime
comparison to other monitoring systems; (iii) a scalability
evaluation; and (iv) a recoverability evaluation.
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<Rule> ::= RULE = <Filter>, <Members>, <Action>

<Filter> ::= <Metric> = <Expr> | <GroupFunc>(<Expr>)
<Expr> ::= <Operand> | <Operand> <Op> <Expr>
<Operand> ::= <Number> | <Metric> | (<Expr>)
<Op> ::= +|-|*|/
<Metric> ::= <String>
<GroupFunc> ::= AVG|SUM|MIN|MAX|MEAN

<Members> ::= MEMBERS = ({<AgentID>,} <AgentID>)
<AgentID> ::= <String>

<Action> ::= ACTION = NOTIFY(<Act>) | PERIOD(<Number>)
<Act> ::= ALL | {<Relation> <Number>,} <Relation> <Number>
<Relation> ::= <|>|=|!=|>=|<=

Fig. 9: Directive-Based Rule Language in BNF

4.1 Testbed
In our experiments we use VMs of various flavors and oper-
ating systems, originating from 4 different cloud platforms.
Specifically, our testbed consists of the following:
• 25 VMs from the GRNET Okeanos public cloud [28]

with the following characteristics per VM: 1 VCPU, 1GB
RAM, 10GB Disk, Ubuntu Server 12.04.4 LTS.

• 25 VMs from the Flexiant FlexiScale cloud [16] with the
following characteristics per VM: 2 VCPU, 2GB RAM,
20GB Disk, CentOS 6.6.

• 25 Amazon EC2 [4] instances with 1VCPU, 2GB RAM,
160GB Disk and Debian 7.7 (Wheezy).

• 150 VMs from our own OpenStack private cloud [29]
with the following characteristics per VM: 2 VCPU, 2GB
RAM, 20GB Disk, Ubuntu Server 12.04.2 LTS.

To monitor the performance of the cloud services compris-
ing our testbed, we have developed several Probes6 using the
JCatascopia Java Probe API. Table 1 presents these Probes
and their default collecting period. We compare JCatascopia
to two monitoring systems, which follow a similar agent-
based architecture: (i) Ganglia [19], which is an open source,
production-ready, general purpose monitoring tool; and (ii)
Lattice [9], which is a monitoring framework that can be used
to monitor elastically adaptive application environments and
has a prototype available online. Therefore, on all the acquired
virtual instances we have deployed JCastascopia Monitoring
Agents, Ganglia gmonds and Lattice DataSources. In order for
the comparison to be meaningful, we configure each monitor-
ing system to report the same metrics at the same rate. Both,
Ganglia and Lattice offer the CPU, memory and network
metrics that JCatascopia offers as well. For the disk usage and
application-specific metrics, we extend both Ganglia’s metric
library and Lattice, by implementing Python modules and
Java Probes respectively. As an elasticity controller we use
the open-source rSYBL elasticity controller [12] which already
provides a JCatascopia monitoring interface.

4.2 Elastically Adapting a Three-Tier Web Service
In the first experiment, we elastically scale a three-tier
online video streaming service, deployed on Amazon EC2.
The video service is comprised of: (i) an HAProxy Load Bal-
ancer which distributes client requests (i.e., download/upload
video) across multiple application servers with a CPU, Net-
work and HAProxy Probe in use; (ii) An Application Server

6. All JCatascopia Monitoring Probes are open-source and avail-
able at: https://github.com/dtrihinas/JCatascopia-Probe-Repo

Probe Metrics Period
(s)

CPU cpuUserUsage, cpuNiceUsage, cpuSyste-
mUsage, cpuIdle, cpuIOWait

5

Memory memTotal, memUsed, memFree, mem-
Cache, memSwapTotal, memSwapFree

8

Network netPacketsIN, netPacketsOUT, net-
BytesIN, netBytesOUT

10

Disk
Usage

diskTotal, diskFree, diskUsed 30

Disk IO readkbps, writekbps, iotime 15

HAProxy
activeSessions, requestRate, proxy-
BytesIN, proxyBytesOUT, avgRespon-
seTime, serverCnt, errorRate, etc.

8

Cassan-
dra

readLatency, writeLatency, nodeCnt,
nodeSize, nodeload, cacheMissRate, etc.

20

Tomcat maxThreads, currentThreadCount,
currentThreadsBusy, bytesReceived,
bytesSent, requestCount, errorCount,
processingTime, reqThroughput, etc.

15

Video downloadCnt, downloadSizeKB, upload-
Cnt, uploadSizeKB, CacheMissRate

25

Couch-
Base

itemCnt, ops, viewOps, load, writeLa-
tency, readLatency, activeCons, etc.

20

Mem-
Cached

CasHits, CasMisses, CurrConnections,
CurrItems, BytesReadIntoMemcached,
BytesWrittenOutFromMemcached, etc.

8

TABLE 1: Available Probes

Tier, where each application server is an Apache Tomcat
server exposing the video streaming web service. On each
Application Server we deploy a CPU, Memory, Network,
Tomcat and Video Probe; and (iii) A CassandraDB Backend
hosting the video content (∼20GB). On each node we deploy
a CPU, Network, DiskIO and Cassandra Probe.

Initially, other than the static Load Balancer, the topol-
ogy consists of 1 Application Server and 1 Database node.
We stress this cloud service, as depicted in Figure 10, by
generating random client requests of different type (i.e. down-
load/upload video) and video length (between 2-10 minutes)
under a variable request rate. To cope with the workload, our
elasticity controller must scale in/out either the application
and/or database tier, based on scaling actions, defined as
JCatascopia metric rules for each tier respectively:

AvgActiveConnections = AVG(currentBusyThreads)
MEMBERS = [id1, ... ,idN] (R1)

ACTION = NOTIFY(<70, >=140)

AvgCPUUsage = AVG(1 - cpuIdle)
MEMBERS = [id1, ... ,idN] (R2)

ACTION = NOTIFY(<30, >=85)
The metric rules notify the elasticity controller when a

violation is detected and a scaling action is then enforced to
the affected tier, as depicted in Figure 10. To better highlight
when a scaling action occurs, Figure 11 depicts the metric
values (and thresholds) for the first 30 minutes of the metric
rule targeting the application server tier, as returned via the
JCatascopia API.

To illustrate how JCatascopia can provide users with
insights of their cloud services, let us consider a use-case
scenario where the developer of the video service would like
to know if trading performance with cost is beneficiary, in
an attempt to reduce his cloud provider invoice. Specifically,
the developer would like his service to elastically scale when
the request rate rises while limiting the maximum number of
VMs per tier to N , where e.g. N = 5. With this in mind, the
developer believes: limiting the number of VMs per tier will
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Fig. 10: Video Streaming Service Load and Number of VMs

Fig. 11: Application Server Tier Average Connections

reduce costs with a propositional degradation in performance.
We consider the following cost model, adopted by Amazon
Web Services7, to measure the cost of each case:

costV M = dhoursRunninge · hourChargeRate
+ netOutTraffic · transferChargeRate

(1)

total = costV MLB +
|AS|∑
m=1

costV Mm +
|DB|∑
n=1

costV Mn (2)

where based on the pricing scheme transferChargeRate =
$0.12/GB, hourChargeRate = $0.047/h and with |AS| and
|DB| we denote the total number of VMs allocated per
application and database tier, respectively.

Figure 12 depicts a cost comparison of letting the video
service scale at will in contrast to capping the number of VMs
per tier. We observe that, indeed, cost is reduced. Therefore,
the video service developer now expects a similar performance
degradation to be evident. However, in Figure 13 we observe
that limiting the number of VMs results in a serious perfor-
mance loss, in terms of response time, since user requests are
queued and not served in time. Response time is dramatically
affected for the specific application due to the high network
traffic required to stream or upload a video (for this service
it is between 50 to 95 MB per request). To make an even
stronger case, let us consider this from a revenue perspective,
where the developer, monitors the revenue of his application
as a JCatascopia timeseries. In particular, revenue can be cal-
culated by subtracting the costs from the profits. In turn, let
us assume, that the profits are modelled based on youtube’s
reported 2014 Q4 revenue statistics [17], where it is estimated
that per 1000 views Google makes a profit of $5.52. However,

7. http://aws.amazon.com/ec2/pricing/

video requests requiring more than 20 seconds to load, are
not considered when estimating profits as the connection is
usually dropped by impatient viewers who do not wait for a
video to load (such response time is only evident in the capped
scenario). Therefore, as depicted in the revenue projection
presented in Figure 14, limiting the number of VMs towards
the high network traffic is not worth the tradeoff in terms
of cost and performance. Thus, even though not a profiling
tool, JCatascopia, with its metric definition and aggregating
mechanisms, can monitor cloud service resource allocation,
cost and performance, providing, in turn, useful information
to the decision-making mechanisms of an elasticity controller
when planing to enforce intelligent elasticity control actions.

4.3 Monitoring a Multi-Cloud Deployment
This experiment tests the feasibility of JCatascopia to mon-
itor a deployment spread across multiple clouds. At the end
of this experiment, a total of 75 VMs are utilized from the
Amazon, Flexiant and Okeanos clouds. The evaluation is
based on a multi-cloud deployment of an Online Business
Directory hosting 7503 local businesses8. Specifically, the
business directory is comprised of a Manager distributing user
requests (i.e. get directions to shop X, top-K bars in Nicosia)
as MapReduce-like queries to Couchbase database VMs.

The experiment starts with the deployment initially com-
prised of the Manager and a single Couchbase VM. A Couch-
base VM is monitored by a JCatascopia Agent with 5 Moni-
toring Probes (CPU, Memory, DiskStats, MemCached and a
CouchBase Probe). The multi-cloud deployment, as depicted
in Figure 19, is stressed with a read-heavy load (report
top-100 bars in the major cities of Cyprus) via an open-
source workload generator9. Each Couchbase Probe exposes
the current response time for the VM it resides on. We add
the following JCatascopia Metric Rule to the Monitoring
Server, in order to aggregate and report the overall response
time averaged across all VMs in the multi-cloud deployment:

OverallResponseTime = AVG(CouchVMResponseTime)
MEMBERS = [id1, ... ,idN] (R3)
ACTION = NOTIFY(>60sec)

When the threshold in the ACTION of the Metric Rule is
violated, due to the increasing load (Fig. 19), the Monitoring
Server immediately notifies the elasticity controller to take
action. The elasticity controller then selects one of the three
clouds and provisions a new Couchbase VM to cope with
the increasing load. Selecting a cloud to provision the new
VM is done in a round-robin fashion. The experiment stops
when each cloud hosts 25 couchbase VMs, for a total of 75
VMs comprising the multi-cloud deployment monitored by
JCatascopia. Figure 20 depicts the response time per cloud
and the averaged response time across all clouds as measured
by the aforementioned JCatascopia Metric Rule. Based on
this, JCatascopia can provide insights for the performance of
multi-cloud deployments, allowing elasticity controllers to take
more intelligent decisions for elasticity behavior analysis and
VM placement to reduce costs and increase throughput. For
example, in this experiment we observe that Okeanos VMs
initially present less response time and therefore, Okeanos
should be preferred, but as the number of VMs per cloud

8. Real and synthetic data is provided by http://finditcyprus.com
9. https://github.com/UCY-LINC-LAB/WorkloadGenerator
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Fig. 12: Total Cost Comparison Fig. 13: Performance Evaluation Fig. 14: Revenue Comparison
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Fig. 15: Agent Utilization
HAProxy

 0

 0.5

 1

 1.5

 2

 2.5

 3

ganglia JCatascopia lattice

u
ti
liz

a
ti
o

n
 (

%
)

CPU
Memory

Fig. 16: Agent Utilization
Cassandra
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Fig. 17: Agent Utilization
Online Directory
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Fig. 18: Agent Utilization
AppServer

increases, Amazon EC2 achieves a better performance while
Flexiant, in all cases, features higher response times.

4.4 Runtime Impact Evaluation
In this section we study the impact Monitoring Agents have
on user paid VMs. We compare JCatascopia to Ganglia and
Lattice in terms of the overhead and cost imposed by each
monitoring tool to the VMs of the services presented in the
previous sections. To explore in depth the difference between
the compared systems we used small VM flavors. As a side
note, because Ganglia and Lattice do not support multi-
cloud deployments, the online business directory (75VMs)
was re-deployed on the Openstack cluster configured to use
the Xen hypervisor (requirement for Lattice). Finally, while
JCatascopia is capable of monitoring itself, the other tools are
not. Therefore, to be fair, a system daemon on each VM was
utilized to periodically collect (every 1s) the runtime overhead
of each monitoring system from the underlying Linux OS10.

Figures [15-18] depict the comparison in terms of CPU and
memory utilization. From these figures, we notice that Lattice
runtime footprint is larger than the other two monitoring
systems. From Figure 15, we observe that Ganglia’s footprint
is smaller than JCatascopia. This is due to collecting primarily
low-level system metrics and only a few application-specific
metrics on HAProxy. Ganglia is lightweight when utilizing its
built-in metrics but its runtime footprint rises significantly
when increasing the metric count by deploying user-developed
Python modules (external processes) targeting application
level metrics. This is noticeable in Figure 16, where Ganglia’s
memory footprint doubled; in Figure 17 where the difference
between Ganglia and JCatascopia is under 0.03%; and finally,
in Figure 18, where JCatascopia has a smaller runtime impact.
In regards to network utilization, as depicted in Figure 21, we
observe that JCatascopia has an inherently smaller network
footprint than the other monitoring tools. When enabling
filtering (1% filter window), a feature absent from the other
tools, we observe that JCatascopia network overhead drops

10. Each deamon collects CPU and Memory usage via the top -p
command and outgoing network traffic via nethogs command

Fig. 19: Request Rate of Generated Load on the Manager

even more. In addition, Figure 22 depicts the above translated
in terms of cost/h, based again on AWS pricing scheme, for
the online business directory (Section 4.3). From this, we
observe that monitoring traffic over the network imposes a
significant cost consideration factor, with the difference in
cost/h between the other systems and JCatascopia increasing
as time progresses. In conclusion, when in need of appli-
cation monitoring, JCatascopia reduces monitoring network
traffic and consequently the monitoring cost, which is both
noticeable and billable (i.e. network traffic on AWS is charged
$0.12/GB,) in a large-scale distributed deployment.
4.5 Scalability Evaluation
The goal of this experiment is to evaluate JCatascopia scal-
ability under different elastic monitoring topology configu-
rations, while the number of Monitoring Agents, and con-
sequently the number of metrics, increases. When scaling,
the performance of a Monitoring Agent, is not affected, as
each Agent is an independent entity responsible of collecting
metrics originated from only a single instance. However, this
does not apply to a Monitoring Server, which depends highly
on the number of Agents in the deployment, the monitoring
intensity and the number of metrics.

This evaluation is performed on a total of 150 VMs origi-
nating from our Openstack private cloud. Each VM (Ubuntu
Server 12.04.2, 2VCPU, 2GB RAM), runs an Apache Tomcat
Servlet Container (v7.0.56) with a web service executing, per
request, a compute intensive task for a random time period
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Fig. 20: Response Time per Cloud and Averaged Across All
Clouds (Top Right Figure)
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Fig. 21: Monitoring Agent Network Utilization

(15-90 seconds) and a Monitoring Agent collecting a total
of 31 (system- and application-specific) metrics. The initial
monitoring topology is comprised of 1 VM and the elasticity
controller is configured to instantiate randomly, every 2 to 5
minutes, a new VM and add it to the deployment without
the need to restart or reconfigure any part of the monitoring
process. This is performed until the deployment numbers 150
VMs reporting metrics.

To evaluate JCatascopia’s performance while scaling, we
measure archiving time which is the average time required by
a Monitoring Server to process and store a received metric
to the Monitoring Database. A Metric Rule is defined to
calculate the Monitoring Server maximum archiving time
reported in the deployment where, essentially, we “Monitor
the Monitoring System”, as follows:

MaxArchiveTime = MAX(MonServerArchiveTime)
MEMBERS = [id1, ... ,idN] (R4)

ACTION = NOTIFY(ALL)
The process described is repeated for each of the following

configurations with Figure 23 depicting the results of the com-
parison. It must be noted, that although Monitoring Servers
follow a different configuration, the user deployment is agnos-
tic of the underlying topology requiring zero re-configuration
effort from a user perspective.

At first, we utilize 1 Monitoring Server for the whole de-
ployment with a RDBMS (MySQL) database backend. From
Figure 23, we observe that this achieves an archiving time that
grows linearly. However, if the metric publishing rate is higher
than the archiving rate, metrics will queue at the Monitoring

Fig. 22: Monitoring cost/h for a Multi-Cloud Application

Server and possibly be dropped. At this point one may argue
that using a RDBMS is wrong. However, RBDMSs provide
joins on tabular data, a functionality important to discover
correlations among data from heterogeneous sources. For
example, [13] analyses cloud service behavior by correlating
monitoring metrics, provider-specific information (i.e. pricing
schemes, user quotas), and service topology descriptions. To
keep archiving time low, data after 2 weeks is compressed and
archived in a HDFS. The next two configurations replace the
RDBMS with a distributed NoSQL backend (CassandraDB)
comprised of 1 and 2 nodes respectively. We observe that
as the number of Monitoring Agents increases, a significant
performance gain is observed. This, is primarily due to the
fact that writing to the database (Cassandra writes are cheap)
approximates 68% of the total processing time. Thus, this
justifies why we evaluate scalability via archiving time instead
of Monitoring Server CPU and Memory usage which in all
configurations never passed 0.6% and 2.9% respectively.

In the fourth configuration, we establish a tree hierarchy
by configuring 2 Monitoring Servers as intermediates which
are utilized to process, aggregate and distribute monitoring
metrics from the underlying Agents to a root Monitoring
Server. The root Monitoring Server stores the metrics in
the Monitoring Database. For this topology we observe that
archiving time remains relatively stable for up to 85-90 VMs
but as the number continues to grow, the root Monitoring
Server becomes a bottleneck. We then, configure the topology
to a P2P topology where Monitoring Servers are placed hor-
izontally, each receiving, processing and then storing metrics
to the database backend. From Figure 23 we observe that
JCatascopia manages to keep archiving time relatively stable.
Therefore, when archiving time is considered high (e.g. archiv-
ing time> 100ms), monitoring traffic can be redirected through
additional Monitoring Servers. This will result in a significant
performance gain, allowing the monitoring topology to scale to
any number of instances. In addition, the monitoring system
can be elastically scaled in and out by an elasticity controller,
without requiring additional effort and the presence of a system
administrator.
4.6 JCatascopia Recoverability in a MaaS Configuration
In this experiment we show that JCatascopia can recover from
Monitoring Server “crashes” by automatically reconfiguring
a monitoring topology established to offer Monitoring-as-a-
Service. In addition, recovery must happen in a timely manner
by employing the recovery protocol described in Section 3.4.
For our evaluation, we utilize a MySQL monitoring database
and define the same metric rule as in Section 4.5 (see R4)
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but with a very low threshold (22ms), thus allowing a testbed
comprised of 120 VMs to be scaled and distributed evenly
among 5 Monitoring Servers in a P2P topology.

At first, network traffic is randomly blocked to 1 of the
5 Monitoring Servers, which becomes unavailable. This en-
ables the recovery protocol which rebalances the topology.
Specifically, affected Monitoring Agents are notified to re-
connect to different Monitoring Server(s) based on the used
Agent placement policy (we use a “fairness” policy, evenly
load-balancing Agents to Servers) which suggests candidate
Monitoring Servers to each Agent. When the topology returns
to a stable state, we restore access to the faulty Monitoring
Server and repeat the experiment but in the next iteration we
simultaneously “crash” an additional Monitoring Server.

To evaluate recoverability, we measure: (i) Rebalance Time
(RBT ), which is the time required to determine (based on the
applied policy) candidate Monitoring Servers for the affected
Monitoring Agents and afterwards notify them. RBT highly
depends on the number of faulty Monitoring Servers (and
consequently Monitoring Agents affected) and the complexity
of the placement policy; (ii) Agent Reconnect Time (ART ),
which is the time required for a Monitoring Agent to reconnect
to a new Monitoring Server after notified about current Mon-
itoring Server unavailability; and (iii) Total Recovery Time
(TRT), which is the total time required for the system to re-
turn to a “stable” state. TRT is measured in our experiments,
but can be modelled, as follows:

TRT = RBT +Max(ART ) + ε
where TRT is equal to the sum of RBT, the worst ART

and an error margin (e.g. for network latency in a multi-cloud
deployment). It is important to mention that while TRT de-
pends on the worst ART, the recovery and, consequently, the
monitoring process is not affected by a slow Agent reconnec-
tion as Monitoring Agents (re-)connect in parallel. Figure 24
depicts the results for each iteration of the experiment, where
for 120 VMs distributed across 5 Monitoring Servers, the
monitoring process can automatically recover from any number
of Monitoring Server crashes, observing linear recoverability.

5 Conclusion and Future Work
In this article, we introduce the design and key novelties of
the JCatascopia Cloud Monitoring Framework. JCatascopia
is a fully-automated, modular, multi-layer and interoperable
monitoring framework. JCatascopia runs in a non-intrusive
and transparent manner to any underlying virtualized infras-
tructure and is capable of detecting configuration changes
due to elasticity actions in a cloud service deployment based
on a novel variation of the pub/sub protocol. JCatascopia
is equipped with a metric rule mechanism to generate, ag-
gregate and group low-level monitoring metrics at runtime.
Furthermore, JCatascopia is highly configurable, allowing its
users to deploy it in different monitoring topologies and is
capable of automatically recovering from Monitoring Server
faults and network problems introduced, at runtime, in the
monitoring configuration. Experiments on both public and
private clouds show that JCatascopia is a suitable monitoring
system to support a fully automated cloud resource provi-
sioning system with proven interoperability, scalability, fault-
tolerance and with a low runtime footprint. Most importantly,
our framework is able to reduce network traffic by 41% over
state-of-the-art solutions and consequently the monitoring
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cost, which is noticeable, billable and rises very fast in large
elastic distributed multi-cloud deployments. Finally, JCatas-
copia is currently integrated with: (i) CELAR [8], a fully
automated multi-grained platform which elastically provisions
resources for cloud services; (ii) the ADVISE framework [13],
which features a clustering-based learning mechanism for
estimating and evaluating cloud service elasticity behavior;
(iii) the rSYBL [12] elasticity controller; and (iii) CAMF [10],
the newly established Eclipse Foundation Cloud Application
Management Framework.

As future work, we are in the process of enhancing Mon-
itoring Probes capabilities by pursuing adaptive filtering and
sampling to dynamically adjust, at runtime, the metric filter-
ing and collecting period based on the current workload [36].
This results in minimizing the communication, storage and
computation overhead. Furthermore, we are in the process of
developing a PaaS interface for our Monitoring Agents, allow-
ing them to be seamlessly integrated and bundled in PaaS
cloud services. Finally, JCatascopia will be equipped with the
appropriate interface to monitor and identify performance and
network interferences between VMs co-located on the same
physical nodes.
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