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Abstract. Recent techniques for the automated detection of online mis-
information typically rely on ML models trained with features extracted
from content analysis and/or general-purpose Knowledge Graphs (KGs).
These techniques often fail to consider the interplay between misinforma-
tion and polarization. To bridge this gap, we introduce PARALLAX, a
methodology that enhances misinformation detection by infusing polar-
ization knowledge into existing classifiers. Polarization knowledge is rep-
resented in terms of Polarization Knowledge Graphs (PKG). PARAL-
LAX constructs PKGs in an unsupervised way, and uses them to enrich
articles with polarization knowledge. A Flexible Knowledge-aware Graph
Neural Network (FlexKGNN) is trained on these enriched representa-
tions. We tested our methodology on three misinformation datasets,
demonstrating that it achieves approximately a 15% improvement in
performance over baseline classifiers and consistently outperforms other
KGs, which typically reach baseline levels only.
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1 Introduction

In recent years, misinformation has posed significant challenges to societies
worldwide, with evident influence on events such as presidential elections [1], ref-
erendums, and most recently, the COVID-19 pandemic [6,13]. Moreover, the rise
of Foreign Information Manipulation and Interference (FIMI) has added a new
dimension to this challenge, as evidenced in the context of the Russo-Ukrainian
war [20]. The rampant spread of misleading narratives extends beyond sowing
confusion; it also exacerbates societal divisions, forging a complex relationship
with the phenomenon of polarization [21]. On the one hand, polarization fos-
ters an environment conducive to misinformation spread. The divisive nature of
polarization, coupled with the human tendency for “confirmation bias,” makes
individuals more susceptible to false or misleading information, especially when
it aligns with their existing viewpoints [29,36]. On the other hand, the prolifer-
ation of misinformation can also contribute to the escalation of polarization. In
an environment with distorted information, individuals often retreat into “echo
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chambers” of similar views, reinforcing their beliefs, and perceiving dissenters as
adversaries [29].

Existing methods to mitigate misinformation primarily focus on the devel-
opment of Machine Learning (ML) models for fake news detection and/or the
establishment of fact-checking initiatives [35], often overlooking the immediate
connection between misinformation and polarization. To address this, we need to
cope with the complexity of modeling, quantifying, and integrating polarization
into misinformation detection algorithms [9].

In this paper, we aim at bridging this gap by proposing PARALLAX, a
methodology and toolset for integrating polarization knowledge into existing
misinformation classifiers, assessing its contribution on their classification per-
formance. To do so, we address the challenges of: i) representing domain-specific
polarization knowledge; ii) encoding news articles with their polarization infor-
mation; and iii) effectively integrating article polarization cues into existing clas-
sifiers to enhance their accuracy. The key contributions of our work are:

— Polarization Knowledge Graph (PKG): The definition of the PKG
schema and data structure designed to capture polarization knowledge as a
semantic graph of entities, fellowships, topics, and attitudes. To construct the
PKG, we develop an unsupervised method to extract and model polarization
information from news corpora (see Sect. 3).

— Article-specific Polarization Encoding: We introduce an approach to
extract polarization knowledge on a single-article level, and encode this knowl-
edge as a micro-PKG, a semantic graph that aligns with the PKG. The
micro-PKG reflects the key actors and predicates identified in the article’s
content. To address content limitations at the article level, we enrich the
micro-PKGs by i) incorporating additional polarization context from the
PKG and ii) integrating PKG-derived embeddings (see Sect.4).

— Flexible Knowledge-aware Graph Neural Network (FlexKGNN):
We design a Graph Neural Network to incorporate polarization knowledge
encoded in micro-PKGs as a feature into existing misinformation classifiers,
to enhance their classification performance. This is achieved by concatenating
the feature vector of a given classifier with the internal micro-PKG represen-
tation to learn the relationship between polarization and misinformation for
improved classification (see Sect. 5).

— Evaluation Study and Dataset: We evaluate PARALLAX on a manu-
ally curated COVID-19 misinformation dataset, along with two additional
datasets used in prior literature [28]. We assess the contribution of polariza-
tion knowledge on the performance of two existing misinformation classifiers,
comparing the results with alternative article-encoding methods. Our results
reveal that our method outperform others, improving the accuracy of existing
classifiers by ~215%, highlighting the importance of incorporating polarization
into misinformation detection (see Sect. 6).
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2 Background and Related Work

Misinformation is defined as false information disseminated, either intention-
ally or inadvertently, from “unreliable” sources [35]. The content of fake news
articles, often mimicking credible sources, distorts public perception by exploit-
ing biases [23,36], and intensifies societal polarization [1,36].

Polarization refers to the phenomenon where social or political groups are frag-
mented into opposing factions that hold different and often conflicting beliefs
and values [29]. These factions consist of interacting entities that hold diverse
attitudes on various topics. Entities sharing similar beliefs tend to form cohesive
fellowships, while conflicts emerge from their disagreements, thus forming fellow-
ship dipoles. In such environment, misinformation aligning with in-group beliefs
flourishes, while factual contradictory information is met with skepticism [21,36].
Consequently, polarization manifests across entities, groups, and topics, form-
ing a complex multi-level phenomenon. We refer to entities, fellowships, dipoles,
topics, and attitudes as “polarization information”.

Polarization, rooted in the inter-group conflict theory [29], manifests during
the process of “social categorization,” where individuals align with groups, i.e.
fellowships, based on shared beliefs. This fosters in-group loyalty, distinguishing
“us” from “them.” During “social identification,” individuals become members
of those groups, a process amplified by cognitive biases [36]. In the concluding
“social comparison” process, groups favorably contrast against others, often only
considering their perspective, stereotyping out-groups negatively [11]. In such
environment, misinformation aligning with in-group beliefs flourishes, while fac-
tual contradictory information is frequently met with skepticism or rejection [36].

2.1 Content-Based Misinformation Detection

Content-based misinformation detection can be broadly categorized into style-
and knowledge-based methods.

Style-based Methods focus on identifying distinctive writing styles in fake
news through linguistic features [25,28], such as modal words, punctuation, and
casing [23]. They also emphasize the role of hyperpartisanship in the dissemina-
tion and distinction of fake news [35,36]. Recent works have incorporated con-
textual embeddings from transformer models, which displayed their potency in
accurately distinguishing between fake and real news content [24]. Knowledge-
based Methods leverage external knowledge to enhance the understanding or
verification of news articles [8,15,17,32,35]. Typically, they employ an estab-
lished KG, such as Wikipedia!, to serve as the factual world knowledge. A key
step in these approaches, is encoding each article in the dataset using the pre-
defined KG. Some approaches try to mimic human fact-checking, identifying
claims within articles as Subject-Predicate-Object (SPO) triples, and verify-
ing them against the KG [35]. More recent works try to enhance the content

! http://wikipedia.org.


http://wikipedia.org

PARALLAX 89

of each article, by identifying entities mentioned in each article’s text, con-
necting them to the KG, and further enriching them with adjacent KG enti-
ties [8,15,17,32]. Certain works also integrate discussion topics [15] and entity
relationships [8,17,32], extracted via tools like OpenlE [2], thus, forming a com-
prehensive heterogeneous graph for each article. To ascertain the veracity of
articles, these methods use Graph Neural Networks (GNNs), classifying each
article representation as originating from genuine or misleading information.

These methods, while broadening article context with external knowledge,
have yet to integrate polarization knowledge in misinformation detection, despite
its influence on misinformation spread and consumption [30,36]. Furthermore,
their outputs consist of GNNs that base their classification on internal article
representations, overlooking existing classifiers. In this work, we address these
limitations by introducing a method to represent article-level polarization knowl-
edge. We propose a GNN that integrates this knowledge with existing classi-
fiers, enhancing their classification performance and assessing the contribution
of polarization on misinformation detection.

2.2 Representing Polarization Knowledge

Existing computational approaches which study, represent, and quantify differ-
ent aspects of polarization in online social media typically focus on two broad
directions: group- or topic-level polarization. Group-oriented approaches
typically seek to identify polarized groups of users, and model inter-group
polarization based on group segregation-level metrics [3,9,12]. Topic-oriented
approaches typically apply NLP, topic modeling, and Deep Learning (DL) tech-
niques to model, measure, and evaluate the polarized stance of distinct ideolog-
ical user groups (e.g. Democrats and Republicans in the US) towards particular
issues [14,19]. In our work, we explore a different methodology for modeling
polarization: we employ content analysis on a wide number of news articles to
construct a semantic graph (i.e. the PKG) that represents the polarization land-
scape. This graph is extracted in an unsupervised manner from the narratives
presented inside the articles, identifying key figures, events, and themes pivotal
to public discourse, and capturing divisive and unifying attitudes among them.
Our method integrates both group and topic aspects of polarization into the
PKG for a comprehensive domain knowledge representation. This structured
representation enables its integration with existing classifiers, aiding in evaluat-
ing its contribution on relevant tasks, including misinformation detection.

3 Polarization Modeling and Knowledge Extraction

3.1 DPolarization Knowledge Graph and Schema

To capture domain-specific polarization knowledge effectively, we introduce the
concept of Polarization Knowledge Graph (PKG), which is a structured repre-
sentation of polarization information defined according to a Subject-Predicate-
Object (SPO) schema shown in Fig.1. The PKG schema is grounded on the
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inter-group conflict theory [29], comprising of four primary actors, namely Entity,
Fellowship, Dipole, and Topic. An Entity is any individual or group that con-
tributes to the polarization observed in a particular domain of interest; groups
include organizations, countries, or religions. A Topic is a subject on which enti-
ties may hold opposing opinions. A Fellowship represents a cohesive sub-group
of entities with mutual supportive attitudes, while a Dipole comprises two fel-
lowships manifesting opposing views or attitudes towards a particular topic.
The PKG schema uses predicates to characterize supportive or opposing rela-
tionships between its actors: SupportEE and OpposeEE for entity interactions,
SupportET and OpposeET for entity attitudes on topics, and MemberOf for
entity associations to fellowships. It defines group attitudes on topics with Sup-
portFT and OpposeFT, and fellowship conflicts within dipoles with the PartOf
predicate. Degrees of polarization on topics are indicated by HasModeratePolar-
1zation, HasMediumPolarization, and HasFExtremePolarization.

Supportg/ MemberOf @ PartOf
Opposegg
Supportpr,
Opposegr
/
SupportE Has[Moderate/Medium
OpposegT /Extreme]Polarization

Fig. 1. Diagram of the Polarization Knowledge schema.

To construct a PKG, which reflects the context of a domain under study, we
gather a Supplementary Corpus comprised of news articles representing the con-
text surrounding this domain. The selection of articles for the corpus is guided
by three critical parameters: theme, region, and time-frame. Theme refers to a
collection of keywords that capture the domain’s core concepts; for instance,
when focusing on Coronavirus, relevant keywords might include “Coronavirus,”
“COVID-19,” and “SARS-CoV-2.” The Region parameter helps focus on a spe-
cific geographical area, like the United States, and time-frame defines a specific
period under study through designated start and end dates. We deploy collec-
tors that utilize the aforementioned parameters to filter news articles from the
GDELT Project? - a large and open database of global news articles. This tai-
lored corpus forms the basis for extracting relevant polarization information.
This structured approach ensures that the Supplementary Corpus reflects the
domain’s knowledge landscape, and can serve as the basis for extracting polar-
ization information and constructing a representative domain-specific PKG. Fol-
lowing, we outline the PKG construction process.

2 https:/ /www.gdeltproject.org/.
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3.2 Extracting the Polarization Information

Given the Supplementary Corpus, we use POLAR [22] to extract domain-specific
polarization information. We chose POLAR for its integrated approach that
combines both group- and topic-oriented methods, offering a comprehensive
extraction of polarization information. Initially, we process the Supplementary
Corpus with POLAR to detect and link named entities, denoted as E. Then,
we use syntactical dependency parsing and sentiment attitude analysis to iden-
tify the supportive or opposing attitudes between entity pairs as a function
r(e;, ej) — {Negative, Neutral, Positive}. Then, we employ signed network clus-
tering methods to group entities with dense positive attitudes amongst them and
discover the entity fellowships F'. To identify fellowship dipoles D, we examine
the structural balance of all pairs of fellowships; structural balance is a concept
tied to polarization in signed networks [3]. Additionally, we perform clustering of
semantically similar noun phrases to identify discussion topics T'. Sentiment cues
are aggregated from relevant sentences and noun phrases, associating an entity’s
attitude towards a topic. This association is captured by a(e;,t.) — [—1,1],
where -1 signifies strong opposition and 1 denotes strong support. The output of
this process comprises of E, F', D, T, r and a, which collectively represent the
polarization information extracted with POLAR. For example:

— “Pres. Trump spent months playing down the effectiveness of masks, ...
mocked former V.P. Biden for wearing one.”

— “Dr. Fauci ... been begging people to wear masks.”

— “Trump ... insulting Fauci for telling the truth.”

— “Biden described Fauci as a dedicated public servant ...”

From these sentences, we discern the entities as E = {“Joe Biden”, “Anthony
Fauci?, “Donald Trump”}, and their relationships: r(“Joe Biden”, “Anthony
Fauci”) = Positive, r(“Donald Trump”, “Anthony Fauci”) = Negative, and
r(“Donald Trump”, “Joe Biden”) = Negative. These lead to the formation of
fellowships F' = {f1, fo} where f; = {“Joe Biden”, “Anthony Fauci”} and fo =
{“Donald Trump”}, establishing the dipole dy 2 € D. The discussion centers on
the topic t; € T where f; = {“Joe Biden”, “Anthony Fauci”} and fo = {“Donald
Trump” }, establishing the dipole dq 2 € D. The discussion centers on the topic
t1 € T where t; = {7effectiveness of masks”, "masks”}, labeled as Mask Effec-
tiveness. The entity attitudes toward ¢; are quantified as a(“Joe Biden” t1) =
0.0, a(“Anthony Fauci”,t) = 0.8, and a(“Donald Trump”,t,) = —1.0.

3.3 Construction of Polarization Knowledge Graph

Although the polarization information extracted with POLAR is valuable, its
lack of semantic structure presents challenges for its effective utilization, interpre-
tation, and integration into tasks such as misinformation detection. To address
this, we introduce a number of successive transformations designed to transform
the identified entities, fellowships, dipoles, topics, and the structural relations



92 D. Paschalides et al.

thereof, into a PKG. These steps involve the conversion of elements of E, F', D,
and T, into actors in the PKG, the derivation of predicates from known struc-
tural relationships and the values of functions r and a, and the enrichment of
PKG topics with comprehensive descriptions. We initialize the PKG by integrat-
ing entities and their relationships, assigning predicates based on the function
r. Figure 2a depicts the initial PKG from the example.

Y, Y
HasExtreme
Polarization

MemberOf PartOf MemberOf PartOf
MemberOf MemberOf
Supportpg Supportgg

MemberOf
Supportgy

® OppnseEE OpposegE: %

(a) Initial PKG instance  (b) PKG with topic attitudes

MemberOf
T

Opposeg

Fig. 2. Initial (2a) and the updated (2b) PKG instance.

Topical Attitude Predicates: We enrich the PKG by adding identified fellow-
ships and topics, and by computing and integrating the predicates that reflect
the attitudes of entities and fellowships towards these topics. We compute these
predicates by translating the continuous function a into a categorical form, where
a threshold thr determines the relationship type: if a(e;,t;) > thr, we assign a
SupportET predicate between e; and t;, otherwise we assign an OpposeET' pred-
icate. To estimate thr, we examine the sets of positive A; and negative A atti-
tudes from every entity toward every topic, setting thr as the average of their
median values. This approach captures the inherent division between support
and opposition in the Supplementary Corpus, ensuring a balanced threshold for
identifying SupportET and OpposeET predicates. To assign predicates between
a fellowship f; and a topic t;, the fellowship’s aggregated attitude towards ¢; is
calculated as the average attitude of all of its entity members towards ¢;:

att% _ Eekgf‘,ifj(emtj)
Based on this aggregated attitude, the predicate between f; and t; is assigned as
SupportE'T if attjﬁ% > thr, or OpposeF'T otherwise. Expanding on our example
from Sect. 3.2, we divide attitudes into AJ. = {0.8} and A7 = {—1.0}, establish-
ing a threshold thr = —0.1. This division results in categorizing the relationships
as (“Anthony Fauci”, SupportET, t1) and (“Donald Trump”, OpposeET, t1). In
a similar manner, fellowships’ attitudes towards ¢; are encapsulated into the
triples (f1, SupportF'T,t1) and (fa, OpposeFT,t;).
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Topic Polarization Predicates: To assign the polarization-related predicates,
we first measure the degree of disagreement in attitudes between dipole fellow-
ships for each topic. To quantify this, we use the polarization index metric [19]:

p=(1-A4)6a

where Ay = (|At+]| — |4y, |)/(|A;;\ + | Ay, ])- This represents the normalized dif-
ference between the sizes of positive A;: and negative At_i attitude sets w.r.t.
tj. 64 = |gct — ge™|/2 is the difference between the average attitude values gc™
and gc~ of A;‘; and At_j , respectively. The value of p ranges from 0 to 1, with
1 indicating extreme polarization and 0 denoting no polarization. This metric
aligns with theoretical concepts in political science and sociology that define
polarization as both the concentration of opinions at opposing extremes and the
distance between those extremes [7]. To assign the polarization predicates, we
utilize the following thresholds: HasModeratePolarization if u < 0.3, HasMedi-
umPolarization if 0.7 > p > 0.3, and HasFExtremePolarization if > 0.7. These
thresholds were determined through a combination of empirical analysis and
theoretical considerations. We conducted a preliminary study on a diverse set of
topics across multiple domains, analyzing the distribution of p values. The results
showed that p values around 0.3 indicate the emergence of moderate polarization,
whereas, for u values above 0.7, extreme polarization occurs. These observations
align with the work by Bramson et al. 2016 [5], who suggest that polarization
emerges when opposing groups show differences but still have some overlap in
their views. However, these thresholds are adaptable, allowing for customization
for a variety of datasets. In our example, we calculate the polarization index
e, for dipole d; o towards t; based on the distinct positive and negative atti-
tudes towards t1, A = {0.8} and A;, = {—1.0}. These attitudes yield A4 =0,
and d4 = (0.8 4+ 1.0)/2) = 0.9, leading to u:, = 0.9, which translates to the
triple (d1,2, HasExtremePolarization, t1), indicating a notable polarization on ;.
Figure 2b shows the completed PKG.

4 Article-Specific Polarization Encoding

To map an article ¢, which has not been previously encountered, to a polariza-
tion context defined by a relevant PKG, we utilize the methodologies described
in Sect. 3.2. These methods extract polarization knowledge from the contents of
q and encode it as a micro-PKG, which is a condensed version of the primary
PKG that incorporates select actors and adjusted attitudes to reflect ¢’s nar-
rative. This micro-PKG includes the components E,, Tj, v, and a,, where it is
imperative that actors in F; and T; correspond with those in the primary PKG.
Owing to the inherent limitations of micro-PKGs, which arise from the typically
brief length of individual articles, these structures may possess restricted scope
and connectivity to broader polarization knowledge. To address this constraint,
we enhance the micro-PKGs by integrating supplementary polarization contexts
from the primary PKG and applying PKG embeddings. These embeddings serve
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as node and edge features in a low-dimensional vector space, capturing the struc-
tural and semantic properties of actors and predicates.

4.1 Structural Augmentation with Subgroup Dynamics

Our first strategy consists of structurally enriching the micro-PKG by adding
context from the primary PKG. Specifically, we identify fellowships in the pri-
mary PKG relevant to the entities F, within the article and include them in
the micro-PKG via MemberOf predicate. If these fellowships are part of broader
dipoles identified in the primary PKG, we integrate these dipoles into the micro-
PKG and establish connections using a PartOf predicate. Additionally, we link
the newly included fellowships and dipoles to topics T, using relevant SupportFT,
OpposeF'T, or polarization-level predicates found in the primary PKG. This
method allows us to extend the initial micro-PKG to cover a wider array of
conflict dynamics between subgroups, reflecting both explicit mentions in the
article and the larger polarization context within the domain.

4.2 Semantic Enhancement Through PKG Embeddings

Our second strategy introduces PKG embeddings to enhance the representa-
tion of polarization in micro-PKGs. To learn PKG embeddings, we employ the
TuckER method, which is very effective in capturing diverse types of actors and
predicates [4]. TuckER is trained on known triples from the primary PKG and is
evaluated on a triple set with one element (subject, predicate, or object) omitted.
It decomposes a tensor into factor matrices for subjects (S), predicates (P), and
objects (O), along with a core tensor (3) representing the interactions among
them. During training, TuckER employs the function ¢ (s, p,0) = 3 x18Xap X350,
where s, p, and o are the embeddings of a PKG triple’s subject, predicate, and
object. TuckER applies a logistic sigmoid to each score ¢(s,p,0), predicting the
likelihood of a triple’s correctness. The training objective is to minimize the
binary cross-entropy loss of these predictions, iteratively refining S, P, and O.
The resulting S, O embeddings depict the PKG actor positions in the latent
space, whereas the predicate embeddings P signify their role in linking actors
within the PKG. Given a micro-PKG, we calculate each actor’s mean embed-
ding from S and O to ensure both its subject and object roles are considered in
its representation. For each predicate, we compute the mean of its vector from
P and the subject and object associated embeddings, capturing the predicate’s
context. These embeddings are integrated as nodes and edges features of the
micro-PKG.

5 Polarization-Driven Misinformation Detection

To improve the accuracy of existing misinformation classifiers, we aim at enrich-
ing their training with PKG-encoded polarization knowledge. To this end, for
each article in a Misinformation Dataset (MD) of interest, we construct a PKG
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for the domain of the MD and compute a micro-PKG for each article in the MD.
Subsequently, we label each micro-PKG as either “reliable” or “unreliable,” given
the credibility of its source article, creating a micro-PKG Dataset. Leveraging
the graph representations in the micro-PKG Dataset, we re-define misinforma-
tion detection as a graph classification, which entails classifying micro-PKGs as
originating from “reliable” or “unreliable” news articles. To effectively integrate
our approach with existing classifiers, we introduce FlexKGNN, a Graph Neural
Network (GNN) designed to assimilate polarization knowledge from micro-PKGs
and merge it with features from these classifiers. We base the FlexKGNN core
architecture on models from related works that utilize KGs for misinformation
detection, employing graph convolution and attention layers [8,17,32]. The nov-
elty of FlexKGNN is in merging the internal micro-PKGs representation with
external classifiers prior to the classification, a strategy inspired by ensemble clas-
sifiers [31]. We validate the architecture of FlexKGNN, shown in Fig. 3, through
hyperparameter tuning across the evaluation datasets.
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Fig. 3. Overview of the FlexKGNN model architecture.

Initially, an input micro-PKG G passes a Transformer Convolution layer [33],
updating the feature vector for each actor v by aggregating neighbor information

)

using self-attention. Feature vector Hq(]l+1 at layer [ + 1 is updated as:

HTY = o(BO . w0 . g0)

where W and B® are the trainable weight matrix and bias vector for layer
I, respectively, and o(-) is a non-linear activation function. Subsequently, four
Graph Attention (GAT) layers [33] further leverage self-attention to allow the
model to learn the importance of neighbors’ information dynamically. After
the last attention layer, Global Average Pooling (GAP) aggregates actor and
predicate features to form a micro-PKG representation Hg. Finally, Hg is
passed through a series of fully connected layers, each utilizing the LeakyReLU
non-linear activation function. The FlexGKNN architecture concludes with a
softmax activation layer, which outputs the probabilities for each class ¢ €
{reliable, unreliable}:
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P(G) = Softmax(W () . Hg + B(®))

where W(©) and B(®) are the weight and bias of the classification layer, and P(G)
is the probability distribution over classes (Preriabie and Pupretiabie)-

Incorporating Existing Classifiers: We integrate existing classifiers into
FlexKGNN during its training phase. These classifiers, trained on misinformation
features from news article content, are combined with polarization cues in the
GAP layer of FlexKGNN, where the model learns the micro-PKG representation
H¢. For this integration, a feature vector F' is defined, representing the point
at which the existing classifier merges with FlexKGNN. F' can be defined in
several ways: i) as a vector of misinformation features extracted using NLP
techniques [35], ii) as a vector consisting of the output class probabilities from the
existing classifier, or iii) as the penultimate hidden layer of DL models. To merge
with FlexKGNN, the vector F' is concatenated with the Hg representation,
creating an augmented representation H/, = [H¢ || F)|. This approach employs
ensemble stacking principles, where multiple models are merged to enhance their
capabilities [31]. The H{, representation is then used to calculate P(G).

6 Experiments and Evaluation

To assess the effectiveness of our approach, we examine a case study focusing on
articles related to the COVID-19 pandemic, a period characterized as an “info-
demic®” exacerbated by political polarization [6,13]. To conduct our evaluation,
we compiled a misinformation dataset specific to this context. Our objective is
to quantify the impact of integrating polarization knowledge into existing clas-
sifiers for misinformation detection. Beyond our primary case study, we apply
our approach on two additional datasets to examine its broader applicability.
For reproducibility purposes, we make our results and code publicly available?.

COVID-19 Misinformation Dataset: Our dataset comprises articles from
GDELT database, from 1/2020 to 12/2021. We retrieved articles with three or
more mentions of the keywords coronavirus, COVID, or pandemic. We main-
tained data integrity by using the Internet Archive® as a backup source for
removed articles. To assess the reliability of the collected articles, we referenced
publicly available information on domains previously associated with COVID-19
misinformation%”. We categorized the articles based on their domains credibil-
ity, identifying 58,888 as “reliable” and 3,523 as “unreliable. The most frequent
domains are depicted in Fig. 4.

Additional Datasets: We also evaluate on two additional datasets [28]: i)
Politifact, consisting of 467 “reliable” and 383 “unreliable” articles, primarily
focusing on the US political scene, sourced from the politifact.com fact-checking

3 https://www.who.int /health-topics/infodemic.

4 https://github.com/dpasch01 /PARALLAX.

® https://archive.org/.

5 https://mediabiasfactcheck.com/.

" https://github.com /bigheiniu/meta-coronavirus-dataset.
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Fig. 4. Number of reliable and unreliable articles by top domains known to generate
factual and false information. (*Reuters digital news report 2020)

website; and ii) GossipCop, consisting of 15,313 “reliable” and 4,781 “unreliable”
articles, centered around celebrity news, gathered from eonline.com and gossip-
cop.com. To rectify the class imbalance in our datasets, we employed domain
stratified undersampling on the majority label.

Table 1. Characteristics of the MD Supplementary Corpora.

Dataset |From |To Top Keywords # Articles
COVID-19/01/2020/12/2021|coronavirus, sars, mandate, vaccine 84,180
Politifact |10/2016|04/2018|trump, clinton, president, debate 15,710
GossipCop|06/2017/05/2018|kardashian, bieber, prince, harry, markle 12,768

Supplementary Corpora: To compile the Supplementary Corpora, we auto-
matically extract the parameters of theme, region, and timeframe from each of
the MDs, to ensure their relevance with each corpus. To do so, we apply TF-
IDF to extract the thematic keywords from the articles, utilize geo-extractors
to identify the region, and the publication dates for timeframe alignment. To
mitigate overlap, we exclude articles from each Supplementary Corpus that are
shared with its corresponding MD. Table 1 outlines these characteristics for the
Supplementary Corpora derived from the specified MDs.
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Fig.5. Frequency of PKG actors and predicates. ModeratePol., MediumPol., and
EztremePol. represent Has[Moderate, Medium, Ezxtreme]Polarization predicates.
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6.1 COVID-19 PKG Overview

We construct the PKGs for each Supplementary Corpus. Figure5 depicts the
actor and predicate frequencies for each of the PKGs. Following, we present
an overview of the PKG regarding our primary case study of COVID-19.
Given the number of actor and predicate observations, the high number of
OpposeET (76,425) compared to SupportET (26,287) indicates a prevailing neg-
ative entity attitude towards various topics. This is also supported by the Sup-
portFT (26,287) and OpposeFT (80,483) predicates, hinting a significant divide
between fellowships. In addition, the 102,193 HasExtremePolarization, 192,287
HasMediumPolarization, and 91,262 HasModeratePolarization instances under-
score the highly polarized nature of the topic discussions.

Entity-level Overview: Notable entities and their positive and negative atti-
tudes are illustrated in Fig. 6. These include the COVID-19 Vaccine and Pfizer,
which exhibit positive relationships, indicating their acceptance and favorable
image. Regulatory bodies like F'DA and CDC show higher positive attitudes,
indicative of public trust [6]. Conversely, geographic entities like Wuhan, Tai-
wan, and China display mostly negative bias, possibly tied to COVID-19 origin
blame. Political figures like, Donald Trump and Joe Biden, reflect mixed senti-
ments on their pandemic responses [13].

EEE Positive
Bl Negative

IS

3442 37 14

Attitude Observations
- -

COVID-19 Pfizer FDA CDC  Wuhan Taiwan  China  Donald Joe
Vaccine Trump  Biden
Entities

Fig. 6. Number of positive and negative entity attitudes.

Fellowship-Level Overview: The PKG reveals several fellowship instances.
One fellowship emphasizes the medical response, uniting entities like COVID-19
Vaccine, Pfizer, Moderna COVID-19 Vaccine, and regulatory bodies FDA and
CDC. Another highlights the US public health response, with administrative
entities like the President of the United States and preventive measures like
Social Distancing and Face Masks, along with experts such as Dr. Anthony
Fauci. A separate fellowship revolves around the Democratic Party, including Joe
Biden, Barack Obama, and Bernie Sanders. Lastly, a group centered on Donald
Trump, highlights events like his treatment at the Walter Reed National Military
Medical Center. Collectively, these fellowships offer comprehensive insights of the
pandemic’s medical and political dimensions.

Topic-Level Overview: Various pandemic-related topics have been identified,

which exhibit different degrees of polarization. Topics such as the COVID-19
Case Numbers, Vaccine Efficacy, Lockdown Measures, COVID-19 Response, and
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COVID-19 Treatments stand out for their high occurrences of HasFExtremePo-
larization predicates. These observations align with findings of significant politi-
cization of the pandemic, the undermining of health authorities, and hesitancy to
vaccines [13]. As described in Sect. 3.2, the PKG topics are identified as seman-
tically similar Noun Phrases (NPs). Initially, this process yielded 6,811 topics,
each comprising an average of 1,067 NPs, making their interpretation challeng-
ing. To streamline this, we automatically label each topic with a representative
title, describing its context. For the labeling, we employ OpenAI’s GPT-4 API®,
leveraging the significant results of ChatGPT, including data annotation [10].
Specifically, given the NPs of each topic, ChatGPT was prompted to generate
a self-explanatory title in relation to the pandemic. Examples of the annotated
topics are shown in Table 2.

Table 2. Topic examples with their frequent noun phrases.

Topic Label Frequent Noun Phrases

Vaccine Efficacy|vaccine, immunization, effective vaccine

Lockdown lockdowns, locked-down people, lock-down

Med. Experts |expert, highly trained expert, medical expert

Resp. Mishandl. mishandling, horrific handling, improper response handling

Mask Mandate [face mask, face covering, mask mandate

Reopening reopening, reopening phase, collective reop.

Misinformation |disinformation, misinform, misinformation

Virus Origin artificial origin, animal origin, man-made

6.2 Polarization Contribution to Existing Classifiers

Our primary evaluation goal is to measure how the integration of polarization
knowledge enhances the performance of existing misinformation classifiers. For
this purpose, we integrate two baseline classifiers into FlexKGNN;, as detailed in
Sect. 5. These classifiers represent both ML and DL paradigms, combining tex-
tual [23] and latent [24] features from ML and DL models, respectively, yielding
SOTA results. For our ML baseline classifier, we chose Check-It [23], a feature-
based misinformation detection approach. Check-It operates on a set of 256
textual features, to derive its predictions via a logistic regression model. To inte-
grate with FlexKGNN, we concatenate its feature vector with Hg. For our DL
baseline, we selected RoBERTa, a well-known pre-trained transformer model,
effective in misinformation detection [24]. To integrate it with FlexKGNN, we
concatenate its last 768-dimensional hidden layer with Hg.

Experimental Setup: To train the models, we split the MDs into 70% for
training and 30% testing, using 3-fold cross-validation. We used a stochastic
gradient descent optimizer with 0.2 momentum and a learning rate of 0.02. To
avoid overfitting, we applied a 10 epochs early stopping. We trained for 100
epochs, accelerated by an NVIDIA Tesla T4 GPU.

8 https://openai.com/blog/openai-api.
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Table 3. Performances scores for baselines classifiers and their integration with PKG,
OpenlE, SRL, and DBPedia.

Model COVID-19 |Politifact |GossipCop
Acc. F1  |Acc. F1  |Ace. F1
Check-It (C) 0.717 |0.716 |0.697 |0.697 0.640 |0.549

FlexKGNNpga +C  |0.728/0.728/0.830/0.830/0.7500.750
FlexKGNNopenre + C 0.645 0.633 |0.703 |0.702 0.639 0.632
FlexKGNNsgrr + C 0.655 0.651 |0.688 |0.683 |0.699 |0.690
FlexKGNNppBpedia + C|0.625 0.592 0.646 0.638 |0.721 0.717
RoBERTa (R) 0.846 |0.845 0.883 |0.883 |0.795 |0.720
FlexKGNNpra + R |0.917/0.915/0.935/0.935/0.840 |0.840
FlexKGNNopenre + R 0.814 0.815 |0.906 |0.898 |0.836 0.830
FlexKGNNsgrL + R 0.863 |0.865 |0.906 |0.906 |0.859 |0.853
FlexKGNNpBpedia + 1/0.848 0.848 |0.896 |0.890 |0.874/0.872

Results: As depicted in Table 3, FlexKGNN p i exhibits considerable improve-
ment in misinformation detection when integrated with existing classifiers. With
the COVID-19 dataset, both Check-It (C) and RoBERTa (R) see enhanced per-
formance through integration with FlexKGNNpga, with RoBERTa F1 score
peaking at 0.916, marking an ~8% enhancement. This trend becomes more
notable in the Politifact and GossipCop datasets, yielding performance increases
of 19.70% and 26.64% with Check-It, and 4.34% and 12.84% with RoBERTa,
respectively. These results highlight the broad applicability of our approach, and
the potent contribution of polarization knowledge in misinformation detection.

6.3 Polarization Knowledge Role in Misinformation Detection

Following, we evaluate the impact of the polarization-specific PKG on misinfor-
mation detection, contrasting it with broader KGs obtained through knowledge
extraction techniques. To establish a comparison, we employ Open Information
Extraction (OpenlE) [2], Semantic Role Labeling (SRL) [27], and DBPedia [18]
as our foundational knowledge baselines. OpenlE is a tool that employs a series
of NLP methods and syntactical dependency rules to identify actors and their
relations from text. For example, given the sentence: “Anthony Fauci emphasizes
the need for a mask mandate”, OpenlE discerns the triple of (“Anthony Fauci”,
“emphasizes”, “the need for a mask mandate”). Semantic Role Labeling
(SRL) is an NLP method that identifies semantic roles in sentences, emphasizing
on actors and their actions. While OpenlE derives SPO triples using syntacti-
cal rules, SRL captures deeper entity relationships. For example, in “President
Trump spent months playing down mask effectiveness”, SRL distinguishes the
actor “President Trump”, the action “spent”, and the related activities “months”
and “playing down mask effectiveness”, yielding two triples: (“President Trump”,
“spent”, “months”) and (“President Trump”, “spent”, “playing down masks
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effectiveness”). DBPedia is a knowledge graph that captures Wikipedia entries
in a structured format, facilitating the semantic querying of their relationships
and properties. To extract triples from text using DBPedia, we initially apply
Named Entity Recognition (NER), where named entities (i.e. actors) within
the text are identified. Following this, we use DBPedia Spotlight [18] to link
these actors to corresponding DBPedia resources. After these actors are linked,
we query DBPedia for possible relationships between them. By applying this
process on a sentence such as “Anthony Fauci is the leader of the National Insti-
tute of Allergy and Infectious Diseases”, the result would be (“Anthony_Fauci”,
“Leader”, “National Institute_of_Allergy_and_Infectious_Diseases”).

. . FlexKGNN
Micro-KG Encoding H Tex X ’
raining
-* Evaluation
- - - a

Supplementary g‘f"“m“‘m
traction
Corpus X Fa
Method KG isti
KG . Embedding 1 Existing 1
Construction Learner

1 Classifier !
Fig. 7. Methodology for general KG encoding of MD.

Baseline KGs Construction: For each knowledge source, we employ the
methodologies of Sects.3 and 4 to construct the primary KG and encode the
MDs into micro-KGs (see Fig. 7). The resulting triples from OpenlE and SRL
exhibit inconsistencies, as they represent the same actor differently in text (e.g.,
“Donald Trump” and “President Trump”). To address this, we leverage cluster-
ing based on contextualized embeddings for both actors and predicates [26]. By
clustering subjects and objects after extracting all triples, we consolidate dif-
ferent textual representations of an entity, like “Donald Trump,” into a single,
unified representation. This method is similarly applied to predicates, ensuring
consistency in our knowledge representation. For DBPedia, triples already have
unified representation for each actor and predicate. To construct the primary KG
and the micro-KGs, we follow the methodology outlined in [8]. Utilizing the con-
structed KGs and encoded micro-KGs, we train instances of FlexKGNNopensE,
FleXKGNNSRL and FIEXKGNNDBpedm.

Results: As shown in Table 3, while the combinations involving FlexKGNNp k¢
consistently surpass the existing baselines, those that incorporate SRL, OpenlE,
and DBPedia, only achieve a performance comparable to that of the baseline clas-
sifiers, occasionally decreasing their performance, such as the 11.59% decrease
in F1 score observed with FlexKGNNopenrg on the COVID-19 MD. The only
exception occurs with the FlexKGNNggry and FlexKGNNpgpedia when inte-
grated with RoBERTa on the GossipCop MD, achieving a =15% increase, com-
pared to the 12.84% of the FlexKGNNpgg. Overall, models integrated with
PKG outperform those with KGs due to their fundamental differences. The PKG
effectively captures polarization knowledge in the context of the MD, in contrast
to general KGs, which often echo information already seen by the existing clas-
sifiers. Thus, while general KGs are useful in various settings, the specialized
PKG is more effective at detecting misinformation in polarized environments.
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6.4 Performance Comparison with External KG Approaches

Additionally, we compare the performance of our methodology with existing
approaches that utilize KGs in combination with GNN models for misinformation
detection. These models are: i) KAPALM [17], a GNN model that fuses coarse-
and fine-grained actor KG representations in combination with article content
for knowledge-aware misinformation detection, achieving F1 scores of 0.913 on
Politifact and 0.717 on GossipCop; ii) KAN [8], a knowledge-aware attention
GNN which incorporates KG actors to predict the veracity of articles, achieving
F1 scores of 0.872 on Politifact and 0.774 on GossipCop; and iii) KGF [32], a
compositional GNN, which uses OpenlE to extract actors and their relationships
from articles, classifying them using graph convolutions, achieving F1 scores of
0.853 on Politifact and 0.723 on GossipCop.

Results: In comparison with the performances in Table 3, FlexKGNN PKG +
R outperforms the aforementioned models on both datasets, highlighting the
efficacy of integrating polarization knowledge with advanced DL techniques.

6.5 Polarization Knowledge Ablation Study

To understand the individual polarization predicate contributions, we conduct
an ablation study, considering the micro-PKGs without: i) polarization pred-
icates, and ii) embeddings. To neutralize the polarization knowledge in the
PKG, we first remove the Dipole actors and their related predicates, which
signify the conflict between fellowships. Specifically, we eliminate the predi-
cates PartOf, HasModeratePolarization, HasMediumPolarization, and HasEz-
tremePolarization. To obscure clear signs of opposition or support, we gener-
alize the remaining attitude predicates by merging SupportEE and OpposeEE
into AttitudeEE, SupportET and OpposeET into AttitudeET, and SupportF'T
and OpposeFT into AttitudeFT. This neutralization process is similarly applied
to the micro-PKGs. As a result, the modified PKG no longer explicitly captures
polarization knowledge.

Table 4. Ablation study results on model performance.

Ablation COVID-19 Politifact |GossipCop
Acc. F1  |Acc. F1  |Acc. F1
w/out Polarization Predicates + C|0.694/0.632/0.758/0.758/0.719/0.716
w/out Embeddings + C 0.723/0.723/0.694/0.693/0.698/0.695
w/out Polarization Predicates + R|0.9080.908/0.903/0.9030.828/0.825
w/out Embeddings + R 0.906/0.906/0.922/0.921/0.825/0.824

Results: As Table 4 indicates, there is a noticeable performance drop across all
MDs when these elements are omitted. Specifically, the absence of polarization
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predicates in the FlexKGNN PKG + C setup leads to ~6% decrease in effective-
ness. Similarly, discarding embeddings results in a ~8.5% decrease. The perfor-
mance of FlexKGNN PKG + R without these elements remains robust across
the MDs, although a slight reduction of ~2% is still observed, demonstrating
the intrinsic strength of the RoBERTa classifier. These results underscore the
added value of polarization and embeddings for misinformation detection.

7 Conclusion and Future Work

In this study, we propose PARALLAX, a methodology that leverages polariza-
tion knowledge for improved misinformation detection. Using our FlexKGNN
model, augmented with PKG, consistently outperforms methods based on gen-
eral KGs, achieving an average of ~15% improvement when integrated with
existing classifiers. This demonstrates the effectiveness of incorporating polar-
ization into misinformation detection. While our findings are promising, we
acknowledge there are areas for improvement. We plan to extend our evalua-
tion to larger, more diverse datasets to ensure robust assessment and explore
the adaptability of our approach to domains with limited or shifting polariza-
tion. Additionally, we aim to integrate PARALLAX with other state-of-the-art
models, including Convolutional Neural Networks (CNN) and Large Language
Models (LLM) [16]. To provide deeper justification for polarization contribu-
tion, we will employ explainable AT techniques such as GNNExplainer [34]. This
will allow us to identify and analyze the PKG triples that contribute most to
misinformation classification, helping us to further understand their intertwined
nature.
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