
AtlasFL: A Federated Learning Workload Generator with Energy
and Carbon Emission Support

Moysis Symeonides
msymeo03@ucy.ac.cy
University of Cyprus

Nicosia, Cyprus

Demetris Trihinas
trihinas.d@unic.ac.cy
University of Nicosia

Nicosia, Cyprus

Abstract
Federated Learning (FL) is prevailing as the dominating service
paradigm facilitating the training of Machine Learning (ML) mod-
els among a set of collaborating entities in a distributed fashion.
Although FL settings are ideal for scalable model training and can
limit data privacy exposure for the collaborating entities, evaluating
the impact of FL on the underlying infrastructure is challenging due
to several different configuration knobs. To address this, we intro-
duce AtlasFL, a framework designed to simplify the benchmarking
of FL deployments and enable users to generate realistic work-
loads that can be used to assess what-if scenarios. A key feature
of AtlasFL is that on top of FL-level metrics, AtlasFL also exposes
execution traces for the underlying infrastructure utilization, such
as compute and memory usage as well as energy consumption.
Moreover, AtlasFL can integrate with services that expose energy
grid data and energy availability from direct access to renewables to
provide carbon footprint estimations for requested FL experiment
configurations. To illustrate the utility of AtlasFL, a benchmark-
ing process embracing 5 FL implementations was conducted over
an edge micro-DC testbed and afterwards, a use-case scenario is
designed to introduce the impact of time-shifting when running
together a total of 15 FL experiments.

CCS Concepts: •Computingmethodologies→Machine learn-
ing; Distributed artificial intelligence; • General and refer-
ence → Experimentation; • Computer systems organization
→ Cloud computing.

Keywords: Federated Learning, Internet of Things, Workload Gen-
eration

ACM Reference Format:
Moysis Symeonides and Demetris Trihinas. 2025. AtlasFL: A Federated
LearningWorkload Generator with Energy and Carbon Emission Support. In
3rd International Workshop on Testing Distributed Internet of Things Systems
(TDIS ’25), March 30-April 3, 2025, Rotterdam, Netherlands. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3719159.3721224

1 Introduction
With an abundance of IoT devices now scattered across the globe, a
continuously maturing technology such as Federated Learning (FL)
is shaping into a key driver enabling intelligent IoT services. FL as
a service paradigm is suitably geared to harvest the vast amounts
of data IoT devices produce and take advantage of their available
computational power to cooperatively train Machine Learning (ML)

This work is licensed under a Creative Commons Attribution 4.0 International License.
TDIS ’25, Rotterdam, Netherlands
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1526-6/2025/03
https://doi.org/10.1145/3719159.3721224

models [6]. In a typical FL setting a Server is entrusted with the or-
chestration of the model training process, while the computational
effort is spread among a pool of Clients [7]. To achieve this, the
Server initially obtains a set of available clients that meet certain
criteria (e.g., availability) and subsequently broadcasts to the Clients
an initial version of the model. At this point, the Clients update the
model locally based on local knowledge without exposing (possibly)
sensitive information among peers. When the training round is
complete, the Server collects the local versions from each client
and forms through aggregation a new global model. This process
is repeated for either a pre-determined set of rounds or the conver-
gence to a certain model loss. With such a rigorous setting, FL is
making strives on its promises to preserve (user) data privacy with
localized training on individual IoT devices [16] and reducing the
bandwidth associated with data transfer over the IoT-Edge-Cloud
continuum for centralized model training [14].

While FL deployments offer inherent scalability and limit privacy
exposure, assessing their impact on the underlying infrastructure
remains a significant challenge with the offering of several dif-
ferent configuration knobs. For example, different ML backends,
such as TensorFlow and PyTorch, have been found to exhibit dis-
tinct computational profiles during FL [8], and variations in the
data distribution of clients further contribute to the disparities
in execution times [13]. Additionally, the underlying infrastruc-
ture is a critical factor, often comprising heterogeneous computing
nodes with varying processing capabilities [4]. When considering
the energy efficiency profiles of these diverse nodes, along with
efforts to minimize the carbon footprint of FL—such as integrat-
ing renewable energy sources or prioritizing workloads in regions
with low-carbon energy grids [17]—the evaluation of such systems
becomes increasingly complex.

To address these challenges, several initiatives have introduced
FL development tools [1, 10] and benchmarking frameworks [2, 13],
enabling users to design, execute, and test FL deployments on phys-
ical or virtual infrastructures. However, despite the availability of
such tools, users still face significant barriers for adoption. De-
ploying benchmarks for (distributed) ML often requires upfront
monetary investments for suitable infrastructure before even as-
sessing suitability for the desired application [3]. Moreover, the
instrumentation and measurement of the real energy consumption
of FL deployments necessitates integrating smart meters or spe-
cialized software tools into the setup [9]. Additionally, evaluating
different algorithms, such as node selection or workload scheduling
algorithms, demands re-executing FL workloads under identical
conditions—an endeavor that is nearly impossible to achieve in
practice. Finally, simulation frameworks that aim to simplify the
evaluation process focus exclusively on FL evaluation metrics, such
as model accuracy and loss, without accounting for the impact of
FL on the underlying infrastructure [11].

https://orcid.org/0009-0007-2711-1949
https://orcid.org/0000-0002-9540-7342
https://doi.org/10.1145/3719159.3721224
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3719159.3721224


TDIS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Symeonides et al.

In this paper, we introduce AtlasFL1, an open and modular frame-
work designed to simplify the benchmarking of FL deployments
over physical testbeds and collect execution traces from various
FL implementations. A key feature of AtlasFL is that on top of
FL-level metrics, such as model accuracy and loss, AtlasFL also
exposes traces for the underlying infrastructure utilization, such
as compute and memory usage as well as energy consumption.
With these traces, AtlasFL can create statistical models and after-
wards, enable users to generate realistic workloads to optimize
future deployments by running and apprehending the impact of
multiple what-if scenarios presenting different FL experiment con-
figurations. Additionally, AtlasFL integrates carbon intensity data
and information from renewable energy sources, enabling users
to assess the carbon footprint of their designed scenarios. Users
can define custom what-if scenarios, specifying parameters such as
the FL workload(s), underlying infrastructure, target region, and
scheduling algorithm. The system then evaluates all scenarios, pro-
viding detailed statistics for each, thereby facilitating A/B testing
and performance analysis across different configurations. To illus-
trate the utility of AtlasFL, a benchmarking process that includes 5
FL implementations was carried out on an edge micro-DC testbed
provided by CloudFerro2 with energy grid and renewable energy
data extracted from PV panel racks in Poland and Cyprus. Finally,
a use-case scenario is designed to introduce the impact of time-
shifting for FL when running together 15 different FL experiment
configurations.

The rest of this paper is structured as follows: Section 2 provides
a comprehensive overview of the AtlasFl architecture and building
blocks as well as implementation details. Section 3 introduces a
use-case to showcase the efficacy and efficiencies that AtlasFL can
introduce. Section 4 provides a brief overview of the related work,
while Section 5 concludes the paper and outlines future work.

2 The AtlasFL Framework
2.1 Overview
Figure 1 depicts a high-level and abstract architectural overview of
AtlasFL. This figure illustrates how AtlasFL seamlessly integrates
several components to enable users to benchmark, analyze, and
simulate FL workloads.

Following a bottom-up approach, the flow of an AtlasFL pipeline
begins with the FL benchmarking process conducted offline on a
(typically small-scale) testbed. During this phase, users select a set
of pre-defined FL implementations with a diverse set of properties.
Upon execution, a rich set of monitoring data is extracted from both
the underlying testbed and the FL training process. In particular,
AtlasFL harvests QoS metrics, such as model accuracy, loss, train-
ing time, and convergence ratios, and system performance metrics
such as CPU usage, memory footprint, network I/O, energy con-
sumption, etc. The current AtlasFL prototype leverages FedBed [13]
to design the provided FL implementations and automate the de-
ployment process over different testbeds. In brief, FedBed allows
users to define and customize various FL parameters, including
underlying ML backends, model architectures, and data distribu-
tions. Subsequently, it performs an automated deployment of a FL
experiment over Docker-enabled nodes, including heterogeneous

1 https://github.com/UCY-LINC-LAB/GreenAnalyzer-Project/tree/main/Analysis%
20%26%20Datasets/aerOS-deployment
2 https://cloudferro.com/

Figure 1. High-level Overview of the Architecture

and geo-distributed IoT environments. During the execution of the
FL deployment, AtlasFL extracts the aforementioned monitoring
data using from an integrated monitoring system. It is important to
note that users are not restricted to FedBed; other FL benchmarks or
tools can be employed. However, users must ensure that FL traces
are generated in a schema compatible with the AtlasFL framework,
enabling seamless integration and analysis.

With the FL monitoring traces in hand, AtlasFL processes them
to extract statistical insights, creating a dedicated model for each
FL deployment. These models capture key properties for both client
and server nodes, with the most critical metrics including: (i) CPU
Requirements, represented by the 95th percentile of CPU usage on
the host node; (ii) Average CPU Utilization, which is the mean CPU
usage over the duration of different phases of different phases of
the FL process (e.g., local training, communication with server;
(iii) Memory Requirements, defined by the peak memory usage ob-
served during execution; (iv) Average Memory Usage, that is the
mean memory consumption over the workload’s runtime; and (v)
the Average Power Drawn, which represents the typical power con-
sumption for the different FL training process operations. These
statistical properties provide a comprehensive profile for each FL
implementation, enabling detailed simulation and analysis in sub-
sequent stages. In addition, AtlasFL incorporates external datasets,
including regional carbon intensity data and renewable energy
availability, providing users with insights on the energy efficiency
and environmental impact of FL scenarios.

Despite the simplicity in defining benchmarking requirements,
this process can be time-consuming and requires access to a testbed
resembling the end-environment of the application. As previously
mentioned, this can be a significant adoption barrier for FL. As
such, for users wanting a faster approach, the benchmarking phase
can be omitted by opting for precompiled traces and simulation
models made readily available in the AtlasFL repository.

In either case, when AtlasFL has compiled the required statistical
models, users can interact with the framework to define custom
what-if scenarios. Here, users specify critical parameters such as
FL workload characteristics (e.g., model type and dataset), the un-
derlying infrastructure (e.g., hardware configurations and energy
profiles), the geographic region (affecting carbon intensity), and the

https://github.com/UCY-LINC-LAB/GreenAnalyzer-Project/tree/main/Analysis%20%26%20Datasets/aerOS-deployment
https://github.com/UCY-LINC-LAB/GreenAnalyzer-Project/tree/main/Analysis%20%26%20Datasets/aerOS-deployment
https://cloudferro.com/


AtlasFL: A Federated Learning Workload Generator with Energy and Carbon Emission Support TDIS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 2. CloudFerro Containerized Edge Micro-DC testbed
scheduling algorithm to be used. A set of these scenarios are fed
into the framework and then AtlasFL transitions into the simulation
phase, managed by the Simulation Executor. This component uses
the statistical models derived from the previous phase to mimic
the execution behavior of the FL implementation under the condi-
tions specified by the user. The simulator accounts for hardware
heterogeneity, energy efficiency profiles, and regional energy char-
acteristics to create statistical runs of a scenario. As scenarios are
processed, the framework infers detailed metrics for each scenario,
including execution time, energy consumption, and carbon inten-
sity. These metrics allow users to perform in-depth analyses and
A/B testing, enabling comparisons between different configurations
and identifying optimal setups for their FL deployments.

To enhance user interaction and decision making, AtlasFL illus-
trates evaluation results through plotted visualizations, to compare
different experiment scenarios and assess performance trade-offs.
Users can explore various configurations and make informed deci-
sions based on the presented data. In addition, based on the results,
users can refine their configurations, adjust parameters, or explore
alternative strategies. By bridging the gap between FL evaluation
metrics and infrastructure-level considerations, AtlasFL enables a
comprehensive approach to designing and optimizing FL deploy-
ments, particularly in energy- and carbon-sensitive environments.

2.2 Benchmarking & FL Traces
As previously mentioned, the benchmarking phase can be omitted,
with AtlasFL users opting to use precompiled traces and simula-
tion models made readily available in the AtlasFL repository. This
section describes how the available traces were created.

AtlasFL traces are formatted as comma-separated value (CSV)
files that contain metrics such as CPU utilization, memory footprint,
power consumption, etc. To evaluate our framework, we generated
these traces by conducting benchmarking experiments on a real-
world testbed. The testbed of choice was the CloudFerro WAW2-1
site made available to the authors through the aerOS H2020 project.
The CloudFerro site offers (literally) a containerized edge micro-DC
with Kubernetes administrated compute nodes (Fig 2). From this
testbed, a cluster of 10 compute nodes was allocated, each equipped
with 48 CPU cores and 256 GB of memory. A monitoring agent
installed on each node collected the necessary utilization metrics
from the operating system, while the PowerTOP3 software tool was
used to measure power consumption.

The FL deployment was set up so that 1 compute node was
assigned the role of the Server and the other 9 nodes were config-
ured as Clients. This was achieved by leveraging FedBed [13]. The
FedBed codebase allows for flexibility through a set of environmen-
tal variables, enabling adjustments to the FL service deployment

3 https://www.intel.com/content/www/us/en/developer/articles/tool/powertop-
primer.html

without requiring the reconstruction of containerized images. A
running FedBed container executes a specific FL service—server or
client—and activates corresponding components such as aggrega-
tion algorithms, ML, and datasets.

Five different implementations of FL experiments were realised
so that traces can be collected. Specifically, the 5 FL experiments are
configured as follows: (i) a Convolutional Neural Network (CNN)
implemented using PyTorch as the ML backend and subject to
being trained for 200 rounds while embracing the MNIST dataset;
(ii) the same PyTorch CNN model, but trained for 50 rounds; (iii) a
CNN model implemented using TensorFlow as the ML backend and
subject to being trained for 50 rounds using the MNIST dataset; (iv)
the MobileNetV2 model implemented via PyTorch and trained on
the CIFAR-10 dataset for 50 rounds; and (v) the same MobileNetV2
model but implemented using TensorFlow and again trained for
50 rounds using the CIFAR-10 dataset. For reference, MNIST and
CIFAR-10 are open-source image classification datasets that are
widely used to evaluate FL algorithms and testbeds. In all cases,
Client nodes are assigned 25,000 randomly selected data points for
training and 5,000 data points for evaluation, ensuring consistency
across the experiments.

Figures 3, 4, and 5 depict an aggregated overview of the traces
that show trends on 3 of the monitored performance axes. The
left plot highlights the overall training duration for each FL ex-
periment. The workload involving 200 training rounds required
approximately 8,000 seconds (just over 2 hours). This was followed
by the MobileNetV2 model trained for 50 rounds in both Tensor-
Flow and PyTorch, each taking around 6,000 seconds (just over
1.5 hours). The 50-round PyTorch-MNIST workload completed in
approximately 2,500 seconds (slightly more than 40 minutes), while
the TensorFlow-MNIST model demonstrated the fastest perfor-
mance, finishing in under 1,000 seconds (less than 30 minutes).
These results underscore the varying computational demands of
different models and ML backends.

The middle plot highlights the energy consumed by each work-
load, measured in Joules, specifically for the compute nodes in-
volved in training. Interestingly, the PyTorch-CIFAR10 workload
consumed the highest amount of energy, although it required less
time to complete compared to PyTorch-MNIST. This is attributed
to the complexity of the MobileNetV2 model, which demands sig-
nificantly more computational resources than the simpler neural
network used for the MNIST dataset. This increased complexity re-
sults in higher CPU utilization (as shown in the right plot), leading
to higher power consumption per second.

The second most energy-intensive workload was the PyTorch-
MNIST model with 200 rounds, primarily due to its extended du-
ration. This was followed by the TensorFlow-CIFAR10 workload,
which also involved training the complex MobileNetV2 model for
an extended period. Notably, the PyTorch-MNIST workload con-
sumed more energy than the TensorFlow-MNIST workload, even
though the latter exhibited higher CPU utilization. This observation
underscores the significant role that execution duration plays in
determining a workload’s total energy consumption.

Finally, Figure 5 depicts the mean cpu utilization per training
round for each of the 5 FL configurations. In turn, Figure 6 depicts
the loss per training round. For brevity, we show only plots for the
CNN model trained for 50 rounds embracing TensorFlow (top) and
PyTorch (bottom) as the ML backend. Interestingly, one can observe

https://www.intel.com/content/www/us/en/developer/articles/tool/powertop-primer.html
https://www.intel.com/content/www/us/en/developer/articles/tool/powertop-primer.html


TDIS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Symeonides et al.

Figure 3. Training Duration Figure 4. Energy Consumption Figure 5. CPU Utilization

Figure 6. Example of TF models loss for 50 Rounds of FL execution

that the loss minimizes in less rounds when adopting PyTorch as
the ML backend.

2.3 Energy Grid Carbon Sources & RES Data
For AtlasFL to provide carbon footprint estimations, a similar work-
flow with the FL trace collection must be adopted. To support this,
AtlasFL provides integration endpoints to access energy grid data
from the country or region where the deployment is provisioned
and acknowledge if on-site Renewable Energy Sources (RES) are
directly available during computations.

The current version of AtlasFL, is compatible with Electrici-
tyMaps4. ElectricityMaps is a service that enables the extraction of
real-time data (and forecasts) of energy grid production for various
countries and local regions. In turn, for RES data, AtlasFL provides
another integration endpoint where datapoints for PV rack energy
production can be made available to AtlasFL at an hourly-based
granularity and following a CSV based data format.

Similar to the benchmarking process, users that do not want to
use the real-time offerings can take advantage of the pre-compiled
data made readily available in the AtlasFL repository. Specifically,
energy source data are available for both Cyprus and Poland that
have been collected across several different time periods andweather
conditions. Moreover, RES data is available and embraces ML mod-
els developed for self-hosted photovoltaic (PV) racks located at the
University of Cyprus, as described in [15]. Specifically, these models
were created using a dataset that collected hourly metrics over 135
days (3,240 data points) from 3 PV panel racks, namely, PV1 (107.1
m2), PV2 (95.2 m2), and PV3 (57.8 m2) with the best-performing
models achieving error rates of 7.3%, 9.0%, and 8.9% for PV1, PV2,
and PV3, respectively. With these models, we can input weather
data from various regions to simulate and generate corresponding
results, as if the PV panels were deployed in those specific locations.

4 https://app.electricitymaps.com/map/

Figure 7. FL Client Mean CPU and Power for Local Training

2.4 Workload Modeling & Simulation
To model FL workloads, we need to consider what are the vari-
ous types of tasks an FL system performs. Through our (Python)
programming abstractions, one can define when an FL workload
will be deployed, represented by the start_at property, as well
as the properties of the workload, such as the dataset, underly-
ing ml_library, model, and other relevant attributes. The work-
load also specifies the number of respective tasks, including the
FL server task and a set of FL client tasks, along with a starting
tolerance indicating how tolerant the user is regarding the exe-
cution time of the workload. Then, each task is characterized by
a unique id and a set of properties, such as execution_duration,
compute requirements (CPU and memory), and power_consumption.
It is important to note that these properties depend on both the
requested FL implementation as well as the underlying infrastruc-
ture. Consequently, the next entity in our workload modeling is
the compute node, which is identified by its unique id. A compute
node is characterized by a node type, which indicates its total
resources and characteristics, its location, and includes runtime
properties such as available resources (e.g., CPU and memory)
and a set of running tasks, which is initially empty upon initial-
ization. Lastly, users may specify renewable energy sources (RES)
in their model, which only requires the relative path and column
of the respective CSV dataset.

When the description of the FL workloads and the infrastructure
is ready, then the AtlasFL Simulation Executor is ready to generate
the respective workload traces. The current AtlasFL implementa-
tion embraces the key metrics collected during the benchmarking
process along with the compute note features and are fed into a
regressionmodel to infer the runtime load per node. For this, specifi-
cally, the simulator invokes the schedule_service function, which
takes as input the FL implementation, desired configurations
for the requested what-if scenarios, a list of nodes, and the simula-
tion duration (in seconds).

Before the simulator executes its pipeline, it invokes the up-
date_start_time method for each service. By default this method
does not influence the starting point of a workload. However, users
can easily update this method in order to postpone the execution
of a service based on the available renewable energy or carbon



AtlasFL: A Federated Learning Workload Generator with Energy and Carbon Emission Support TDIS ’25, March 30-April 3, 2025, Rotterdam, Netherlands

Figure 8. Total 𝐶𝑂2 Emissions (kg) per Scheduling Strategy

intensity. Then, for each second, it observes if a task is finished and
release the respective node’s resources. When the finished tasks
release the occupied resources, the simulator evaluates the starting
time of the undeployed workloads, and, if the starting time is more
than the current second, the simulator calls the schedule_service,
in order to place the tasks of the workload on available nodes. At
this point, the system considers different task requirements and exe-
cution duration based on the candidate nodes. Metrics are extracted
automatically from the FL Workload Traces, and if the algorithm
selects the respective node, the properties of the deployed task will
be updated respectively. Currently, our implementation follows a
greedy approach, deploying a task on a node that is available, but
users can easily extend this approach to materialize their placement
strategies. Lastly, the simulator keeps statistics of the execution
creating utilization and energy consumption dataset for the respec-
tive scenario, and combines it with renewable sources and energy
grid carbon intensity data.

Finally, it is worth highlighting that users can define a set of
what-if scenarios encompassing multiple FL workloads, pluggable
algorithms, varying infrastructures, and geographically distributed
regions. The system automatically executes these scenarios se-
quentially, generating the corresponding simulated datasets. This
functionality enables users to perform A/B testing and conduct an
in-depth analysis of their workloads with ease.

3 Use-Case: Time Shifting Federating Learning
This section introduces a use case scenario that aims to demonstrate
the utility of AtlasFL.

Suppose that an organisation wants to employ FL to harness
the power of distributed ML but wants to do so by examining if
the introduction of time shifting can reduce its carbon footprint
by enabling the system to suggest delaying model training to take
advantage of accessible on-site RES. In an attempt to understand
the gains of time shifting, the organisation employs AtlasFL and its
ready-to-use modeling to generate data for a 48h horizon and sev-
eral different FL configurations to evaluate the outcome of different
scheduling strategies.

Let us assume the organization is interested in simulating a
setting with 1 server and 37 clients and generate FL experiments
with the following configurations: (i) a different number of training
rounds (50, 100, 200, 400); (ii) the use of 2 different ML backends
(TensorFlow, PyTorch); and (iii) the adoption of 2 different datasets
(MNIST, CIFAR-10). With these configurations, a total of 15 differ-
ent FL experiment scenarios can be established and run together.
As a country of preference, impacting estimation of carbon emis-
sions, the organisation opts to use data from Lodz, Poland. The
scheduling strategies will examine executing the model training
process immediately aiming at minimizing execution time without
considering any carbon efficiency gains, versus the time shifting

Figure 9. PV Panel Production Estimation for 48h in Lodz

adoption where the training process can be delayed for either 3, 6,
9 or 12 hours. For time shifting, a greedy algorithm is employed to
decide when to start the FL task. Moreover, in reference to client
data, we reiterate that each client receives a random sample of
25K datapoints for training and 5K for test-based validation, all
originating from the utilized dataset (MNIST, CIFAR).

The following summarizes key findings from the evaluation of
the organisation after embracing AtlasFL. Figure 7 depicts the mean
compute usage and power drawn by each FL client node during
local training after the simulated workload is produced. In turn, Fig-
ure 9 depicts the estimated production for an on-site PV panel rack
connected to the edge-microDC based on the rack capacity, config-
uration, and weather conditions. Moreover, Figure 8 illustrates𝐶𝑂2
emissions over the 48h period for the various scenarios. The blue
bars represent deployments incorporating RES, while the orange
bars depict carbon intensity without RES integration in Lodz. The
results clearly demonstrate that utilizing RES significantly reduces
the carbon footprint of the workloads. Specifically, this reduction
averages around 21% and, in some cases, reaches up to 29.7%, de-
pending on the strategy employed. The impact of FL time shifting is
notable. For instance, introducing a 6-hour postponement tolerance
reduced carbon emissions by up to 10.2% in RES-enabled deploy-
ments but only 1% in deployments without RES. Similar results are
observed for the rest of the time-shifting strategies, the best being
the 12 hour delay with a reduction of about 18% from the immediate
execution strategy. When both RES integration and FL time shifting
are combined, our methodology demonstrated a significant carbon
reduction of approximately 29.9% compared to the baseline.

Finally, to visually illustrate our findings, we present the results
of the 12h FL time shifting greedy algorithm with and without
RES integration. As shown in Figure 10, the carbon intensity re-
mains identical between the two deployments until 6 a.m., when
PV energy generation begins. From this point until 5 p.m., the
RES-enabled deployment (depicted by the blue line) demonstrates
a significant reduction in carbon intensity, particularly around
midday, when carbon emissions drop to zero. A similar pattern is
observed on the second day, with an extended period of zero carbon
emissions, attributed to the absence of scheduled workload during
this time.

4 Related Work
Flower [1] and OpenFL [10] are tools enabling the design of FL
implementations by abstracting the challenges introduced by deal-
ing with a distributed environment (i.e., coordination) while also
providing ready-to-use FL algorithms and client selection strategies.
In turn, FedBed [13] and FedLab [18] provide both configurable
and automated deployment of FL implementations across physical



TDIS ’25, March 30-April 3, 2025, Rotterdam, Netherlands Symeonides et al.

Figure 10. 12h Time-Shifting w/o RES Integration

and virtual testbeds, while also extracting during execution several
monitoring metrics.

In regards to benchmarking, LEAF [2] is a popular suite that fea-
tures a set of 5 reference FL implementations that focus on text and
image processing. LEAF provides a set of metrics to evaluate model
accuracy and running time, and also outputs at the end of each
experiment run the amount of computing resources needed from
each client in FLOPS and number of bytes downloaded/uploaded.
In turn, FedScale [5] presents a similar bechmarking framework but
interestingly, also incorporates a runtime that enables the testing
of different FL experiments in a controlled environment.

Notable FL workload simulation tools are the following. FLSim
by Facebook Research [11] is a framework written in PyTorch that
simulates FL experiments in controlled environments (i.e., laptop,
single-board device) by allowing users to configure the number of
clients, as well as client-server communication and data exchange.
FLSim features 3 workloads from the domains of computer vision
and text processing. In terms of metrics, only model accuracy/loss
is reported at a per training basis. In turn, FedJAX [12] is an open-
source python library released by Google Research with the intent
to provide simple primitives for implementing FL algorithms and
testing them in a controlled environment without dealing with the
complexities introduced by distributed system deployment. After a
test is complete, FedJAX provides evaluation metrics but these are
limited to only model quality and training duration.

5 Conclusions and Future Work
This work tackles the complex endeavor of benchmarking and
workload generation for experiments featuring Federated Learning
due to the uncertainties introduced by several different configu-
ration knobs in FL settings. Key innovations of our work include
(i) the ability to run offline benchmarking with several different
FL implementations to collect execution traces,se covering differ-
ent ML backends, models, experiment duration, and datasets; (ii)
the collection of traces beyond model QoS, expanding coverage to
include computational resources, memory footprint, and energy
consumption. (iii) integrating energy grid data and data from re-
newable energy sources to provide carbon footprint estimations;
and (iv) for users in need of avoiding the time-consuming bench-
marking process, the direct availability of the simulation models
for workload generation.

Our future work directions are three-fold. First, we aim at further
enriching the configuration selectivity of the workload generator.
Second, we aim at extending the carbon estimation module to col-
lect real-time data and cover countries and regions beyond the

two that are currently made available. Third, we aim to conduct a
scalability evaluation for AtlasFL.

Acknowledgment. This work is part of GreenAnalyzer and AdaptoFlow,
which have indirectly received funding from the European Union’s Horizon
Europe research and innovation action programme, via the aerOS Open
Call issued and executed under the aerOS project (Grant Agreement no.
101069732) and the TRIALSNET Open Call issued and executed under the
TrialsNet project (Grant Agreement no. 101017141), respectively.

References
[1] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-

Marques, Yan Gao, Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro
Porto Buarque de Gusmão, and Nicholas D. Lane. 2022. Flower: A Friendly
Federated Learning Research Framework. arXiv:2007.14390 [cs.LG]

[2] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A
benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).

[3] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, and David Owen.
2024. The rising costs of training frontier AI models. arXiv:2405.21015 [cs.CY]
https://arxiv.org/abs/2405.21015

[4] Enmao Diao, Jie Ding, and Vahid Tarokh. 2020. Heterofl: Computation and
communication efficient federated learning for heterogeneous clients. arXiv
preprint arXiv:2010.01264 (2020).

[5] Fan Lai, Yinwei Dai, Sanjay Singapuram, Jiachen Liu, Xiangfeng Zhu, Harsha
Madhyastha, and Mosharaf Chowdhury. 2022. FedScale: Benchmarking Model
and System Performance of Federated Learning at Scale. In Proceedings of the
39th International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 11814–11827.

[6] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise
Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Proceedings of the 20th AISTATS, Vol. 54. PMLR,
1273–1282.

[7] Dinh C. Nguyen, Ming Ding, Pubudu N. Pathirana, Aruna Seneviratne, Jun
Li, and H. Vincent Poor. 2021. Federated Learning for Internet of Things: A
Comprehensive Survey. IEEE Communications Surveys and Tutorials 23, 3 (2021),
1622–1658. doi:10.1109/comst.2021.3075439

[8] Fotis Nikolaidis, Moysis Symeonides, and Demetris Trihinas. 2023. Towards
Efficient Resource Allocation for Federated Learning in Virtualized Managed
Environments. Future Internet 15, 8 (2023), 25 pages.

[9] Xinchi Qiu, Titouan Parcollet, Javier Fernandez-Marques, Pedro P. B. Gusmao,
Yan Gao, Daniel J. Beutel, Taner Topal, Akhil Mathur, and Nicholas D. Lane. 2024.
A first look into the carbon footprint of federated learning. J. Mach. Learn. Res.
24, 1, Article 129 (March 2024), 23 pages.

[10] G Anthony Reina, Alexey Gruzdev, Patrick Foley, Olga Perepelkina, Mansi
Sharma, Igor Davidyuk, Ilya Trushkin, Maksim Radionov, Aleksandr Mokrov,
Dmitry Agapov, et al. 2021. OpenFL: An open-source framework for Federated
Learning. arXiv preprint arXiv:2105.06413 (2021).

[11] Facebook Research. [n. d.]. Federated Learning Simulator (FLSim). https://github.
com/facebookresearch/FLSim

[12] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. 2021. FedJAX: Federated
learning simulation with JAX. arXiv preprint arXiv:2108.02117 (2021).

[13] Moysis Symeonides, Fotis Nikolaidis, Demetris Trihinas, George Pallis, Marios D
Dikaiakos, and Angelos Bilas. 2023. FedBed: Benchmarking Federated Learning
over Virtualized Edge Testbeds. In 2023 IEEE/ACM 16th International Conference
on Utility and Cloud Computing (UCC). IEEE.

[14] Moysis Symeonides, Demetris Trihinas, and Fotis Nikolaidis. 2024. FedMon: A
Federated Learning Monitoring Toolkit. IoT 5, 2 (2024), 227–249. doi:10.3390/
iot5020012

[15] Moysis Symeonides, Nicoletta Tsiopani, Georgios Maouris, Demetris Trihinas,
George Pallis, and Marios D. Dikaiakos. 2024. CarbonOracle: Automating Energy
Mix & Renewable Energy Source Forecast Modeling for Carbon-Aware Micro
Data Centers. In Proceedings of the 17th IEEE International Conference on Utility
and Cloud Computing (UCC).

[16] Nguyen Truong, Kai Sun, Siyao Wang, Florian Guitton, and YiKe Guo. 2021.
Privacy preservation in federated learning: An insightful survey from the GDPR
perspective. Computers & Security 110 (2021), 102402. doi:10.1016/j.cose.2021.
102402

[17] Philipp Wiesner, Ramin Khalili, Dennis Grinwald, Pratik Agrawal, Lauritz Tham-
sen, and Odej Kao. 2024. FedZero: Leveraging Renewable Excess Energy in
Federated Learning. In Proceedings of the 15th ACM International Conference on
Future and Sustainable Energy Systems (e-Energy ’24). Association for Computing
Machinery, New York, NY, USA, 373–385. doi:10.1145/3632775.3639589

[18] Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, and Zenglin Xu. 2023. FedLab:
A Flexible Federated Learning Framework. Journal of Machine Learning Research
24, 100 (2023), 1–7.

https://arxiv.org/abs/2007.14390
https://arxiv.org/abs/2405.21015
https://arxiv.org/abs/2405.21015
https://doi.org/10.1109/comst.2021.3075439
https://github.com/facebookresearch/FLSim
https://github.com/facebookresearch/FLSim
https://doi.org/10.3390/iot5020012
https://doi.org/10.3390/iot5020012
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1016/j.cose.2021.102402
https://doi.org/10.1145/3632775.3639589

	Abstract
	1 Introduction
	2 The AtlasFL Framework
	2.1 Overview
	2.2 Benchmarking & FL Traces
	2.3 Energy Grid Carbon Sources & RES Data
	2.4 Workload Modeling & Simulation

	3 Use-Case: Time Shifting Federating Learning
	4 Related Work
	5 Conclusions and Future Work
	References

