Large Language Models For Text Classification: Case Study And Comprehensive Review

Arina Kostina - akosti02@ucy.ac.cy Marios D. Dikaiakos - mdd@cs.ucy.ac.cy Dimosthenis Stefanidis - dstefa02@ucy.ac.cy George Pallis - gpallis@cs.ucy.ac.cy

University of Cyprus

Motivation and Research Questions

Unlocking the potential of Large Language Models (LLMs) in data classification represents a promising frontier in natural language processing.

RQ1: Evaluate the capabilities of open-source quantized LLM models and compare their performance against traditional state-ofthe-art method roBERTa in the task of data classification

RQ2: Explore how factors like model scale, base models, and prompting techniques, influence classification results

Prompting Techniques

Employee Review Example:

Great People, Great Culture. I've worked with a lot of people and have not worked with a more supportive/responsive remote team at any other past job. The work culture is also great. Lots of PTO that people actually use and a general respect for life outside of work.

Experimental Setup

Classification Task: Classify large amount of employee company reviews based on their working location.

Data: Company reviews from the Glassdoor website, where current and former employees anonymously review companies and their management.

LLM models: Mistral-7B OpenOrca (Mistral-OO), OpenHermes 2.5 Mistral-7B (Mistral-OH), zephyr-7B-beta (Zephyr), Nous-Hermes Llama2 13B (Llama2), Xwin-MLewd 13B v0.2 (Xwin)

Testing Dataset and Categories: Manually annotated sample of 1000 reviews, with 37% reviews in "working remotely", 28% in "not working remotely", 35% in "not mentioned"

- as a 22.2% point increase.
- Larger LLMs (13B) perform better in the Few-Shot setting than in Zero-Shot setting indicating that they can utilize the information provided in the examples more effectively
- The Chain-of-Thought technique and the Few-Shot setting are able to offer notable performance increase
- Mistral-based models consistently showcase better performance than the Llama2-based models
- Mistral-OO and Mistral-OH have different performances, with their only difference lying in the training dataset

Percentage change in F1 score for each model, relative to the F1 score of the basic Zero-shot approach, across different prompting techniques

		Llama2	Xwin	Mistral-OO	Mistral-OH	Zephyr	Roberta
0	Zero-shot	0,507	0,522	0,834	0,716	0,611	0,855
1	Zero-shot + Emotional prompting	0,478	0,557	0,844	0,729	0,622	
2	Zero-shot + CoT	0,53	0,641	0,858	0,819	0,763	
3	Zero-shot + CoT + Emotional prompting	0,484	0,623	0,864	0,811	0,757	
4	Zero-shot + Role playing	0,523	0,52	0,81	0,726	0,601	
5	Zero-shot + Role playing + Naming the Assistant	0,478	0,565	0,812	0,709	0,603	0,855
6	Zero-shot + CoT + Role playing + Naming the Assistant	0,54	0,643	0,859	0,811	0,759	
7	Few-shot	0,558	0,707	0,804	0,75	0,705	
8	Few-shot + Role playing + Naming the Assistant	0,527	0,71	0,8	0,728	0,712	
9	Few-shot + CoT + Role playing + Naming the Assistant	0,627	0,742	0,817	0,785	0,717	

Heatmap of F1 Scores for Each Model Across Different Prompts