
AdaM: an Adaptive Monitoring Framework for
Sampling and Filtering on IoT Devices

Demetris Trihinas, George Pallis, Marios D. Dikaiakos

Department of Computer Science
University of Cyprus

Email: { trihinas, gpallis, mdd }@cs.ucy.ac.cy

Abstract—Real-time data processing while the ve-
locity and volume of data generated keep increasing,
as well as, energy-efficiency are great challenges of big
data streaming which have transitioned to the Internet
of Things (IoT) realm. In this paper, we introduce
AdaM, a lightweight adaptive monitoring framework
for smart battery-powered IoT devices with limited
processing capabilities. AdaM, inexpensively and in
place dynamically adapts the monitoring intensity and
the amount of data disseminated through the network
based on the current evolution and variability of the
metric stream. Results on real-world testbeds, show
that AdaM achieves a balance between efficiency and
accuracy. Specifically, AdaM is capable of reducing data
volume by 74%, energy consumption by at least 71%,
while preserving a greater than 89% accuracy.

Keywords—Monitoring, Sampling, Filtering, Internet
of Things

I. Introduction
One of the most pressing and fascinating challenges of

our time is understanding the complexity of the global
interconnected world we inhabit. Recent advances in mi-
croelectronics, telecommunications and data mining have
led to a growing adoption of smart devices (e.g., wear-
ables, home monitors), which impact how we live and
work [23]. These devices capture and exchange continuous
data streams with other network-enabled devices, forming,
what is known as, the Internet of Things (IoT). IoT devices
differ from sensors as they feature processing capabilities
and incorporate “smart” algorithms to produce analytic in-
sights from raw monitoring data. Such devices can generate
an unprecedented wealth of data. According to Gartner [9],
4.9 billion IoT devices will be in use by the end of 2015, up
30% from 2014, and will reach 25 billion by 2020. These
billions of “things” already impact the digital universe as
monitoring data generated from IoT devices accounted for
2% of the digital data in 2012 with a projection that by
2020 it will rise above 10% [19].

The “Big Data” collected from IoT devices, perceived
as an essential by-product of the ICT systems that we
interact with, holds the potential to scrutinize, model, and
predict, individual and collective behavior in real-time.
However, collecting and analysing large volumes of raw
monitoring data is both resource and time consuming and
may involve expensive operations such as parsing “end-
less” log files or performing complex queries [14] [25]. In
addition, if IoT devices are battery-powered then intense

processing results in increased energy consumption and
thus, less battery life [27]. Therefore, it is no wonder
why taming data volume and velocity, as well as, energy
efficiency, are considered as great challenges to overcome
in IoT [2] [11] [17].

The remedy to reduce the volume of generated data,
as well as, network traffic between IoT devices and data
management endpoints, is to apply adaptive sampling and
filtering techniques. Adaptive sampling is the process of
dynamically adjusting the sampling rate to the current
metric evolution, such that when stable phases in a metric
stream are detected, the sampling rate is reduced to ease
processing and energy consumption. In turn, when values
of a metric stream fluctuate in time, the sampling rate is
increased to notify immediately of event violations. On the
other hand, adaptive filtering is the process of dynamically
adapting the filter range to follow the metric evolution
without requiring beforehand for users to guess what filter
range should be applied. Despite advances in the field,
current adaptive sampling and filtering techniques are not
tailored for the challenges of IoT, since they either: (i)
require excessive resources or the entire dataset to provide
estimations [6] [18]; (ii) require users to provide violation
likelihood thresholds [14] or filter ranges [5], which are
the process of excessive profiling; (iii) assume, the metric
distribution does not change in time [5] [24]; (iv) are server-
side approaches and cannot be used on IoT devices [16];
or (v) are slow to acknowledge significant abrupt transient
fluctuations in the metric stream distribution [7] [10].

To address the aforementioned challenges we introduce
the ADAptive Monitoring (AdaM) framework. AdaM is
a lightweight framework with no external dependencies
developed for smart battery-powered IoT devices. AdaM,
inexpensively and in place, dynamically adapts the mon-
itoring intensity and the amount of data disseminated
through the network based on the current evolution of the
metric steam. By accomplishing this, energy consumption
and data volume are reduced, allowing the IoT device to
preserve battery and ease processing at the base station
or a central endpoint, while still preserving data accuracy.
To achieve this, AdaM incorporates two algorithms, one
for adaptive sampling and one for adaptive filtering. Both
algorithms provide one-step ahead estimations, adjusting
the sampling rate and the filter range based on the con-
fidence of each algorithm to correctly estimate what will
happen next in the metric stream. Specific consideration

is taken such that our algorithms immediately identify
abrupt transient changes in the metric evolution. Most
importantly, AdaM runs on the source device without
any additional communication to a central management
endpoint and excessive profiling to determine framework
parameters. In this paper, we present a thorough eval-
uation of AdaM by comparing it to other IoT adaptive
techniques, with testbeds that utilize publicly available
real-world datasets. Results, show that AdaM is capable
of reducing data volume by 74%, energy consumption by
at least 71%, while preserving a greater than 89% accuracy.

The rest of the paper is structured as follows: Section
2 presents a study of the related work. Section 3 presents
the problem statement. Section 4 introduces the AdaM
framework, while Sections 5 and 6 describe our algorithms.
Section 7 presents an evaluation of AdaM and Section 8
concludes this paper and outlines the future work.

II. Related Work
Edge-mining [17] is a term coined to reflect data pro-

cessing on smart battery-powered devices that sit at the
edges of an IoT network [10]. Adapting the monitoring
intensity and the amount of information disseminated
through the network, is a form of edge-mining. Current
monitoring tools [8] [15] do not feature self-adaptive capa-
bilities and therefore, are not suitable for IoT devices. In
what follows, are a number of edge-mining techniques for
adaptive sampling and filtering.
A. Adaptive Sampling

Meng et al. [14] propose a server-side solution for
cloud networks where the monitoring intensity is increased
when metric values approach a user-defined threshold, and
is decreased when a violation is unlikely to occur. As
a threshold-based technique, it fails to detect variances
in the metric distribution when values are far from the
threshold. Thus, it is limited only to anomaly detection.
Rastogi et al. [18] propose a discrete Fourier transform
(k-DFT) which perturbs coefficients of a finite timeseries,
reconstructing afterwards the original timeseries from the
inverse DFT. Since the entire timeseries is required, this
approach is not applicable to real-time applications with
continuous metric streams.

Fan et al. [7] propose FAST, an adaptive framework
which uses a PID controller1 to select a subset of values
from a given window of samples originating from a metric
stream. FAST’s adaptive sampling technique is aggressive
producing large sampling periods as the purpose of its
development is applying a costly user-differential policy on
each interval. Thus, it requires a Kalman filter [13] which
generates estimates for non-sampled intervals to reduce the
estimation error. However, as the Kalman filter is used to
filter signal noise, this approach does not work well for
abrupt transient signals where large portions of the signal
are lost due to smoothing. In addition, even for slightly
less volatile signals extensive profiling of its parameters
is still required to increase accuracy. In contrast to the
aforementioned techniques, Gaura et al. [10] propose a
number of edge mining algorithms specifically tailored to

1https://en.wikipedia.org/wiki/PID controller

IoT networks. With respect to adaptive sampling, Gaura
et al. propose L-SIP, a linear adaptive algorithm, which
encodes the state of an IoT device as a point in time with
attributes the sample value and its rate of change. This is
performed by using either an exponential weighted moving
average (EWMA)2 or a Kalman filter, with the sampling
rate increasing if the difference between the observed and
prediction value, are larger than a user-defined estimation
error. L-SIP is an interesting lightweight algorithm suitable
for adaptive sampling on IoT devices, but exhibits two
downsides: (i) it is slow to react to highly transient and
abrupt fluctuations in the metric stream; and (ii) it is
left to the user to determine, via profiling, which state
encoding method suits best his needs.
B. Adaptive Filtering

From experiments on distributed systems in regards to
monitoring metric variability, Clayman et al. [5] conclude
that fixed filter ranges are not effective for all metrics.
They suggest a monitoring system which provides the user
with the ability to manually enable different filters per
monitored metric. Similarly, but autonomously, Trihinas
et al. [24] introduce a monitoring system capable of ad-
justing the filter range depending on the percentage of
values previously filtered. While interesting, this approach
assumes that no distribution shifts will occur in the metric
evolution at runtime.

Olston et al. [16] propose a server-side approach for
filtering continuous data streams. This approach involves
users specifying a precision requirement with data sources
sending updates to a central server node when new values
differ significantly from the previously reported values.
If this precision requirement cannot be met, the central
server will adjust the filter range at each data source.
However, this adaptive filter adjustment is only feasible if
data generated at different sources follow a certain similar
pattern on all nodes and it assumes a one-level network
often not found in IoT networks. Finally, Deligiannakis
et al. [6] suggest a traffic reduction strategy for sensor
networks. Their strategy considers buffering large amounts
of metric values at each sensor node and, rather than trans-
mitting the total of the buffer contents, it transmits a base
signal of fewer values which is then used to reconstruct
the original signal. The downside of this approach is that
it requires for the whole signal to be made available and
stored on the device so as to provide an estimation.

In summary, there is no solution capable of estimating
and adapting the monitoring intensity of an IoT device to
follow in time the actual metric evolution, especially, when
highly abrupt metric fluctuations are observed.

III. Problem Statement
Before diving into the specifics of the AdaM framework,

it is important to understand the background that lays
the groundwork for each algorithm and their respected
problem definition. To ease readability, Table 1 presents
the notation used throughout the paper.

First, we define a metric stream M = {si}ni=0, as a large
sequence of collected samples si, where i = 0, 1, ..., n and

2https://en.wikipedia.org/wiki/Exponential smoothing

Notation Description

si(t, v) The ith sample of a metric stream with timestamp ti
and value vi

M = {si}n
i=0 Metric stream of collected samples with i = 0, 1, ..., n

and n→∞
Ti Sampling period used to collect sample si such that

Ti = ti − ti−1 and Ti is restricted to a range of values,
e.g. Ti ∈ [Tmin, Tmax]

Ri Filter range used to decide if sample si, assuming the
filter window W = [vi−1 − Ri, vi−1 + Ri], should be
filtered (vi ∈ W) or not (vi 6∈ W)

dist Difference between original metric stream M and re-
constructed stream M ′ via an adaptive technique for a
range of sample values e.g. dist =

∑
|vi − v′i|, i ≥ 0

ρ(M) Function containing information to characterise evolu-
tion of metric stream M (e.g. a moving average)

q(M) Function characterising variability of metric stream M
(e.g. the coefficient of variation, CV)

γ User-defined parameter denoting the acceptable impre-
cision of a reconstructed metric stream via an adaptive
technique (γ ∈ [0, 1])

TABLE I: Table of Notations

n → ∞. Each sample si is a tuple (ti, vi) described by a
timestamp ti and a value vi.

A. Adaptive Sampling Problem Definition
For a metric stream M , periodic sampling is the process

of triggering the collection mechanisms of a monitored
source every T time units. T is a fixed interval, such that
the ith sample is collected at time ti = i · T . This process
is widely adopted by many monitoring tools due to its
simplicity. In this work, we argue that using a fixed pre-
defined T on battery-powered devices features a number
of constraints. Specifically, it is both resource and energy
consuming to collect periodically samples, especially when
consecutive metric values (e.g. vi−2, vi−1, vi, ...) do not
vary. For example, if a small T is utilized, a high volume
of data is generated and must be distributed through
the network to be processed or stored for further use.
If, instead, a large period is used, then sudden events
or significant insights may remain undetected. In general,
because sampling depends on the data and its evolution
in time, we argue that a fixed sampling period is not
effective, as metrics and insights are only useful if collected
in meaningful time intervals.

To accommodate the above challenges, adaptive sam-
pling is used. Adaptive sampling is the process of dynam-
ically adjusting the sampling period Ti, based on some
function, denoted as ρ(M), containing information of the
metric stream evolution (e.g. a moving average). Assume si
to be the latest sample of M , and that Ti accepts discrete
integer values in the range [Tmin, Tmax] ⊆ Z+ without
loss of generality. Now, suppose M is periodically sampled
every Tmin time units, opposed to M ′ which is a recon-
structed version of the original metric stream via adaptive
sampling, as depicted in Figure 1. Let dist denote the
difference of M ′ from M based on some distance metric.
When the sample values of the metric stream are relatively
stable, then the sampling period should be increased and
when the values fluctuate, the sampling period should be
decreased or restored to a minimum value.

Hence, the goal of adaptive sampling is to provide a
sampling function f(·), capable of finding the maximum
T ∈ [Tmin, Tmax] to collect si+1, based on an estimation

Fig. 1: Adaptive Sampling Example

of the metric stream evolution ρ(M), such that M ′ differs
from M less than an imprecision value γ (dist < γ) for
the range t ∈ [ti, ti+T]. Thus, the problem is summarized
with the following equation:

T ∗ = arg max
T

{f(s, T, ρ(M), dist, γ) | dist < γ,

T ∈ [Tmin, Tmax]}
(1)

Intuitively, as γ → 0 the metric stream M ′ → M .
However, the sampling period T → Tmin, defeating the
purpose of adaptive sampling. To reduce data volume and
preserve energy, an adaptive technique is likely to select, at
any given time, a sampling period where T > Tmin, which
is only applicable if a degree of imprecision is tolerable.
Therefore, it is desirable to select a sampling function which
achieves a balance between efficiency and accuracy.

B. Adaptive Filtering Problem Definition
For a metric stream M , filtering is defined as the pro-

cess of “cleansing” the metric stream of collected samples
such that data volume, as well as, the communication and
storage overhead are reduced in favor of exact precision.

Depending on the type of filter in use, the number of
samples filtered may vary. For example, suppose a fixed
filter range approach is followed. The sample si with value
vi is filtered, if vi ∈ [vi−1 − R, vi−1 + R], where R
is a fixed filter range. Although this approach is simple
and followed by monitoring tools [5] [24], it features a
number of disadvantages. Specifically, using a fixed filter
range, assumes that the user has previous knowledge of the
metric evolution and that it will not change in the future.
Otherwise, there is no guarantee that any values will be
filtered at all [5]. For instance, let us consider the metric
stream M , presented in Figure 2, where the filter range R is
enabled once and set to a small value (e.g. R = 1%). From
Figure 2, we observe that although a stable phase exists in
the load, with a static filter used, no samples are filtered.
That is because the filter range cannot adapt to the current
data variability, extending its range to encapsulate near-by
values for a small imprecision sacrifice.

To overcome the above issues, an adaptive filter tech-
nique is used. Adaptive filtering is the process of dynam-
ically adjusting the filter range R based on the current
variability of the metric stream (e.g. the coefficient of
variation), denoted as q(M). Adaptive filtering must target
filtering values without requiring for users to “guess” what
filter range should be used, as depicted in Figure 2. Thus,
suppose M ′ is a reconstructed version of M with an
adaptive filter range R ∈ (0, Rmax]. Let dist denote the
difference of M ′ from M based on some distance metric.
After collecting si, the goal of adaptive filtering, is to

Fig. 2: Adaptive Filtering Example

provide a filtering function f(·) capable of finding the
maximum R such that M ′ differs from M less than a
user-defined imprecision value γ (dist < γ) based on the
variability of the metric stream q(M). Hence, the problem
is summarized with the following equation:

R∗ = arg max
R

{f(s,R, q(M), dist, γ) | dist < γ,

R ∈ (0, Rmax]}
(2)

Intuitively, as γ → 0 the timeseries M ′ →M . However, the
range filter R→ 0, defeating even the purpose of filtering
with a fixed range R. To reduce network traffic an adaptive
filtering technique is likely to select, at any given time, a
filter range where R > 0, which is only applicable if a
degree of imprecision is tolerable. Therefore, just as with
adaptive sampling, it is desirable to select a filter function
which guarantees a balance between efficiency and accuracy.

IV. The AdaM Framework
To address the aforementioned problems, we have

implemented in java the ADAptive Monitoring (AdaM)
framework to provide adaptive sampling and filtering for
IoT devices. AdaM is a lightweight framework with no
external dependencies embeddable in the source code of an
IoT device to self-adapt the monitoring intensity based on
the current metric evolution and variability. AdaM targets
reducing energy consumption, allowing the IoT device
to preserve battery while achieving a balance between
efficiency and data accuracy.

Figure 3 depicts an exemplary IoT device with AdaM
embedded in its software core. AdaM coordinates data
gathering and dissemination by interacting with the Sens-
ing, Processing and Communication Units of an IoT de-
vice. When the Sensing Unit collects a new measurement,
the sample and its timestamp are passed to the adaptive
sampler which returns the new estimated sampling period
(Ti+1) and a confidence interval for the current estimation.
The Sensing Unit may then use Ti+1 to collect the next
sample and return to an idle state. If adaptive filtering is
enabled, then the sample is forwarded to the adaptive filter
to decide if the measurement should be discarded or not.
In turn, the filter range Ri+1 is adjusted and an indicator
of the current variability of the metric stream is provided
as well. If the measurement is not filtered, AdaM will
forward it to the Processing Unit for further processing or
to the Communication Unit for dissemination if no further
processing is required.

In the following sections, we present, in detail, our
adaptive sampling and filtering algorithms.

Fig. 3: AdaM Framework embedded in IoT Device

V. Adaptive Sampling Algorithm

The following were taken into consideration while de-
veloping our adaptive sampling algorithm. First, the esti-
mation process must be lightweight. Applying an adjustive
sampling algorithm is only meaningful if the process can
be done inexpensively and online. Most importantly, this
process must be performed in place, right on the source
device. This eliminates the need of distributing values
through the network to management endpoints for it to be
applicable. Moreover, it must be capable of reacting even
to high abrupt fluctuations in the metric stream which may
even occur after long periods of stability. Thus, users and
critical decision-making processes are notified immediately
of these events. In addition, extensive profiling from the
user-side to identify optimal parameter configuration must
not be required.

We base our approach, such that the estimated sam-
pling period Ti+1, is dependent to the current sampling
period Ti, increasing if variability of the load decreases,
and, in turn, decreasing if variability increases. How large
of an adjustment is required, is dependent on a confidence
metric ci, denoting the confidence to estimate, correctly,
the current evolution of the metric stream. Hence, in con-
trast to threshold-based techniques which adjust the sam-
pling rate solely based on the sample value, our approach
considers the evolution of the metric stream, as well as, the
confidence of its estimation. The reason for this lays in the
failure of threshold-based techniques to detect variances in
the metric stream when values are far from the threshold
(e.g. v[ti] << θ, where θ is a user-defined threshold), and
therefore, these events remain undetected such as in the
case of low rate DDoS attacks [26]. Similarly, stable phases
with high values will fail to receive a sampling period
decrement as well, as a violation is still probable.

Algorithm 1 presents our adaptive sampling approach.
At first (step 1), we compute the distance δi between the
current two consecutive values, as follows:

δi = |vi − vi−1| (3)

The distance δi is used to initiate the computation of the
current metric stream evolution, ρ(M). We compute the
current metric evolution (steps 2-4) by using a moving
average, denoted as µi. This provides us with an estimation
of the trend followed by the metric stream, and is used
to estimate the distance δ̂i+1 of the next two consecutive
values (eq. 4). Intuitively, a large distance between the two
consecutive values denotes a shift in the metric evolution
and if not expected a decrease in the sampling period

Fig. 4: A Comparison of Moving Average Techniques

Algorithm 1 Adaptive Sampling
Input: current sample si with timestamp ti and value vi
Output: Ti+1 and PEWMA estimations for µi, σi
Ensure: {Ti+1 | Ti+1 ∈ Z+ and Ti+1 ∈ [Tmin, Tmax]}

1: if ti > 0 then
2: current distance δi ← |vi − vi−1| (eq. 1)
3: probability Pi ← probDistro(δi, δ̂i, σ̂i) (eq. 8)
4: ˆδi+1, ˆσi+1 ← PEWMA(Pi, δi) (eq. 7)
5: compute actual observed σi ← calcSD(δi)
6: confidence ci ← calcConfidence(σi, σ̂i) (eq. 10)

if Ti+1 can be adjusted (either up or down) based on
the determined confidence and user-defined imprecision
then do so, else rollback to default Tmin

7: if (ci ≥ 1− γ) then
8: Ti+1 ← Ti + λ · (1 + ci−γ

ci
)

9: if (Ti+1 > Tmax) then
10: Ti+1 ← Tmax
11: end if
12: else
13: Ti+1 ← Tmin
14: end if
15: else
16: ˆδi+1 ← v0, ˆσi+1 ← 0, Ti+1 ← Tmin //init values
17: end if
18: return Ti+1, µi, σi

should be considered, whereas if the evolution is small,
then an increase in the sampling period can be considered.

δ̂i+1 = µi (4)

Moving averages provide one-step ahead predictions. They
are easy to compute, though many types exist, and can be
calculated on the fly with knowledge of only the previous
value, µi−1. Equation 5 presents an example of a cumu-
lative Simple Moving Average (SMA) where values of a
sliding window are aggregated evenly:

µi = δi + (i− 1)µi−1

i
, i ≥ 1 (5)

Hence, while a SMA can be used, it weighs all values the

Algorithm 2 Adaptive Filtering
Input: current µi and σi for metric stream M
Output: Ri+1
Ensure: {Ri+1 | Ri+1 ∈ [Rmin, Rmax]}

1: Fi ← calcFanoFactor(σi, µi)

if F < γ then the metric stream is currently not
dispersed and Ri+1 can be widen, else it is shortened

2: Ri+1 ← Ri + λ · (γ−Fi

γ)
3: if (Ri+1 > Rmax) then
4: Ri+1 ← Rmax
5: end if
6: if (Ri+1 < Rmin) then
7: Ri+1 ← Rmin
8: end if
9: return Ri+1

same. This is not desired, as current disrupts in the metric
evolution are more significant and should be valued more in
a dynamic metric stream. To address this, an Exponential
Weighted Moving Average (EWMA) can be used, where
a weighting factor (0 < α < 1) is introduced and is
used to decrease the effect of older values exponentially,
as presented in Equation 6:

µi =
{
δi, i = 1
αµi−1 + (1− α)δi, i > 1 (6)

While the EWMA is a better suit for our needs it still
features one significant drawback: it is volatile to abrupt
changes. Therefore, the assumption made that the EWMA
only changes gradually with respect to the parameteriza-
tion, is not always the case [4]. Specifically, the EWMA
is slow to acknowledge sudden spikes after large stable
phases and, in turn, if stable phases follow sudden spikes,
then spike effects preserve in the estimation. This results in
overestimating subsequent δi’s which affects the accuracy
of an adaptive sampling technique.

Therefore, for our proposed algorithm we adopt a
variation of the EWMA, dubbed as the Probabilistic Ex-
ponential Weighted Moving Average (PEWMA) [4]. The

PEWMA dynamically adjusts the weighting based on the
probability of the given observation. This method is robust
to abrupt transient changes, adjusting quickly to long-term
shifts in the metric evolution and when incorporated in our
algorithmic estimation process, it requires no parameteri-
zation, scaling to numerous sample points.

µi =
{
δi, i = 1
α(1− βPi)µi−1 + (1− α(1− βPi))δi, i > 1 (7)

Equation 7 presents the PEWMA where instead of
a fixed weight factor α we introduce a probabilistically
adaptable factor ãi = α(1 − βPi). In this equation, Pi is
the probability of δi to follow a modelled distribution of the
metric stream. In turn, β is a weight placed on Pi and as
β → 0 the PEWMA converges to a standard EWMA. We
choose to adapt weights3 α by 1− βPi such that samples
that are less likely to have been observed (e.g. sudden
spikes after stable phases which do not appear again) are
accounted for in the current estimation, however, offer
little influence to subsequent estimations. Thus, we adopt
a Gaussian signal distribution N(µ, σ2), which satisfies
the aforementioned requirements and therefore Pi is the
probability of δi evaluated under a Gaussian distribution,
which is computed by Equation 8.

Figure 4 depicts a comparison between moving aver-
ages, where we observe that the PEWMA is quick to adjust
to metric evolution shifts and, in contrast to the EWMA,
after spikes it does not overestimate subsequent values.

Pi = 1√
2π

exp(−z
2
i

2)

z = δi − δ̂i
σ̂i

(8)

In Equation 8, δi − δ̂i is the difference between the
observed distance and the PEWMA estimation, while σ̂i
denotes the (moving) standard deviation. It is important
to note, that both δ̂i+1 and σ̂i+1, which encapsulate the
current evolution of the metric stream (ρ(M)), are ef-
ficiently updated with only knowledge of their previous
values and without repeatedly scanning the entire stream
(n → ∞). Thus, the estimated δ̂i+1 and σ̂i+1, are com-
puted as follows:

ãi ← α(1− βPi)
s1 = µi ← ãi · s1 + (1− ãi) · δi

s2 ← ãi · s2 + (1− ãi) · δ2
i

ˆδi+1 ← s1

ˆσi+1 ←
√
s2 − s2

1

(9)

Having estimated the standard deviation, when the
next sample is collected, the algorithm will then compute
the actual observed standard deviation (step 5). This is
performed, as to calculate the current confidence, denoted
as ci (step 6). The confidence (ci ≤ 1) is a ratio com-
puted from the difference between the estimated and the

3for simplicity in our model evaluation we consider β = 1

observed standard deviation (Equation 10) and is used
as our distance metric (dist). The semantics behind the
confidence are: the more “confident” the algorithm is, the
larger the outputted sampling period Ti+1 can be. Hence, as
σ̂i → σi the confidence ci → 1.

ci = 1− |σ̂i − σi|
σi

(10)

Having computed the current confidence, we then com-
pare it to the acceptable imprecision, denoted as γ from the
problem definition. The imprecision parameter (γ ∈ [0, 1])
is used to set the sensitivity of our approach while comput-
ing a new sampling period Ti+1 (Equation 11). Intuitively,
if γ → 0 then our algorithm converges to a periodic
sampling approach (unless an “exact” estimation is made),
whereas if γ → 1 an adjustment will take place on each
interval even if a confident estimation cannot be made.
Hence, if the algorithm cannot provide an estimation
within a certain confidence, then our adaptive sampling
algorithm will rollback to the default sampling period Tmin
for the next sample si+1.

Ti+1 =
{
Ti + λ · (1 + ci−γ

ci
), ci ≥ 1− γ

Tmin, else
(11)

The complexity of our approach is O(1) constant time,
since all calculations are computed based on the previous
collected values and do not require the entire metric stream
to be available. Moreover, the imprecision parameter γ is
the only parameter which is user-defined in the estimation
process. Nonetheless, users are free to change: (i) λ which
is an optional multiplicity factor (e.g. default λ = 1) to
be used if a more aggressive approach should be followed;
and (ii) the weighting factor α of the PEWMA, where as
shown in our evaluation, α may take a wide range of values
and can be left to a default value.

VI. Adaptive Filtering Algorithm
As with adaptive sampling, adaptive filtering must be

lightweight and capable of running on the source device.
Adaptive filtering utilizes the Fano Factor4 Fi, to compute
the current variability q(M) of the metric stream M . The
Fano factor is a normalized measure of the dispersion of a
probability distribution, such that it is used as a measure
to quantify whether a set of samples are clustered or
dispersed compared to a statistical model. The Fano factor
is calculated as the ratio of the variance σ2 to the mean
µ, as presented in Equation 12:

Fi = σ2
i

µi
(12)

To provide both the variance σ2 and the mean µ of the
metric stream, no additional computations are required,
as both µi and σi are the output of the PEWMA estima-
tion. Intuitively, when σ2 decreases, the Fano factor will
follow, indicating a decrease in the variability of the metric
stream. From the user we request at least one parameter:
the maximum imprecision he is able to tolerate, if filtering

4https://en.wikipedia.org/wiki/Fano-factor

(a) Memory Trace (b) CPU Trace (c) Disk I/O Trace

(d) TCP Trace (e) Fitbit Trace

Fig. 5: Mean Absolute Percentage Error (MAPE) Comparison of Techniques Using a Moving Average Estimator

Fig. 6: AdaM γ-Parameter Evaluation

is enabled, denoted (again) as γ. If Fi is less than γ,
indicating the metric stream is not dispersed, then the
filter range is widen, in an attempt, to filter near-by values
while still in the precision indicated by the user (Equation
13). Otherwise, if Fi is greater than γ, indicating the
metric stream is currently over-dispersed, the filter range is
shortened or restored to a default value in order to report
abnormalities in the data.

Ri+1 ← Ri + λ · (γ − Fi
γ

) (13)

Additional parameters which may be tweaked, include,
Rmax, the maximum filter range that can be applied to R,
and λ which is a multiplier, or better, an aggressiveness
indicator of our approach. As with adaptive sampling,
the adaptive filtering algorithm has a O(1) constant time
complexity, as Ri+1 is computed from its previous value,
while µi and σi are the output of adaptive sampling.

VII. Evaluation

To evaluate the functionally and effectiveness of AdaM
we compare it to three state-of-the-art adaptive tech-
niques suitable for IoT devices: (i) an exponential weighted
moving average (i-EWMA) which increases the sampling

period incrementally by one time unit (Ti+1 ← Ti+Tunit),
when the estimated error ε is under a user-defined impre-
cision value γ, and decreases it (Ti+1 ← Ti − Tunit), when
ε > γ; (ii) L-SIP [10], a linear algorithm using an expo-
nential moving average (dEWMA) to produce estimates
of the current data distribution based on the rate sample
values change in time; and (iii) FAST [7], a framework
which uses a PID controller to determine the sampling
period accompanied by a Kalman filter to predict values at
non sampling points. FAST’s Kalman filter parameters are
tuned for each trace, as its formulation is highly dependent
to data velocity. For all techniques, including AdaM, we set
the acceptable imprecision to γ = 0.1.

A. Traces and Testbeds
In what follows is a list of the datasets we have selected

to evaluate the under comparison techniques. Instead of
using simple trivial traces (i.e. stable, linear or sinusoidal
load), we have selected five publicly available real-world
complex traces to truly reveal the strengths and disadvan-
tages of each algorithm:
• (Memory Trace): A memory trace of 105 samples

originating from a java sorting benchmark [12].
• (CPU Trace): A CPU trace of 800 samples originating

from the Carnegie Mellon RainMon project [22].
• (DiskIO Trace): A Disk I/O trace of 415 samples from

the Carnegie Mellon RainMon project [22].
• (TCP Trace): An incoming TCP network traffic trace

of 500 samples from the port activity monitor of the
Cyber Defense SANS Technology Institute [20].

• (Fitbit Trace): A fitness trace of 287 samples from
a Fitbit device as part of a Coursera data science
course [1].

The experiments for the first four traces were run on
a Raspberry Pi (1st gen, Model B) with 512MB of RAM
and an ARM processor (single-core, 700MHz) while emu-
lating the data load of each trace. The Raspberry Pi was

(a) Memory Trace (b) CPU Trace (c) Disk I/O Trace

(d) TCP Trace (e) Fitbit Trace
Fig. 7: A Comparison of Traces Generated via AdaM Towards the Original Traces

selected as a suitable testbed, as it features similar limited
processing capabilities of other “smart” devices, such as
home monitors, wireless sensors and activity trackers. The
Fitbit Trace was fed, via SensorSimulator [21], to the
Android Emulator with the processing capabilities set to
the capabilities of a typical Android Wear device (single-
core, 512MB RAM).

B. Evaluation Metrics

We evaluate each technique towards: (i) their estima-
tion accuracy, by calculating the mean absolute percentage
error (MAPE) from the original timeseries which is the
ground truth for each trace. Equation 14 depicts how the
MAPE is calculated, where Ai is the actual value for the
ith sample and Ei is the estimated value. We note that, for
each sampling technique when a sample is not collected,
Ei is considered the last reported value; (ii) CPU cycles,
required to process the load imposed by each trace; (iii)
outgoing network traffic, where for simplicity we assume
that no aggregation technique is available and therefore
each collected sample, if not filtered, is disseminated to the
remote base station; and (iv) energy consumption, based
on the model adopted from [27] and power measurements
acquired with the help of powertop5 and wattch [3]. Equa-
tion 15 presents the adopted energy model, where Pidle
denotes the power in idle state; Pcpu, the power of the
processor (including CPU, L1 cache and memory); τcpu,
the CPU time; Pi/o, the power for I/O; τcpuwait, the I/O
time; while Pnet, the power consumed when distributing
packets over the network.

MAPEn = 1
n

n∑
i=1
|Ai − Ei

Ai
| · 100% (14)

E = Pidle · τidle + Pcpu · τcpu + Pio · τcpuwait + Pnet · τnet
(15)

5https://01.org/powertop

C. Experiments
At first, we compare AdaM’s sampling algorithm to

i-EWMA and L-SIP towards the MAPE metric. These
three algorithms use moving averages in their estimation
process and, therefore, we evaluate MAPE under different
configurations for the moving average parameter α to find
the best configuration. We define the minimum sampling
period to be 1 time interval, which is equal to the sampling
period used to collect the ground truth for each trace, while
the maximum sampling period is set to 10 intervals. It
must be noted that we do not present FAST in this test.
This is due to FAST not using a moving average, but most
importantly, its sampling is aggressive producing only a
few sampling points and without filtering its MAPE is very
high. Therefore, a test without filtering enabled, is mean-
ingless. To be fair, we present its MAPE in subsequent
comparisons while enabling filtering (see Fig. 8d).

Figures [5a-5e] depict the MAPE metric of each trace
for the under comparison techniques. First, we observe
that AdaM (λ = 1) in all five traces has the smallest error.
In its best configuration, AdaM’s MAPE, is under 10% ex-
cept for DiskIO trace, where it is slightly above. Even, in a
more aggressive configuration (λ = 2) AdaM still achieves
a low error percentage and is comparable to L-SIP. AdaM’s
sampling algorithm achieves a low MAPE due the ability
of the PEWMA estimation to immediately detect abrupt
transient changes in each trace. Moreover, we observe that
AdaM’s sampling algorithm can take a wide range of values
for the α parameter (e.g. α ∈ [0.3− 0.6]) with a deviation
under 5% from the best configuration. This is important as
profiling to find the optimal configuration is not required
if a slightly increased imprecision is acceptable. In turn,
Figure 6 depicts the importance of the confidence metric
as in all imprecision configurations and for all traces,
AdaM’s MAPE is way below the maximum acceptable
imprecision threshold (MAPE < γ), even for γ-values
which indicate a high error tolerance. Furthermore, Figures

(a) CPU Cycles (b) Energy Consumption

(c) Outgoing Network Traffic (d) Mean Absolute Percentage Error (MAPE)

Fig. 8: Overhead Comparison of the Techniques Under Evaluation

[7a-7e] depict AdaM sampling algorithm compared to the
original traces, where we observe that AdaM always follows
the data evolution even in highly fluctuating phases. Thus,
we consider the depicted timeseries as identical.

Next, as depicted in Figures [8a-8d], we compare all
algorithms based on the overhead imposed to the IoT
device they are deployed on. In this comparison we include
FAST, as well as, AdaM (λ = 1) with filtering enabled. At
first, we observe (Fig. 8a) that filtering does not impose
additional overhead to AdaM as the overhead in all cases is
under 2%. However, the gains from reduced network traffic
(Fig. 8c) are significant as an average reduction of 69% is
achieved. In turn, even with filtering enabled, accuracy is
preserved (Fig. 8d) as the error is never increased more
than 6%. In general, when comparing AdaM to periodic
sampling, AdaM succeeds in reducing data volume by 74%,
energy consumption by at least 71%, while accuracy is,
in all cases, greater than 89% and with filtering enabled,
greater than 83%.

Moreover, as with MAPE, we observe that AdaM
outperforms i-EWMA and L-SIP. Specifically, from the
baseline (periodic sampling), L-SIP reduces network traffic
by 36% and achieves a 44% reduction of energy con-
sumption. AdaM is able to achieve this due to its low
complexity (O(1)) and the introduction of the confidence
metric which supports the estimation process to select the
appropriate T . Nonetheless, its overhead is slightly larger
than the FAST algorithm. FAST’s aggressiveness, which
computes larger sampling periods, results to slightly lower
energy consumption and network traffic. However, this

does not come for free. From Figure 8d we observe that
for FAST to achieve low energy consumption and network
traffic, significant accuracy is sacrificed, in contrast to
AdaM which even with filtering enabled, achieves a balance
between efficiency and accuracy.
D. Scalability Evaluation

In the next experiment, we intend to showcase the
benefits of integrating AdaM with data streaming sources
in regards to the velocity of which data is generated.
Specifically, we take advantage of the open-source JCatas-
copia Monitoring System [24], where we embed AdaM in
the source code of its Monitoring Agents, such that they
are capable of adapting the sampling rate and the metric
filter range. As data sources we create Monitoring Probes
which upon initialization, they randomly select 1 of the
5 traces introduced earlier to emulate its behavior. For
each trace we set the minimum sampling period to 1s, in
order to generate a high volume of data. We use these
traces, and not random data as we have confirmed, from
our evaluation, that AdaM can reconstruct each of the
available traces with high accuracy.

At first, our topology is comprised of 1 data source and
every 5 minutes a new data source is instantiated until
we reach a capacity of 80. Metrics are disseminated to
a single Monitoring Server (4VCPU, 4GB RAM) where
they are processed. We study data velocity by measuring
archiving time, which is the average time required by
the Monitoring Server to process and store a received
metric to its database. Figure 9 depicts the results of our
comparison, where we observe that without any adaptive

Fig. 9: Scalability Evaluation

sampling technique data velocity follows an exponential
growth. However, if data sources utilize AdaM’s adaptive
capabilities, data velocity is reduced and a linear growth is
achieved.

VIII. Conclusion and Future Work
In this paper, we have introduced AdaM. AdaM is

an adaptive monitoring framework for smart IoT devices,
which, inexpensively and in place, dynamically adapts the
monitoring intensity and the amount of data disseminated
through the network based on the current metric evolution.
AdaM’s algorithms make this possible by providing one-
step ahead estimations to adjust both the sampling rate
and the filter range based on the confidence of each
algorithm to correctly estimate what will happen next in
the data stream. With real-world complex testbeds, we
show that in contrast to other techniques, AdaM achieves a
balance between efficiency and accuracy, as it is capable of
reducing data volume by at least 74%, energy consumption
by at least 71%, while preserving a greater than 89%
accuracy. In turn, data velocity is significantly reduced,
offering IoT networks greater scalability.

As future work, we intend to fully integrate Adam
to JCatascopia, and enhance it with further intelligent
estimation techniques (i.e. metric correlation identifier).
These techniques will accept additional input (i.e. data
seasonality, user hints, etc.) to enrich the knowledge base
used by our algorithms, in order to provide accurate N-
step estimations, not just for IoT devices but even for
distributed data streaming engines as well.

IX. Acknowledgement
This work was partially supported by the EU Commis-

sion in terms of the PaaSport 605193 FP7 project (FP7-
SME-2013).

References
[1] Analyzing FitBit Data, https://rpubs.com/dmaurath/24643.
[2] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A

survey,” Computer Networks, vol. 54, no. 15, 2010.
[3] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework

for architectural-level power analysis and optimizations,” in
Computer Architecture, 2000. Proceedings of the 27th Interna-
tional Symposium on, June 2000, pp. 83–94.

[4] K. M. Carter and W. W. Streilein, “Probabilistic reasoning for
streaming anomaly detection,” in Statistical Signal Processing
Workshop (SSP), 2012 IEEE. IEEE, 2012, pp. 377–380.

[5] S. Clayman, R. Clegg, L. Mamatas, G. Pavlou, and A. Galis,
“Monitoring, aggregation and filtering for efficient management
of virtual networks,” in Proceedings of the 7th Int. Conference
on Network and Services Management, 2011, pp. 234–240.

[6] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Compress-
ing historical information in sensor networks,” in Proceedings
of the 2004 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’04. New York, NY, USA:
ACM, 2004, pp. 527–538.

[7] L. Fan and L. Xiong, “Real-time aggregate monitoring with dif-
ferential privacy,” in Proceedings of the 21st ACM International
Conference on Information and Knowledge Management, ser.
CIKM ’12. New York, NY, USA: ACM, 2012, pp. 2169–2173.

[8] Ganglia, http://ganglia.sourceforge.net/.
[9] Gartner Says 4.9 Billion Connected ”Things” Will Be in Use in

2015, http://www.gartner.com/newsroom/id/2905717.
[10] E. Gaura, J. Brusey, M. Allen, R. Wilkins, D. Goldsmith, and

R. Rednic, “Edge Mining the Internet of Things,” Sensors
Journal, IEEE, vol. 13, no. 10, pp. 3816–3825, Oct 2013.

[11] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet
of Things (IoT): A Vision, Architectural Elements, and Future
Directions,” Future Gener. Comput. Syst., vol. 29, no. 7, pp.
1645–1660, Sep. 2013.

[12] Java Microbenchmark Kit, https://goo.gl/zRTQDv.
[13] R. E. Kalman, “A new approach to linear filtering and predic-

tion problems,” ASME Journal of Basic Engineering, 1960.
[14] S. Meng and L. Liu, “Enhanced Monitoring-as-a-Service for

Effective Cloud Management,” Computers, IEEE Transactions
on, vol. 62, no. 9, pp. 1705–1720, Sept 2013.

[15] Nagios, http://www.nagios.org/.
[16] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for con-

tinuous queries over distributed data streams,” in Proceedings
of the 2003 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’03. New York, NY, USA:
ACM, 2003, pp. 563–574.

[17] C. Perera, C. Liu, and S. Jayawardena, “The Emerging Inter-
net of Things Marketplace From an Industrial Perspective: A
Survey,” Emerging Topics in Computing, IEEE Transactions
on, vol. PP, no. 99, pp. 1–1, 2015.

[18] V. Rastogi and S. Nath, “Differentially private aggregation of
distributed time-series with transformation and encryption,” in
Proceedings of the 2010 ACM SIGMOD International Confer-
ence on Management of Data, ser. SIGMOD ’10. New York,
NY, USA: ACM, 2010, pp. 735–746.

[19] Rich Data and the Increasing Value of the Internet of Things,
http://goo.gl/sfk1hW.

[20] SANS Technology Institute, https://isc.sans.edu/port.html.
[21] Sensor Simulator, https://goo.gl/3pOaSQ.
[22] I. Shafer, K. Ren, V. N. Boddeti, Y. Abe, G. R. Ganger, and

C. Faloutsos, “Rainmon: An integrated approach to mining
bursty timeseries monitoring data,” in Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ser. KDD ’12. New York, NY, USA:
ACM, 2012, pp. 1158–1166.

[23] The 10 most popular Internet of Things applications right now,
http://iot-analytics.com/10-internet-of-things-applications/.

[24] D. Trihinas, G. Pallis, and M. Dikaiakos, “JCatascopia: Moni-
toring Elastically Adaptive Applications in the Cloud,” in Clus-
ter, Cloud and Grid Computing (CCGrid), 14th IEEE/ACM
International Symposium on, May 2014, pp. 226–235.

[25] O. Vallis, J. Hochenbaum, and A. Kejariwal, “A novel technique
for long-term anomaly detection in the cloud,” in 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14).
Philadelphia, PA: USENIX Association, Jun. 2014.

[26] Y. Xiang, K. Li, and W. Zhou, “Low-rate ddos attacks detection
and traceback by using new information metrics,” Information
Forensics and Security, IEEE Transactions on, vol. 6, no. 2,
pp. 426–437, June 2011.

[27] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savolainen,
and A. Yla-Jaaski, “A system-level model for runtime power
estimation on mobile devices,” in IEEE/ACM Int’l Conference
on Cyber, Physical and Social Computing (CPSCom), Dec
2010, pp. 27–34.

