
JCatascopia: Monitoring Elastically Adaptive
Applications in the Cloud

Demetris Trihinas, George Pallis, Marios D. Dikaiakos

Department of Computer Science
University of Cyprus

Email: { trihinas, gpallis, mdd }@cs.ucy.ac.cy

Abstract—Over the past decade, Cloud Computing
has rapidly become a widely accepted paradigm with
core concepts such as elasticity, scalability and on-
demand automatic resource provisioning emerging as
next generation Cloud service -must have- properties.
Automatic resource provisioning for Cloud applications
is not a trivial task, requiring for both the applications
and platform, to be constantly monitored, capturing
information at various levels and time granularity. In
this paper we describe the challenges that occur when
monitoring elastically adaptive Cloud applications and
to address these issues we present JCatascopia; a fully
automated, multi-layer, interoperable Cloud Monitor-
ing System. Experiments on different production Cloud
platforms show that JCatascopia is a Monitoring Sys-
tem capable of supporting a fully automated Cloud
resource provisioning system with proven interoper-
ability, scalability and low runtime footprint. Most
importantly, JCatascopia is able to adapt in a fully
automatic manner when elasticity actions are enforced
to an application deployment.

Keywords—Cloud Computing; Cloud Monitoring;
Application Monitoring; Elasticity

I. Introduction
The concept of Cloud Computing is dominating the

interests of organizations, as they seek to empower their
business units to promptly address market opportunities,
while at the same time aiming to minimize their running
IT costs. Elasticity in Cloud Computing allows the Cloud
environment to -ideally automatically- assign a dynamic
number of resources to a task, aiming to ensure that the
amount of resources needed for its execution is indeed
provided to the respective task [29]. Elasticity in Cloud
Computing is still considered a primary open research
issue [7][30]. Many Cloud providers and systems claim that
they offer elasticity but usually only provide scalability in
terms of increasing availability through horizontal repli-
cation. For instance, Amazon’s AutoScaling [2] provides
elasticity in a semi-automatic manner. This allows Amazon
EC2 [4] instances to be seamlessly and automatically
added when demand increases, based upon manually de-
fined boolean formulas and monitoring metrics collected
by CloudWatch [3].

Monitoring Systems deployed on large-scale distributed
infrastructures, such as Clouds, are essential for capturing
the performance and understanding the elastic behavior of
an application under various circumstances and possibly

unexpected workloads. On one hand, monitoring is a key
tool for controlling and managing software and hardware
infrastructures; on the other hand, it provides information
and key performance indicators for both platforms and
applications.

One of the most challenging tasks in Cloud Comput-
ing is resource and capacity management [1]. Once the
problem of enabling developers to manage Cloud resources
is solved, in both a clear and flexible way, a new prob-
lem emerges: How to automatically provision resources
for Cloud applications? Although Cloud infrastructures
are inherently elastic, allowing applications to throttle re-
sources on-demand [33], to the best of our knowledge, there
exists no open-source Monitoring System fully capable of
supporting a multi-grained, elastic Resource Provisioning
System for deployed Cloud applications in an automated
manner [10]. However, this is not a trivial task, since it
requires for both the applications and platform, to be con-
stantly monitored, capturing information at various levels
and time granularity. Aceto et al. [1] advocate that accu-
rate and fine-grained monitoring activities are required to
efficiently operate Cloud platforms and to manage their
increasing complexity. Specifically, a Monitoring System
should monitor heterogeneous types of information of dif-
ferent granularity, from low-level system metrics (e.g. CPU
usage, network traffic, memory allocation, etc.) to high-
level application specific metrics (e.g. throughput, latency,
availability, etc.), which are collected across multiple lev-
els (physical, virtualization, application level) in a Cloud
environment at different time intervals. Furthermore, the
recipients of monitoring metrics are also heterogeneous.
For instance, a particular metric (e.g. CPU utilization of
a VM) can be accessed -frequently and simultaneously-
by many entities (e.g. Cloud service consumers, resource
provisioner, Cloud provider) but is interpreted differently.

Cloud providers typically offer advanced monitoring
facilities [3][9]; also general purpose monitoring tools such
as Ganglia [20] or Nagios [24] serve this purpose in highly
specialized configurations or extensions. However, existing
monitoring tools cannot run on any underlying virtualized
infrastructure thus binding them to operate on a limited
number of Cloud platforms. In addition, they require re-
contextualization [8] when an application and/or resource
related parameter changes. Finally, they fail to detect
configurations in the application topology (e.g. new VM
is added) that occur due to elasticity actions unless this

information is either obtained from the underlying hyper-
visor [11] or from the Cloud provider through a directory
service [14]. In this paper we address the above challenges
focusing on the issues that occur when monitoring elas-
tically adaptive Cloud applications. As a result, we in-
troduce JCatascopia; a multi-layer, interoperable Cloud
Monitoring System which offers the following features:

• is an open-source Cloud Monitoring System that can
run in a non-intrusive and transparent manner to any
underlying virtualized infrastructure;

• dynamically detects at runtime when monitoring in-
stances have been added/removed from the overall
system due to enforcing elasticity actions without
any human intervention or the need to restart the
Monitoring System;

• is application-adaptive, diminishing the need for re-
contextualization each time an application and/or
resource related parameter changes;

• generates high-level application metrics dynamically
at runtime by aggregating and grouping low-level
metrics;

• provides filtering capabilities to reduce the communi-
cation overhead for metric distribution and storage.

In this paper, we also present a thorough evalua-
tion of our system by comparing it to other monitor-
ing tools [11][20]. The experiments are conducted with
a testbed that utilizes: (i) different domains of Cloud
applications [6][13][27], (ii) various VM flavors, and (iii)
both public and private Cloud infrastructures [4][26][17].
Results show that JCatascopia is a suitable Monitoring
System to support a fully automated Cloud resource pro-
visioning system with proven interoperability, scalability
and low runtime footprint. Most importantly, JCatascopia
is able to adapt in a fully automatic manner when elasticity
actions are enforced to an application deployment.

The rest of the paper is structured as follows: Section
2 presents a study of the related work in the field of Cloud
Monitoring. Section 3 presents the design concepts and the
architecture of JCatascopia. Section 4 provides a detailed
description of the implementation of each component that
comprise JCatascopia. Section 5 presents an evaluation
of our system while Section 6 concludes this paper and
outlines the future work.

II. Related Work

Cloud specific monitoring tools such as Amazon
CloudWatch [3], Paraleap AzureWatch [9] and RackSpace
CloudKick [28] provide Monitoring as a Service to Cloud
service consumers. Despite the fact that these tools are
easy to use, fully documented and well-integrated with
the underlying platform, their biggest disadvantage is that
many of them are commercial and proprietary which limits
them to operating on specific Cloud IaaS providers. Thus,
these tools lack in terms of portability and interoperability.

General purpose monitoring tools such as Gan-
glia [20], Nagios [24], Zabbix [35], MonALISA [25] and
GridICE [5] are used traditionally by system adminis-
trators to monitor slowly changing and fixed large-scale
distributed infrastructures, such as Computing Grids and

Clusters. Cloud providers tend to adopt such solutions to
monitor their infrastructures. However, Cloud platforms
are inherently more complex than Grid infrastructures,
consisting of multiple layers and service paradigms (IaaS,
PaaS, SaaS) providing users and applications with on-
demand resources through an infinite pool of virtual re-
sources. This makes the aforementioned monitoring tools
unsuitable for addressing a rapidly adapting and dynamic
Cloud infrastructure where, for example, a virtual instance
is deployed for several minutes on one physical node and
after a short interval it can migrate to another node.

To address the above limitations, several approaches
have been proposed. For instance, sFlow [31], can be
integrated with Ganglia to monitor VM clusters. Carvalho
et al. [14] propose the use of passive checks by each physical
host to notify a Nagios Server via a push notification
mechanism about the virtual instances currently running
on the system. Katsaros et al. [19] extend Nagios through
the implementation of NEB2REST, which is a RESTful
Event Brokering module utilized to provide elastic capa-
bilities through an abstraction layer between monitoring
agents and the management layer. Clayman et al. [11]
propose Lattice, a scalable Cloud monitoring framework
which monitors not only physical hosts but also virtual
instances. Lattice can be utilized to monitor elastically
adapting environments. In particular, the process of de-
termining the existence of new VMs in an application
deployment is required to be performed at the hypervisor
level. A Controller is deployed as the responsible entity
for retrieving a list of running virtual instances from the
hypervisor, detecting if new VMs have been added or
removed.

Wang et al. [34] propose VScope, a flexible monitoring
and analysis middleware for troubleshooting multi-tier
data intensive applications residing on Cloud infrastruc-
tures. VScope can operate on any set of nodes, software
components or across different software levels. In contrast
to VScope which targets data-intensive Cloud applications,
Montes et al. [22] propose GMonE, a general-purpose
Cloud monitoring tool applicable to all Cloud layers.
GMonE, allows for monitoring instances to be deployed
on any level of the Cloud and provides a pluggable model
where users can inject their own custom metric collecting
scripts to monitoring instances. Finally, Emeakaroha et
al. [15] propose LoM2HiS, which attempts to bridge the
gap between mapping low-level metrics collected from
existing monitoring tools (Ganglia) to SLA parameters.

III. JCatascopia Design

In this section, we focus on introducing the key features
that distinguish JCatascopia from the monitoring tools
and academia approaches discussed in the previous section
and provide a description of the proposed architecture.

A. JCatascopia Features

JCatascopia encapsulates in one Monitoring System
the following key aspects:

• JCatascopia is fully automated, requiring for no
human intervention after deployment. In contrast to

Lattice and the proposed Nagios extensions, JCatas-
copia supports elasticity without requiring any special
entities deployed on physical nodes, nor does it request
information from the hypervisor regarding the current
running VMs in an application deployment. In Section
3.C, we present a mechanism based on a variation of
the publish and subscribe message pattern [16] and
heartbeat monitoring [18] to dynamically detect, at
runtime, when elasticity actions occur and notify the
Monitoring System accordingly.

• JCatascopia is both platform independent and
interoperable. Thus, it is not limited to operate on
specific Cloud Providers and can be utilized to mon-
itor (i) federated Cloud environments where applica-
tions are deployed on VMs residing on multiple Cloud
platforms and (ii) Cloud bursting environments [32]
where applications deployed on a private Cloud burst
into a public Cloud when resource demand increases.

• JCatascopia has been designed to provide multi-
level Cloud monitoring and is capable of collect-
ing heterogeneous types of information of different
granularity across multiple levels (physical, VM, ap-
plication level) of the Cloud. JCatascopia is both
customizable and extensible and offers a complete
API (discussed in Section 4.A) which assists applica-
tion developers to implement their own custom metric
collectors to report application specific performance
metrics. Furthermore, JCatascopia is enhanced with a
metric subscription rule mechanism where application
developers and Cloud entities (e.g Resource Provi-
sioner), can subscribe to aggregated metrics collected
from any level of the Cloud and also compose high-
level metrics from low-level metrics via a directive-
based metric subscription rule language introduced in
Section 3.E.

• Finally, JCatascopia is equipped with filtering capa-
bilities to minimize both storage and communication
overhead. In Section 3.D we present a technique to-
wards ensuring that values will be filtered by adjusting
the filter window range based on the percentage of
previously filtered values.

B. Architecture
Figure 1 depicts an abstract view of JCatascopia’s

architecture. The architecture follows an agent-based
producer-consumer approach. This approach provides a
scalable, real-time, Cloud Monitoring System that can be
utilized to collect monitoring metrics from multiple layers
of the underlying infrastructure, as well as performance
metrics from deployed applications. During the metrics
collection process, JCatascopia takes into consideration
the rapid changes that occur due to the enforcement of
elasticity actions on the application execution environment
and the Cloud infrastructure.

Monitoring Agents are light-weight monitoring in-
stances deployable on any Cloud elements to be monitored,
such as physical nodes or virtual instances. Monitoring
Agents are the entities responsible for managing the metric
collection process on the respective Cloud element.

Probes are metric collectors managed by Monitoring
Agents. Probes are responsible for gathering low-level

Fig. 1: Abstract Architecture View

monitoring metrics from the Cloud element they reside on,
and performance metrics from deployed user applications.
Instead of enforcing an Agent polling mechanism to collect
metrics from Probes in fixed time intervals, Probes utilize
either a push or pull mechanism to forward metrics to their
corresponding Agent. This provides Probes with complete
control on how to handle metric dissemination, by either
reporting metrics periodically or upon the occurrence of a
specific event.

An Agent aggregates and distributes processed metrics
to Monitoring Servers that have expressed interest in
receiving metrics from the specific Agent using as a deliv-
ery mechanism a slight variation of the traditional publish
and subscribe (pub/sub) messaging paradigm. Employing
a pub/sub mechanism minimizes related network commu-
nication overhead, since it avoids the need for the Moni-
toring Server to constantly poll Agents for new metrics. A
Monitoring Server processes the received metrics forming
composite metrics, upon consumer request (subscriptions),
performing aggregation and grouping metrics from various
instances together. Monitoring Servers are deployable on
either physical nodes or virtual instances without requiring
to reside in the same Cloud platform with their Monitoring
Agents. In particular, since JCatascopia is interoperable,
both Monitoring Agents and Servers may be distributed
and operate across different Cloud platforms.

Using multiple Monitoring Servers is optional, however
when utilized the topology gains in terms of scalabil-
ity. Redirecting metric traffic originating from Monitoring
Agents through intermediate Monitoring Servers offloads
a central Monitoring Server from continuous information
processing. This schema also provides fault-tolerance by
eliminating single points of failure. This results in informa-
tion resilience when Monitoring Servers are reported un-
available, by allowing metrics to be retrieved from healthy
unaffected intermediate Monitoring Servers.

Finally, JCatascopia provides a RESTful Web Service
that allows for external entities such as application users
or decision-making Resource Provisioners to access moni-
toring information stored in the Monitoring Database.

C. Dynamic Monitoring Agent Discovery and Removal
Monitoring Agents must be both re-configurable and

dynamically deployable at runtime, in order for a Monitor-
ing System to support an automatic Resource Provisioning

System which elastically adapts application environments.
Specifically, when a new VM is added to an application
topology, a new Monitoring Agent must be configured and
added to this VM. In turn, the Monitoring System must be
notified for this addition. Similarly, the Monitoring System
must also be aware when an Agent has been removed due
to the removal of a previously allocated VM.

In the classic pub/sub message pattern, entities (sub-
scribers) initially express interest and subscribe to an event
stream of another entity (publisher). When events are
produced, the publisher distributes them to its subscribers,
eliminating the need of the subscriber to constantly poll
the publisher to check if new events are available. In
our Cloud Monitoring paradigm we differ from the classic
pub/sub approach, since the static part (not affected by
elasticity actions) of the model is the Monitoring Server,
opposed to the Monitoring Agents which appear and dis-
appear dynamically due to elasticity actions. In contrast
to the classic pub/sub pattern (Fig. 2), we vary the
message pattern as follows: (i) Monitoring Servers bind to a
network address and port, awaiting for incoming requests
and (ii) Monitoring Agents, which are considered metric
publishers, initiate the subscription process by ping-ing
the Monitoring Server of their existence, with a request to
connect message. Afterwards, Monitoring Agents inform
the Monitoring Server for the metrics they are responsible
to collect and their metadata. Finally, after the connection
phase, Monitoring Agents can start publishing metrics to
the metric stream.

With the proposed variation, the Monitoring Server is
agnostic to the network location of its Monitoring Agents,
allowing them to appear and disappear dynamically in
a flexible manner by eliminating the need: (i) to restart
or re-configure the Monitoring System, (ii) to depend on
the underlying hypervisor, and (iii) to require a directory
service that contains these locations (required in the classic
pub/sub pattern).

Fig. 2: Dynamic Agent Discovery Connection Phase

JCatascopia utilizes heartbeat monitoring [18] as an
approach to automatically detect without the need of
any external or human intervention when a Monitoring
Agent: (i) ceases to exist due to scaling down elasticity
actions, or (ii) is considered down due to temporary net-
work connectivity issues which, inevitably, occur in large-
scale distributed systems. A Heartbeat Monitor can be
integrated in the Monitoring Server to check periodically,
and report the status (Figure 3) of the connected Agents,

setting their status to DOWN when finished. If an Agent
fails to contact the Server until the next interval by either
sending fresh metrics or a heartbeat (if no new metrics
are collected) the status of the Agent will remain DOWN.
If this occurs consecutively for a number of times (this
value and the period is configurable) then the Agent is
considered DEAD and is disconnected from the Server.

Fig. 3: Monitoring Agent State Diagram

JCatascopia also considers uncertainties imposed by
application re-contextualization (e.g. dynamic IP config-
uration) due to VM migration which may affect the com-
munication between Monitoring Agents and Servers. To
address this issue, in each metric message, the Agent adds
metadata (e.g. IP address) which are periodically updated.
Even if the IP address of an Agent changes, the Server
will be notified. The limitation of this approach is that a
request (e.g. metric pull request) issued from a Monitoring
Server to an Agent will fail if the IP address has not yet
been updated. The error space can be shortened if the
service issuing the migration (e.g. Resource Provisioner)
informs the Monitoring Agent of this by triggering either
the updateAgentIP() or setAgentIP(ipAddress) API
calls. The same approach is followed in the situation where
the IP address of a Monitoring Server is changed with the
addition of one more step: After an IP address update
occurs, the Monitoring Server notifies its respected Agents
with a metadata message containing its new IP address.

D. Adaptive Filtering
Filtering is an essential feature of a Monitoring System,

which assists in minimizing the communication and stor-
age overhead, and consequently cost, by not transmitting
or storing continuous values of a metric with very small
variances between them. Utilizing a simple uniform fixed
filter window (e.g. previousV alue ± R where R is a fixed
percentage range), for all metrics is only effective when the
workload imposed to the monitored instance is considered
stable. When consecutive metric values differ from one
another, then there is no guarantee that any values will
be filtered [12]. Taking this scenario into consideration
we apply an adaptive filter window range approach where
the window range depends on the percentage of values
previously filtered.

For instance, let N be the number of values that
will be used to determine if the window range R should
change and let A, short for aggressiveness, be the target
percentage of the values that ideally should be filtered.
Initially, let R be set to minR which is the minimum
window range. For N consecutive metric values we use
the filter window: previousV alue ± R. When N values
have been collected, we compare the percentage of values,

filterValsPercent, that were filtered to the defined aggres-
siveness. If filterValsPercent is less than A then this is an
indicator that we must consider a wider range since not
enough values were filtered. We then set the new window
range R to R + step, provided that R ≤ maxR, where
step is the length that we defined to make the window
wider/narrower. If filterValsPercent is greater than A then
we set R to R − step provided that R ≥ minR since the
filter window is too wide and we must consider a smaller
window range.
E. Metric Subscription Rule Language

There are cases where one is not interested in viewing
monitoring metrics of a single instance but instead require
an overview of the overall system or parts of it. Such a
case occurs when scaling an application component which
is comprised of several VMs (e.g. database cluster). To ad-
dress this issue we propose a Metric Subscription Rule
Language, which can be utilized to: (i) aggregate and
group low-level metrics originating from single instances,
and (ii) generate high-level metrics dynamically at runtime
from low-level metrics. For example, Availability can be
defined from low-level metrics by applying the formula
Availability = 1− downtime/uptime.

We describe subscription rules as triplets with the
following main elements:

{Filter, Members, Action}

The Filter is the part of the subscription rule where
a new metric is defined. The definition of a new metric
consists of the operations (e.g. +, - ,*, /) to be applied
to low-level metrics, collected from Monitoring Agents,
and optionally a grouping function (e.g. AVG, SUM, MIN,
MAX). The IDs of these Agents are specified in the
Members part of the subscription rule. Figure 4 depicts
the subscription rule language in BNF format.

Fig. 4: Subscription Rule in BNF
An exemplary Filter to create a new high-level metric,

named DBthroughput, which calculates the average (AVG)
throughput from the low-level metrics read, write, insert
and update operations per second of a distributed database
cluster is the following:

DBthroughput = AVG(rdps+wrtps+instps+updps)

When a filter is matched, the Action specified in the
rule is enforced. Actions are either time-based (notified
periodically) or event-based (notified when event threshold
is violated). An example of a time-based action, where the
subscriber is notified periodically every 25 seconds is the
following:

ACTION = PERIOD(25)

An example of an event-based action where the sub-
scriber requests to be notified only if the newly created
metric reports values lower that 25% or higher than 75%
is the following:

ACTION = NOTIFY(<25,>75)

Finally, a complete example of a subscription rule that
calculates the average CPU usage from the low-level metric
cpuIdle of a Web Server cluster comprised by N individual
Web Servers is the following:

cpuTotalUsage = AVG(1 - cpuIdle)
MEMBERS = [id1, ... ,idN]

ACTION = NOTIFY(>=82%)

IV. Implementation
The following sections provide a detailed implemen-

tation description of the components that comprise the
JCatascopia Monitoring System.

A. JCatascopia Monitoring Probe

JCatascopia provides the application developer with
the ability to write custom Probes for collecting any metric
that may be of interest and deploy them on Monitoring
Agents. Probes are implemented using the JCatascopia
Probe API 1 which provides an interface with the necessary
abstractions for hiding the complexity of all the Probe
functionality from the Developer. The Probe Interface is
bundled in the JCatascopia Probe jar which allows users
to import and use it when developing their applications. A
Probe is not limited to collect only one metric; our imple-
mentation supports Probes that collect multiple metrics
from the same resources in order to reduce the monitoring
overhead. For instance, a Memory Probe can report total,
free and used memory of a running VM, retrieving these
values on a Linux OS distribution from different native
fields available within the /proc/meminfo file.

In paricular, a Probe has the following capabilities:
(i) enables the storage and querying for the last metrics
reported and their timestamp; (ii) allows Probe Developers
to add their own custom metric value checks (e.g. when
collecting click statistics from a web server log file, do
not report clicks from a specific IP); (iii) allows param-
eter configuration (e.g. configure collecting period); (iv)
provides filtering; (v) can be dynamically deployed to a
Monitoring Agent at runtime; (vi) distributes metrics at
different time granularities, utilizing either a push or pull
delivery mechanism.

Regarding filtering, JCatascopia introduces the idea of
enhancing Probe functionality with the amount of logic in
order to analyze, in place, the usefulness of collected raw
metrics rather than distributing metrics over the network
with little significance and finally performing filtering at
the Server level. This enables JCatascopia to adapt the
monitoring process based on the detected variance of the
imposed workload. Users may enable adaptive filtering and

1 A compete description of the JCatascpopia Probe API can
be found at: http://www.celarcloud.eu/wp-content/uploads/2013/11/
Cloud-Monitoring-Tool-V1.pdf

configure the filtering parameters (N, A, minR, maxR,
step) for each Probe or metric separately by amending
their default values in the Agent configuration file. Probe
Developers can also assign through the Probe API default
filtering parameters to a Probe to assist users which are
not familiar with the filtering process.

Probes run independently from each other. If a Probe
encounters a problem such as unexpected termination,
the metric collection process of the other Probes is
not affected. Probes are implemented separately from
Monitoring Agents allowing them to be dynamically
added/removed at runtime, without interfering with the
monitoring process. This feature allows for a new Probe to
be plugged-in to an Agent and configured at runtime. Fur-
thermore, the pluggable functionality grants Agents with
flexibility, which is useful when monitoring applications,
by allowing the number and type of Probes corresponding
to an Agent to vary.

As far as metric distribution is concerned, it is essential
to gather metrics at different time granularities in order
to enable the collection of heterogeneous types of metrics
from various levels of the Cloud. For example, low-level
metrics such as CPU, memory and disk I/O are usually
required to be collected in shorter intervals (e.g. in the
range of a few seconds) than high-level service metrics
such as throughput, latency, and availability which are
meaningful when collected in larger intervals.

B. JCatascopia Monitoring Agents
Monitoring Agents are responsible for processing and

distributing monitoring information, originating from
Probes, to Monitoring Server(s). An Agent is considered
as the Probe Manager for the Probes deployed on the
particular VM or physical node that the Agent resides
on. A Monitoring Agent is responsible for (de-)activating
Probes, configuring accordingly their parameters and upon
user request pull different metrics. Figure 5 depicts the
internal architecture of an Agent and its components.

Initially, when a new Agent is deployed, as part of the
Agent discovery process, the Server Connector component
pings the Monitoring Server requesting to connect. If the
Monitoring Server responds, then the Server Connector
transmits Agent metadata to the Monitoring Server, such
as the Agent’s ID and IP address and metadata of the
metrics it will be collecting. Once the initial connec-
tion phase is over, a metric stream is created, allowing
for monitoring metrics to be distributed to Monitoring
Servers. We embrace the ZMQ framework [36] to imple-
ment the JCatascopia pub/sub message distribution mech-
anism which is built on top of the simplistic, yet powerful,
ZMQ socket types. Thus, JCatascopia is able to control
the message flow between Agents and Servers, adapting, if
needed, to network transmission failures by rescheduling
and resending messages. New metrics are added to the
Agent Metric Queue either directly by Monitoring Probes
or by the Probe Controller component which listens for
metric requests from other processes. The Probe Controller
also listens for probe parameter configuration requests (e.g.
configure Probe collecting period) originating by either
the Monitoring Server or from Application Users via the

Fig. 5: JCatascopia Monitoring Agent

JCatascopia RESTful API. Metrics are dequeued by the
Metric Collectors and processed by Metric Processors.
Processing a metric refers to the task of preparing a
message for distribution with the latest collected metrics.
Initially, a metric is converted to a human readable format
in a semi-structured manner and then Agent metadata
are added to the message. The number of Collectors and
Processors is customizable, by simply changing the default
values defined in the Agent configuration file (located in
the installation directory).

After processing the gathered metrics, these are given
to the Aggregator which is responsible to withhold them
from distribution until an aggregation policy is satisfied.
The aggregation policy can be configured through the
aforementioned Agent configuration file and can be time-
based (e.g. aggregate and distribute metrics every 30sec);
volume-based (e.g. aggregate and distribute metrics if mes-
sage size exceeds 2KB) or can take into consideration both
options. When aggregated metrics are ready to be sent, a
message is created containing all the ready metrics and is
subsequently sent to the Monitoring Server.

C. JCatascopia Monitoring Servers

Monitoring Servers are the entities responsible for
managing Agents and storing monitoring metrics to the
target database. Figure 6 depicts the internal architecture
of a Monitoring Server and its components. The Control
Listener and Agent Listener components are the entities
that listen for incoming Agent connection requests and
newly collected metrics, respectively. Connection requests
by newly deployed Agents are handled by the Control
Listener of the Server, which receives, parses and stores in
suitable data structures (Agent and Metric Map) metadata
describing the Agent and the collected metrics.

After the connection phase, an Agent publishes metric
messages to the respected metric stream. The AgentLis-
tener component listens for incoming messages and en-
queues them in the Metric Queue. Messages are dequeued
from the Metric Queue and processed by Metric Proces-
sors. The number of Processors is customizable, by chang-
ing the default value defined in the Server configuration
file. Processing messages refers to the task of parsing the
message, decomposing it to grab the metrics in a message
and updating the metric data structure. The metric data

Fig. 6: JCatascopia Monitoring Server

structure stores metric metadata and their latest reported
values. A HeartBeat Monitor is built into the Monitoring
Server in order to detect when Agents have been removed
due to elasticity actions, thus disconnecting them from the
Monitoring System. If the Server acts as an Intermediate
then after processing, aggregating and, if needed, filtering
collected metrics it is ready for further distributing metrics
to other Monitoring Server(s). If the Monitoring Server is
not an intermediate, after a metric is processed it is stored
by the Database Handler to the database.

The Subscription Mechanism, which uses the subscrip-
tion rule language introduced in Section 3.D, is built into
the Monitoring Server to allow users and internal plat-
form entities (e.g. Billing entity, etc.) via the JCatascopia
RESTful API to apply aggregation filters and grouping
functions upon low-level monitoring metrics gathered by
individual monitoring Agents to create new high-level
metrics. The Subscription Manager, depicted in Figure 6, is
the component that retrieves from the Control Queue and
processes subscription requests, adding a new entry to the
Subscription data structure and notifying the Subscription
Scheduler. The Subscription Scheduler is the component
that retrieves the Subscriptions from the respective data
structure and updates their current value based on the
minimum updating period specified by the user in the
Subscription request.

D. JCatascopia MS Database

JCatascopia as a modular and extensible system of-
fers its users with the functionality of implementing a
database solution of their own, by providing a Database
Interface, making JCatascopia flexible to which database
is used. JCatascopia currently offers an implementation
of a MySQL [23] interface. The selection of a relation
database for the first version of JCatascopia was based
upon providing the respected Decision Entity of an Au-
tomatic Resource Provisioning System with the ability to
perform various types of complicated queries on monitor-
ing data by allowing multiple joins on tables which cannot
be facilitated by a NoSQL database. In order for query
response time to not increase as the metric table grow,
a Cleanup Deamon is used to extract old monitoring data
from the database, process the data by filtering values that
are not needed and performing aggregation functions on
larger time intervals.

V. Evaluation
To validate the functionality and performance of

JCatascopia, a testbed was created to establish that the
proposed monitoring system is (i) platform independent,
(ii) interoperable, (iii) scalable, (iv) able to provide dy-
namic agent discovery while scaling an application topol-
ogy and (v) collect monitoring metrics from multiple levels
of the Cloud infrastructure.

A. Testbed

For the purpose of our experiments we deployed and
monitored on both public and private Cloud infrastruc-
tures the following representative Cloud applications:

• Cassandra DB [6]: a distributed storage system
for managing very large amounts of structured data,
stored as key/value pairs, spread out across many
nodes. Each Cassandra node can be queried to ob-
tain the read and/or write latency on a specified
column family. The CPU utilization of the cluster
nodes increases when Cassandra is stressed by a large
workload. We take advantage of this factor to decide
when a scaling action should be enforced.

• YCSB [13]: an open-source and extensible bench-
marking framework developed by Yahoo! which can
be utilized to generate realistic workloads, with the
goal of facilitating performance comparisons of Cloud
data serving systems (e.g. Cassandra). We have in-
strumented the YCSB Clients to expose latency and
throughput of the targeted database over time which
is hit by the generated workload. The workload im-
posed to the database cluster is update heavy, consist-
ing of 50% reads and 50% writes.

• HASCOP [27]: a generic parameter-free attributed
multi-graph clustering application based on a dis-
tributed algorithm. We instrument HASCOP to ex-
pose 5 metrics regarding the current number of clus-
ters, the iteration elapsed time, and the time to
update each of its data structures (graph weights,
probability table and centroids). The iteration time
decreases linearly with the number of processing units
dedicated to the clustering algorithm.

To monitor the resource utilization of the VMs in our
testbed and the performance of the applications that reside
on them, we have developed using the JCatascopia Java
Probe API several Probes. Table I presents the metrics
each Probe is responsible for and the default collecting
period for each metric. We selected to compare JCatas-
copia with two Monitoring Systems which follow a similar
agent-based architecture: (i) Ganglia [20], which is an open
source, production-ready, general purpose monitoring tool
and (ii) Lattice [11], which is a monitoring framework that
can be used to monitor elastically adaptive application
environments and has a prototype available online. In
order for the comparison to be meaningful we configured
each Monitoring System to report the same metrics at the
same frequency. Both, Ganglia and Lattice offer the CPU,
memory and network metrics that JCatascopia offers as
well. For the disk usage and application level metrics, we
extended both Ganglia’s metric library and Lattice, by im-
plementing Python modules and Java Probes respectively.

Probe Metrics Period
(s)

CPU cpuUserUsage, cpuNiceUsage, cpuSyste-
mUsage, cpuIdle, cpuIOWait

10

Memory memTotal, memUsed, memFree, mem-
Cache, memSwapTotal, memSwapFree

15

Network netPacketsIN, netPacketsOUT, net-
BytesIN, netBytesOUT

20

Disk
Usage

diskTotal, diskFree, diskUsed 60

Disk IO readkbps, writekbps, iotime 40
Cassan-
dra

readLatency, writeLatency 20

YCSB clientThroughput, clientLatency 10
HASCOP clustersPerIter, iterElapTime, cen-

troidUpdTime, pTableUpdTime,
graphUpdTime

20

TABLE I: Available Probes

Our experiments were conducted utilizing VMs, of
various sizes and operating systems, originating from 4
different Cloud infrastructures. Specifically, our testbed
consists of the following:
• 15 VMs residing on GRNET Okeanos Public

Cloud [26] with the following characteristics: 1 VCPU,
1GB RAM, 10GB Disk, Ubuntu Server 12.04.2 LTS.
On 12 VMs we deployed Cassandra, while on the
remaining 3 VMs we deployed YCSB Clients.

• 60 VMs residing on UCY Nephelae Private Cloud with
the following characteristics: 2 VCPU, 2GB RAM,
10GB Disk, Ubuntu Server 12.04.2 LTS. HASCOP
was deployed on all the VMs.

• 10 VMs residing on Flexiant FlexiScale platform [17]
with the following characteristics: 2 VCPU, 2GB
RAM, 10GB Disk, Debian 6.07 (Squeeze). On all 10
VMs we deployed HASCOP.

• 10 m1.small (1VCPU, 1.7GB RAM, 160GB Disk)
Amazon EC2 [4] instances with CentOS 6.4. On all
10 VMs we deployed HASCOP.

On all the acquired virtual instances we have deployed
JCastascopia Monitoring Agents, Ganglia gmonds and
Lattice DataSources2.

B. Runtime Impact Evaluation
In this section we evaluate the runtime impact of Mon-

itoring Agents on user paid application VMs and compare
JCatascopia to Ganglia and Lattice.

Experiment 1. Elastically Adapting Cassandra Cluster:
This experiment uses 15 VMs in Okeanos cluster. Ini-

tially the topology consists of 1 Monitoring Server, 3 YCSB
VMs which are responsible for generating an increasing
workload and the Cassandra cluster which at first, only
consists of 2 VMs. The other 10 VMs are shutdown.
For the YCSB VMs we only collect client-side related
metrics by deploying a YCSB Probe. For the Cassandra
nodes we collect VM level metrics by deploying a CPU,
Memory, Network and DiskIO Probe and application level
metrics by deploying a Cassandra Probe. To cope with
the increasing workload, the Cassandra cluster must scale
by dynamically adding more nodes to the cluster until
all 12 VMs have been initialized. To calculate when a

2The versions used were 3.1.7 for Ganglia and 0.6.4 for Lattice

scaling action should be taken3, we add a subscription
rule to the Monitoring Server. The subscription notifies
the Resource Provisoner4 when the average CPU usage
(cpuTotal = 1− cpuIdle) of the Cassandra cluster is over
75% at which point we initialize another Cassandra VM
and add it to the cluster. After each scaling action we add
the id of the new VM to the subscription via a RESTful
request to the Monitoring Server. The subscription rule
used is the following:

cassCPUTotalUsage = AVG(1 - cpuIdle)
MEMBERS = [id1, ... ,idN]

ACTION = NOTIFY(>=75%)

Experiment 2. Monitoring a Cloud Federation
Environment:

This experiment uses 30 VMs originating from the
Amazon, Flexiant and Nephelae cluster to monitor a topol-
ogy spread across muliple Cloud platforms. On each VM
we have deployed HASCOP and utilized a CPU, Memory,
Disk Usage and HASCOP Probe to monitor the topology
for 5 hours. It must be noted that JCatascopia is out of the
box interoperable whereas Lattice required configuration to
make this feasible.

To evaluate the runtime footprint that JCatascopia,
Ganglia and Lattice impose on all of the application
VMs, for both experiments, we measure the average CPU
and memory utilization for each Monitoring System. The
results are depicted in Figures 7, 8 and 9. From these
figures, we notice that JCatascopia’s runtime footprint,
both CPU and especially memory, is lower than Lattice.

In contrast to Lattice, Ganglia’s memory footprint is
lower than JCatascopia, though we must take into consid-
eration that: (i) Ganglia is lightweight when utilizing its
built-in default metrics but its runtime footprint increases
(noticable in Fig. 8 and 9) when deploying user-developed
Python modules which target application level metrics.
(ii) Ganglia offers less functionality than JCatascopia. For
instance, JCatascopia offers filtering and allows users to
add custom metric checks which may impose a slight
overhead when collecting metrics but gains much more
by reducing the communication and storage overhead of
the overall system. To justify this conclusion we measured
the outgoing network utilization for the second experi-
ment. From Figure 10 we observe that JCatascopia has
inherently a smaller network footprint than Ganglia and
when we enable adaptive filtering on the CPU, Memory
and DiskUsage Probes with their default parameters set
to N = 15, A = 10%, minR = 1%, maxR = 3% and
step = 1%, we observe that the network overhead drops
even more (the large deviations in Fig. 10 are due to sent
messages not having fixed lengths). Finally, to make our
experimental results clearer, we used small VMs, whereas
if slightly larger VMs were used the distinction between
the two systems would be neglectable.

3More advance decision making policies can be used which involve
throughput, latency, etc. to decide when a scaling should occur, but this
is not the target of this paper

4Our Resource Provisioner is a set of scripts responsible for enforcing
elasticity actions and overseeing the experiments

 0

 0.5

 1

 1.5

 2

 2.5

ganglia JCatascopia lattice

u
ti
liz

a
ti
o
n
 (

%
)

CPU
Memory

Fig. 7: Agent Utilization
YCSB

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

ganglia JCatascopia lattice

u
ti
liz

a
ti
o
n
 (

%
)

CPU
Memory

Fig. 8: Agent Utilization
Cassandra

 0

 0.5

 1

 1.5

 2

 2.5

ganglia JCatascopia lattice

u
ti
liz

a
ti
o
n
 (

%
)

CPU
Memory

Fig. 9: Agent Utilization
HASCOP

 500

 550

 600

 650

 700

 750

 800

 850

 900

 950

ganglia						JCatascopia(filtering off)															JCatascopia

O
u
tg

o
in

g
 N

e
tw

o
rk

 U
ti
liz

a
ti
o
n
 (

b
y
te

s
/s

)

Network Utilization

Fig. 10: Agent Network
Utilization

C. Scalability Evaluation

In this section we study how JCatascopia scales while
adding at runtime Monitoring Agents to an elastically
adaptive application topology. The performance of a Moni-
toring Agent is not affected while scaling, since each Agent
is an independent entity responsible of collecting metrics
originated only from a single instance. This does not apply
to the performance of a Monitoring Server which highly
depends on the number of Agents in the topology and the
amount of metrics it receives.

Experiment 3: Scaling a HASCOP cluster:

This experiment was performed on the 60 VMs which
comprise the UCY Nephelae cluster. The goal of this
experiment is to evaluate the scalability of a Monitoring
Server while the number of Agents, and consequently
the number of reported metrics increases. As previously
stated, HASCOP and a JCatascopia Monitoring Agent
were deployed on all 60 VMs. Each Agent reports to
the Monitoring Server the same metrics (19 in total) as
the second experiment (Monitoring a Cloud Federation
Environment). We add a subscription rule to the Monitor-
ing Server that reports the average elapsed time of each
iteration:

hascopIterElapsedTime = AVG(iterElapTime)
MEMBERS = [id1, ... ,idN]

ACTION = NOTIFY(ALL)

Experiment 3a. Using a Single Monitoring Server:

The first scenario of this experiment is the following:
Initially, the topology consists of 1 application VM and
1 Monitoring Server. The other 59 VMs are shutdown.
The Monitoring Server was deployed on a VM with the
same characteristics (2VCPU, 2GB RAM, Ubuntu Server
12.04.2) as the VMs in the cluster. Randomly, every 2 to 5
minutes, a VM was selected from the cluster and initialized
automatically without the need to restart or reconfigure
any part of the Monitoring System. This process is per-
formed until all the VMs in the cluster have been initialized
and are reporting metrics to the Monitoring Server.

To evaluate JCatascopia’s performance while scaling,
we measure archiving time which is the average time
required for the Monitoring Server to process and store
a received metric to the Monitoring Database. Figure 11
depicts the average archiving time observed when scaling
the application topology from 1 virtual instance to 60. At
first, for a small number of VMs archiving time can be
considered as stable. As the number of VMs increases, we
observe that JCatascopia achieves an archiving time that

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60
A

rc
h
iv

e
 T

im
e
 (

m
s
)

Number of VMs

archive time
f(x) = 5.11x-60.79, R

2
= 0.9829

archive time with intermediates

Fig. 11: Monitoring Server Average Archiving Time
grows linearly which is desired when scaling a distributed
system. We apply a linear regression fit to the collected
data and calculate the R2 coefficient5 to determine the
accuracy of the regression which indicates a near perfect
fit (0.9829). It should be noted that throughout the exper-
iment, the highest observed CPU and Memory utilization
of the Monitoring Server was 0.3% and 2.9% respectively.

Experiment 3b. Using 2 Monitoring Servers as
Intermediates:

In the second scenario, we use an hierarchy of Monitor-
ing Servers by adding 2 Monitoring Servers to the previous
topology as Intermediates which are utilized to process,
aggregate and distribute monitoring metrics originating
from the underlying Agents to the root Monitoring Server.
In turn, the root Monitoring Server will store the metrics in
the Monitoring Database. As in the previous scenario the
topology initially consists of 1 VM. Every 2 to 5 minutes
a new VM is randomly selected, initialized and assigned
to one of the Intermediate Servers (eventually each will be
responsible for 30 Agents) until all 60 VMs are running and
reporting metrics to their assigned Intermediate Server.
Figure 11 depicts the average archiving time when using
two Intermediate Monitoring Servers. From this figure we
observe that archiving time is relatively stable, with the
highest reported value to be 37ms. This is a significant
performance gain compared to the previous scenario with
uses one Monitoring Server. We conclude that when the
average observed archiving time is considerably high we
can redirect monitoring metric traffic through Indermedi-
ate Monitoring Servers, which will result in a significant
performance gain, allowing the monitoring system to scale.

5 the Coefficient of Determination, R2, indicates how well data points
fit a curve. Its values range from 0 to 1 with 1 indicating a perfect fit.

VI. Conclusion and Future Work
In this paper we have presented JCatascopia; a fully

automated, multi-layer, interoperable Cloud Monitoring
System. JCatascopia aims at supporting automated multi-
grained Cloud platforms that offer elastic resource pro-
visioning for deployed Cloud applications. Though still a
prototype, JCatascopia has been successfully integrated in
such a system [10]. Furthermore, we have presented the
key features of JCatascopia: (i) dynamic agent discovery
and removal to identify when monitoring instances have
been added/removed due to elasticity actions, (ii) adaptive
filtering to minimize both the storage and communication
overhead by adapting the filter window range based on
the percentage of values that were previously filtered, and
(iii) a subscription rule language, which can be used to
aggregate and group low-level metrics to generate high-
level metrics dynamically at runtime. Experiments on
public and private Cloud platforms show that JCatas-
copia is capable of supporting a fully automated Cloud
resource provisioning system with proven interoperability,
scalability and low runtime footprint. Finally, JCatascopia
is able to adapt in a fully automatic manner when elasticity
actions are enforced to an application deployment.

As future work, we will further pursue adaptive filtering
and also enhance Probes with adaptive sampling to adjust
the metric collecting period when stable phases are de-
tected in the imposed workload. This results in minimizing
the computation overhead. Furthermore, we will continue
with the implementation of a Cassandra NoSQL database
interface. Finally, we will enhance the subscription rule
language and mechanism to enable JCatascopia to be
integrated with a Cloud cost evaluation system [21].

VII. Acknowledgement
This work was partially supported by the European

Commission in terms of the CELAR 317790 FP7 project
(FP7-ICT-2011-8).

References
[1] G. Aceto, A. Botta, W. de Donato, and A. Pescape, “Cloud

monitoring: A survey,” Computer Networks, vol. 57, no. 9, pp.
2093 – 2115, 2013.

[2] Amazon AutoScaling, http://aws.amazon.com/autoscaling/.
[3] Amazon CloudWatch, http://aws.amazon.com/cloudwatch/.
[4] Amazon EC2, http://aws.amazon.com/ec2/.
[5] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. L.

Rubini, G. Tortone, and M. C. Vistoli, “Gridice: a monitoring
service for grid systems,” Future Gener. Comput. Syst., vol. 21,
no. 4, pp. 559–571, Apr. 2005.

[6] Apache Cassandra, http://cassandra.apache.org/.
[7] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[8] D. Armstrong, D. Espling, J. Tordsson, K. Djemame, and
E. Elmroth, “Runtime virtual machine recontextualization for
clouds,” in Proceedings of the 18th Inter. Conf. on Parallel
Processing Workshops, ser. Euro-Par’12, 2013, pp. 567–576.

[9] AzureWatch, https://www.paraleap.com/AzureWatch.
[10] CELAR Project, http://celarcloud.eu/.
[11] S. Clayman, A. Galis, and L. Mamatas, “Monitoring vir-

tual networks with lattice,” in Network Operations and
Management Symposium Workshops (NOMS Wksps), 2010
IEEE/IFIP, 2010, pp. 239–246.

[12] S. Clayman, R. Clegg, L. Mamatas, G. Pavlou, and A. Galis,
“Monitoring, aggregation and filtering for efficient management
of virtual networks,” in Proceedings of the 7th Int. Conference
on Network and Services Management, 2011, pp. 234–240.

[13] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears, “Benchmarking cloud serving systems with ycsb,” in
Proceedings of the 1st ACM symposium on Cloud computing,
ser. SoCC ’10. New York, USA: ACM, 2010, pp. 143–154.

[14] M. B. de Carvalho and L. Z. Granville, “Incorporating virtual-
ization awareness in service monitoring systems.” in Integrated
Network Management, N. Agoulmine, C. Bartolini, T. Pfeifer,
and D. O’Sullivan, Eds. IEEE, 2011, pp. 297–304.

[15] V. Emeakaroha, I. Brandic, M. Maurer, and S. Dustdar, “Low
level metrics to high level slas - lom2his framework: Bridging
the gap between monitored metrics and sla parameters in cloud
environments,” in High Performance Computing and Simula-
tion (HPCS), 2010, pp. 48–54.

[16] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Ker-
marrec, “The many faces of publish/subscribe,” ACM Comput.
Surv., vol. 35, no. 2, pp. 114–131, Jun. 2003.

[17] Flexiant FlexiScale Platform, http://www.flexiscale.com/.
[18] N. Hayashibara, A. Cherif, and T. Katayama, “Failure detec-

tors for large-scale distributed systems,” in Proceedings of the
21st IEEE Symposium on Reliable Distributed Systems, 2002.

[19] G. Katsaros, R. Kubert, and G. Gallizo, “Building a service-
oriented monitoring framework with rest and nagios,” in Ser-
vices Computing (SCC), 2011 IEEE International Conference
on, 2011, pp. 426–431.

[20] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia
distributed monitoring system: Design, implementation and
experience,” Parallel Computing, vol. 30, p. 2004, 2003.

[21] D. Moldovan, G. Copil, H.-L. Truong, and S. Dustdar, “Mela:
Monitoring and analyzing elasticity of cloud services,” 5th In-
ternational Conference on Cloud Computing, CloudCom, 2013.

[22] J. Montes, A. Sanchez, B. Memishi, M. S. Perez, and G. An-
toniu, “Gmone: A complete approach to cloud monitoring,”
Future Generation Computer Systems, 2013.

[23] MySQL, http://www.mysql.com/.
[24] Nagios, http://www.nagios.org/.
[25] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and

C. Cirstoiu, “Monalisa : A distributed monitoring service archi-
tecture,” in Proceedings of CHEP03, LaJolla, USA, Jun. 2003.

[26] Okeanos Public Cloud, https://okeanos.grnet.gr/.
[27] A. Papadopoulos, G. Pallis, and M. D. Dikaiakos, “Identifying

clusters with attribute homogeneity and similar connectivity in
information networks,” IEEE/WIC/ACM International Con-
ference on Web Intelligence, 2013.

[28] RackSpace CloudKick, http://www.rackspace.com/cloudkick/.
[29] Schubert and K. Jeffery, “Advances in clouds,” Report of the

Cloud Computing Expert Working Group, 2012.
[30] L. Schubert and K. Jeffery, “The future of cloud computing,”

Report of the Cloud Computing Expert Working Group, 2010.
[31] sFlow, http://www.sflow.org/.
[32] D. Tovarnak and T. Pitner, “Towards multi-tenant and inter-

operable monitoring of virtual machines in cloud,” in Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC),
2012 14th International Symposium on, 2012, pp. 436–442.

[33] D. Tsoumakos, I. Konstantinou, C. Boumpouka, S. Sioutas,
and N. Koziris, “Automated, elastic resource provisioning for
nosql clusters using tiramola,” IEEE International Symposium
on Cluster Computing and the Grid, vol. 0, pp. 34–41, 2013.

[34] C. Wang, I. A. Rayan, G. Eisenhauer, K. Schwan, V. Talwar,
M. Wolf, and C. Huneycutt, “Vscope: middleware for trou-
bleshooting time-sensitive data center applications,” in Pro-
ceedings of the 13th International Middleware Conference. NY,
USA: Springer-Verlag New York, Inc., 2012, pp. 121–141.

[35] Zabbix, http://www.zabbix.com/.
[36] ZMQ, http://zmq.org/.

