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22.1 Introduction 

As Content Delivery Networks (CDNs) task is the improvement of Internet service 

quality via replication of the content from the origin to surrogate servers scattered over 

the Internet, the area of CDNs faces three major issues concerning the maximization of 

their overall efficiency [31], [35]: (i) the best efficient placement of surrogate servers 

with maximum performance and minimum infrastructure cost, (ii) the best content 

diffusion placement, either in a global or in a local scale, i.e., which content will be 

copied in the surrogate servers and to which extend, since this requires memory, time and 

computational cost, and (iii) the temporal diffusion, related with the most efficient timing 

of the content placement. 

 The increasing popularity of Online Social Networks (OSNs)   [3], [9], [15] and 

the growing popularity of streaming media have been noted as being the primary causes 

behind the recent increases in HTTP traffic observed in measurement studies [10]. The 

amount of Internet traffic generated every day by online multimedia streaming providers 

such as YouTube has reached huge numbers. Although it is difficult to estimate the 
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proportion of traffic generated by OSNs, it is observed that there are more than 400 

tweets per minute with a YouTube link [6]. These providers often rely on CDNs to 

distribute their content from storage servers to multiple locations over the planet. 

Towards this direction we can exploit information diffusion analysing the user activity 

extracted from OSNs. Thus, the improvement of user experience through scaling 

bandwidth-demanding content largely depends on the exploitation of usage patterns 

found in OSNs, and can be conducted either through the selective prefetching of content, 

also taking into account timing issues, or through the strategic placement of surrogate 

servers. Furthermore, the cost of scaling such content in CDNs can be expressed in 

different ways. For example, it might be the number of replicas needed for a specific 

source or it may take into account the optimal use of memory and processing time of a 

social-aware built system. Thus, it is crucial to support social network analysis tasks that 

accommodate large volumes of data requirements for the improvement of user experience 

(e.g., through prefetching via a CDN infrastructure). 

The goal of this chapter is to present existing approaches that can be leveraged for 

the scaling of rich media content in CDNs using information from OSNs. Specifically, 

we present a taxonomy of the relative research (outlined in Figure 22.3 in the next 

section), taking into account phenomena related with rich media content and its outspread 

via OSNs, and measurement studies on OSNs that could provide valuable insight into 

CDN infrastructure decisions for the replication of the content, as well as systems built 

with the leverage of OSNs’ data. 

The remainder of this chapter is organized as follows: In Section 22.2 the main 

concepts of OSNs and social cascades are presented.  In Section 22.3 the properties and 
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approaches that characterize the social cascades and affect the CDN performance are 

described. The performance measurements of associating rich media content diffusion 

with social networks is given in Section 22.4. Section 22.5 gives the outline of existing 

works that exploit information extracted from OSNs for the improvement of content 

delivery. In Section 22.6 some future directions are given, and key areas of interest 

concerning the diffusion of rich media content over OSNs are explored with some 

commercial/practical implications for CDNs. Section 22.7 concludes our study. 

 

22.2 Online Social Networks Background  

Formally, an OSN is depicted by a directed graph G = (V,E), where V is the set of 

the vertices of the graph representing the nodes of the network and E are the edges 

between them, denoting the various relationships among the nodes of the graph [15]. The 

semantics of these edges are different for different social networks: for Facebook, 

friendship is usually translated in personal acquaintance, whereas in LinkedIn means 

business contact. As far as the directionality of the edges of the social graph is concerned, 

it depends on the OSN the graph depicts. For Facebook, an edge means mutual friendship 

between the endpoints of a link. For Twitter, if the edge between B and A points at A, B 

is a follower of A, meanings that A’s posts (tweets) appear in B's main Twitter page. The 

neighbours of a node are defined as the nodes that are in a 1-hop away distance from it in 

the social graph. Figure 22.1 depicts an example of a Twitter social graph. Unlike other 

OSNs, a Twitter user may follow another user to receive his/her tweets, forming a social 

network of interest. Furthermore, it is not necessarily the case that two users are mutual 

followers. Thus, Twitter is represented by a directed graph, where nodes represent the 
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users and a direct link is placed from a user to another user, if the first follows the tweets 

of the latter. Users A and G are mutual followers, while users A and B are not (A follows 

B but not vice-versa).  

 

Figure 22.1 An Example of a Twitter social graph 

A fusion of bandwidth and storage demanding media, which may include text, 

graphics, audio, video, and animation is characterized as Rich Media. Rich media is 

currently ubiquitous due to the proliferation of smartphones, video editing software and 

cheap broadband connections. The diffusion of information in a network is essentially 

interweaved with whether a piece of information will become eventually popular or its 

spread will die out quickly. A large proportion of rich media is distributed via OSNs’ 

links (for example YouTube videos links through retweets in Twitter), that contribute 

significantly to Internet traffic. Facebook and Twitter users increasingly repost links they 

have received from others. Thus, they contribute to social cascades phenomena [2], a 
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specific case of information diffusion that occurs in a social network, when a piece of 

information is extensively retransmitted after its initial publication from an originator 

user. Therefore, it would be beneficial to know when such cascades will happen in order 

to proactively replicate popular items (prefetching) via CDN infrastructures. Content 

diffusion placement and temporal diffusion could significantly benefit from such 

“prefetching” policies. 

Social cascades can be represented as rooted directed trees where the initiator of 

the cascade is the root of the tree [2]. The length of the cascade is the height of the 

resulting tree. Each vertex in the cascade tree can have the information of the user, and 

the identity of the item replicated in the cascade. Figure 22.2 depicts an example of a 

cascade, initiated by user A over the Social Graph of Figure 22.1. Then, the length of the 

cascade is the height of the resulting tree. 

 

Figure 22.2. An Example of a Social Cascade. 
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The presented taxonomy of Content Delivery over OSNs is outlined in Figure 

22.3. Our taxonomy presents the various properties and approaches in the literature for 

the characterization of cascades. The branching of topics in our presented taxonomy 

continues with OSN measurement works that focus on phenomena and measurement 

studies providing valuable insights into usage analysis and media diffusion. The last 

dimension of our taxonomy consists of content delivery systems built based on OSNs' 

data. 

 

Figure 22.3. A taxonomy of Content Delivery over OSNs. 

 

22.3 Characterization of Social Cascades 

As mentioned above, it would be beneficial to characterize the social cascades in 

order to proactively replicate popular items via CDN infrastructures. The following 

sections present the key properties of cascades (geographical, structural and temporal) 

and the existing approaches (microscopic, macroscopic) for the characterization of the 

extent a cascade will receive. 
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22.3.1 Geographical Properties  

According to a recent study [31], the geography of the requests influences the 

performance of CDNs. Therefore, it would be useful to understand whether an item 

becomes popular on a global scale or just in a local geographic area. 

 Local cascades affect only a relatively small number of individuals and typically 

terminate within one or two steps of the initiator. The size of local cascades is determined 

mostly by the size of an initiator's immediate circle of influence, not by the size of the 

network as a whole. In global cascades the opposite happens: they affect many 

individuals, propagate for many steps, and are ultimately constrained only by the size of 

the population through which they pass. 

A cascade is local if it spreads in a fraction φ of the network lower than a 

threshold ω or else we say that the cascade is global. Let the classification function f1 for 

a cascade Cz, z   N be as follows: 

f1 (G, Cz) ={ }0 if φ<ω local cascade,1 if φ≥ω global cascade   

Formally, a cascade should be characterized as global or local with the maximum 

accuracy α = 



 * 100, where σ is the number of the correctly classified cases and ν is 

the number of all sampled cases, such that the cost of replicating a simple object c is 

minimized: min 
zC

c = f2(tp, φ ,Ncl,,Cz ) for all cascades Cz   C, where φ is the fraction of 

the network that the object is bound to spread, Ncl, cl   N is the number of clients 

requesting a specific object and tp the amount of traversing path p between client and the 

server finally serving the request.   
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Other geographical properties which have been presented in the literature in order 

to characterize social cascades are the geodiversity and georange. Specifically, the 

geodiversity denotes the geometric mean of the geographic distances between all the 

pairs of users in the cascade tree, whereas, the georange denotes the geometric mean of 

the geographic distances between the users and the root user of the cascade tree [31]. 

22.3.2 Structural and Temporal Properties 

Social cascades are characterized by the structural properties of size and length. 

The size is the number of participants, including the initiator, and the length [2] denotes 

the height of the cascade tree. Social cascades are also characterized by temporal 

properties such as the time delay between two consecutive steps of the cascade [31], the 

time duration, and the rate of the cascade [8]. The latter, for the epidemiological model 

of [8] is the basic reproductive number R0= ρ0
2k / k 2

, where ρ0=βγ k , β is the 

transmission rate, γ is the infection duration, and k the node degree. With σ0 the 

probability that a person will adopt the shared piece of information (under the assumption 

that duration infection is equal to the timelife of the user, much larger than duration of the 

cascade, and, thus, the information will be definitely shared among connections) it 

applies ρ0= σ0 k , and σ0 can empirically be estimated by identifying an infected node and 

counting the fraction of its connected nodes subsequently becoming infected. Another 

temporal property related to the susceptibility of the network to new items is the time to 

the first step of the cascade from the infector's point of view and the duration of exposure 

to an item before infection from the infectee’s view [8].  
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22.3.3 Approaches 

Even though a percentage of the occurred information flow in cascades is ascribed 

to homophily, namely the tendency of individuals to associate with similar others, as 

“similarity breeds connection” [26], and research has been conducted for the 

discrimination between the two cases (homophily or influence) [23], different approaches 

are presented for the characterization of the extent a cascade will receive. Some of them 

are related to the extent that nodes are influenced by their neighbours on a microscopic 

level, such as the “vulnerability” that Watts [13] introduces, some to factors that function 

as obstacles to the spread of a cascade on a macroscopic level, such as those that 

Kleinberg and Easley [15] or Ver Steeg et al. [33] introduce, and others follow an hybrid 

approach (Dave et al. [11]). The discrimination is based on the view of the OSN as a 

whole or on its study based on user-level properties.  

Microscopic approaches 

In [13], Watts defines a global cascade as a “sufficiently large cascade”, covering 

practically more than a fixed fraction of a large network. Watts introduces a simple 

model for cascades on random graphs.  

 The network comprises of n nodes with threshold distribution f(φ), and the degree 

distribution of the graph is pk, namely each node is connected to k neighbours with 

probability pk; z is the average node degree ( k = z). 

 The initial state of each node is state 0 (inactive) and each node is characterized by a 

threshold φ. If at least a threshold fraction φ of the node’s k neighbours acquire state 1 

(active), the node will switch from inactive to active.  
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 Nodes with k  ⌊1/φ⌋ are said to be “vulnerable” and will switch state if just one of 

their neighbours becomes active. Otherwise, nodes are called “stable”.  

Watts uses percolation theory [32], the theory studying how connected clusters 

behave in a random graph, to investigate the conditions under which a small initial set of 

seed nodes can cause a finite fraction of infinite nodes to switch from inactive to active. 

Percolation in this case is interpreted as follows: a global cascade is said to occur when 

the vulnerable vertices percolate. Namely the largest connected vulnerable cluster of the 

graph must occupy a finite fraction of the infinite network. For infinite Poisson random 

graphs, Watts defines a region, inside which a finite fraction of an infinite network would 

switch from inactive to active state if at least one arbitrarily selected node switched from 

inactive to active state. Simulations on finite graphs of 10000 nodes give similar results. 

Watts makes the observation that the frequency of global cascades is related to the 

size of the vulnerable component, with the larger the component, the higher the chance 

for the cascade to be global. He also states that the average size of a global cascade is 

governed by the connectivity of the network as a whole. In sparsely connected networks, 

cascades are limited by the global connectivity of the network, and in dense networks 

cascades are limited by the stability of individual nodes. 

Macroscopic approaches 

In [15], Kleinberg and Easley claim that clusters are obstacles to cascades, and, 

moreover, that they are the only obstacles to cascades: “Considering a set of initial 

adopters of behavior A, with a threshold of q for nodes in the remaining network to adopt 

behavior A: (i) If the remaining network contains a cluster of density greater than 1-q, 

then the set of initial adopters will not cause a complete cascade. (A cluster of density p is 
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a set of nodes, so that each node in the set has at least a p fraction of its network 

neighbors in the set.) (ii) Moreover, whenever a set of initial adopters does not cause a 

complete cascade with threshold q, the remaining network must contain a cluster of 

density greater than 1-q.” 

In [33], Ver Steeg et al. find two additional factors related with the multiple 

exposure of users to stories due to the highly clustered nature of Digg, that drastically 

limit the cascade size in Digg. The reproductive number R0 of the epidemical model used, 

which intuitively expresses the average number of people infected by a single infected 

person, is the product of the average number of fans times the transmissibility. As far as 

the first factor is concerned, it is implied that only the number of new fans (those that 

have not already been exposed to a story) should be taken into account. For the second 

factor, transmissibility for actual cascades is observed to remain constant until about a 

number of people have voted, and then begin to decline (maybe due to decay of novelty 

[37] or decrease in visibility [19] as a consequence of new stories being submitted to 

Digg). From this point of view, cascades are limited. 

 

In [11], Dave et al. combine microscopic and macroscopic level approaches to 

identify how empirical factors like users’ and their neighborhood’s influencing ability or 

a specific action's influencing capability and other user and network characteristics affect 

the reach quantity, and come to the conclusion that action dominates in the prediction of 

the spread of the action. Specifically, they quantify the reach 
a
(u) of a user u as the 

number of cascades it can reach with a specific action α as:  
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 0, otherwise, 

where a user gets the complete credit for action propagation to his immediate 

neighbours, or a decaying factor for non-immediate neighbours. P

α
(u) is the propagation 

set of user u, consisting of all his immediate neighbours ui, such that there was an action 

propagation from u to ui. 

 

22.4 Online Social Network 

Measurements 

OSNs can provide information, including the location of users, the items shared 

by users and structural and temporal properties of a social cascade. Finding ways of 

harnessing the potential of information constantly generated by users of OSNs is a key 

and promising research area for the networking community [31]. In this section, we 

investigate whether information extracted from social cascades can effectively be 

exploited to improve the performance of CDNs. Recently, thanks to the availability of 

large datasets, many studies have been presented. In the following subsections, we 

present some indicative large-scale analysis and media diffusion measurements that have 

been conducted in the context of OSNs and their findings have implications in CDN’s 

performance. Section 22.4.1 focuses on OSN usage analysis, whereas Section 22.4.2 

focuses on OSN media diffusion.  



Wiley STM / Editor: Advanced Content Delivery and Streaming in the Cloud,  

Chapter 22 / Irene Kilanioti, Chryssis Georgiou, George Pallis / filename: ch22.doc 
page 13 

22.4.1 OSN Usage Analysis 

A first large-scale analysis of multiple OSNs data encompassing Flickr, YouTube, 

LiveJournal, and Orkut, social networks for sharing photos, videos, blogs and profiles, 

respectively, by Mislove et al. [27] highlighted the difficulties of crawling a social 

network, and came to the following conclusions: Although node degrees in the studied 

OSNs varied by orders of magnitude, key findings are the same. The studied OSNs are 

power-law, small-world, scale-free, the in-degree matches out-degree distribution (due to 

link symmetry, an observation at odds with the web graph, that increases OSNs' network 

connectivity and reduces their diameter), there is a densely connected core of high degree 

nodes surrounded by small clusters of low-degree nodes, the average distances are lower, 

and clustering coefficients higher than those of the web graph (studied OSNs clustered 

10.000 more times than random graphs, 5-50 times more than random power-law 

graphs).  

Wilson et al. [36] conducted the first large-scale analysis of Facebook, by 

crawling and use of 'networks' (15% of total 10M users, and 24M. interactions). In [22], 

Kumar et al. study Flickr and Yahoo!360, finding that they follow power-law degree 

distributions. Low diameter and high clustering coefficient, as well as power-laws for in- 

and out-degree distributions were confirmed for the Twitter social graph by Java et al. in 

[21].  

In terms of user workloads in OSNs, Benevenuto et al. [4] collected traces from a 

social network aggregator website in Brazil, enabling connection to multiple social 

networks with a single authentication, and, thus, studied Orkut, MySpace, Hi5 and 

Linked. Benevenuto et al. presented a clickstream model to characterise users' 
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interactions, frequency and duration of connection, as well as frequency of users' 

transition to activities, such as browsing friends' profiles, sending messages etc., with 

their analysis showing that browsing, which cannot be identified from visible traces, is 

the most dominant behavior (92%). They also, reinforced the social cascade effect, since 

more than 80% of rich-media content like videos and photos was found through a 1-hop 

friend. 

22.4.2 OSN Media Diffusion 

Zhou et al., in [41], explore the popularity of photos in Facebook, noting that the 

request pattern follows a Zipf distribution, with an exponent α = 0.44, significantly lower 

than that of traditional distributions (ranging from 0.64 to 0.83 [5]). They interprete this 

as shift of interest from popular items to items in a long tail. In the same context, Yu et al. 

[40] analyse PowerInfo, a Video On Demand system deployed by China Telecom and 

note that the top 10% of the videos account for approximately 60% of accesses, and the 

rest of the videos (the 90% in the tail) for 40%. Unaccessible via the official distribution 

channels (television networks or record companies) independent video content generated 

by the users, denoted as User Generated Content (UGC), becomes available to a wide 

number of viewers via services as YouTube or the US-based Vimeo. Cha et al. [7] 

investigate the long tail opportunities in the UGC services, such as YouTube video 

content, taking into account the fluctuation of the viewing patterns due to the volatile 

nature of the videos (videos may appear and disappear) and the various sources that direct 

to the content (recommendation services, RSS feeds, web reviews, blogosphere etc.)  
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In [39], Yang and Leskovec examine the temporal variations of Twitter hashtags 

and quotations in blogs, creating time series' of the number of mentions of an item i at 

time t, thus measuring the popularity given to the item i over time. By grouping together 

items so that item i  is in the same group have a similar shape of the time series xi with a 

clustering algorithm, they infer items with similar temporal pattern of popularity, and find 

that temporal variation of popularity of content in online social media can be accurately 

described by a small set of time series shapes, with most press agency news depicting a 

very rapid rise and a slow fading. 

In a subsequent work [10], Christodoulou et al. confirm the higher impact of the 

social cascading effect on a more focused set of geographic regions, and, furthermore, 

study the social cascading effect of YouTube videos over Twitter users in terms of its 

impact on YouTube video popularity, dependence on users with a large number of 

followers, the effect of multiple sharing follows and the distribution of cascade duration. 

They come to the conclusion that the video retweet likelihood is increased as the number 

of user's follows who have already shared the same tweet increases, with the increase 

seeming to be exponential when the same tweet is shared by more than eight follows. 

This observation is consistent with [3], where it is claimed that the vast majority of 

YouTube videos do not spread at all, since large cascades are rare, and, finally, that links 

to videos can quickly spread over social networks, leading to many views in a short 

period of time. However, it should be noticed that Christodoulou et al. do not take factors 

such as the recency of the studied videos or their popularity in general into account. 

From the above measurements it occurs that OSN content is different from more 

traditional Web content and affects significantly the navigation behavior of users. 
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Specifically, the above studies have shown that social cascading impacts the diffusion of 

information. In this context, CDNs can take advantage of the fact that social cascades 

have high impact on a more focused and less diverse set of geographic regions. Also, the 

findings regarding the temporal evolution of social cascades is a critical issue which 

affects the CDN performance. 

22.5 Systems 

In this section we present systems that could provide valuable insights concerning 

the exploitation of information extracted from OSNs for scaling of content diffused via 

OSNs. The cost for scaling of content tailored for a small number of users can be 

expressed in terms of required bandwidth for quick access to the content, or required 

storage capacity for caching of content, etc. Specifically, the long tails observed in 

Internet can impact system efficiency. For example, Facebook engineers developed an 

object storage system for Facebook’s Photos application with the aim of serving the long 

tail of requests seen by sharing photos [1]. These optimizations are important, as requests 

from the long tail accounted for a significant amount of their traffic and most of these 

requests are served from the origin photo storage server, rather than by Facebook’s CDN. 

In the direction of distributing long-tailed content while lowering bandwidth costs 

and improving QoS, although without considering storage constraints, Traverso et al., in 

[35], exploit the time-differences between sites and the access patterns users follow. 

Instead of naively pushing User Generated Content (UGC) immediately, which may not 

be consumed and contribute unnecessarily to a traffic spike in the upload link, the system 

can follow a pull-based approach, when the first friend of a user in a Point of Presence 

(PoP) asks for the content. Moreover, instead of pushing content as soon as a user 
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uploads, content can be pushed at the local time that is off-peak for the uplink, and be 

downloaded in a subsequent time bin, also off-peak for the downlink, and earlier than the 

first user in the PoP is bound to ask for it. The larger the difference between the content 

production bin and the bin in which the content is likely to be read, the better the 

performance of the system. 

In [30], Sastry et al. built a prototype system, called Buzztraq, which leverages 

the information encoded in social network structure to predict users’ navigation 

behaviour, which may be partly driven by social cascades. The key concept of Buzztraq 

is to place replicas of items already posted by a user closer to the location of friends, 

anticipating future requests. The intuition is that social cascades are spread rapidly 

through population as social epidemics. For instance, friends usually have common 

interests; consequently, if a user shares a video through his/her network, many of user’s 

friends may find it interesting and share it to their network. Experimental results showed 

that social cascade prediction can decrease the cost of user access compared to location 

based placement, improving the performance of CDNs. 

Zhou et al. [41] leverage the connection between content exchange and 

geographic locality (using a Facebook dataset, they identify significant geographic 

locality not only concerning the connections in the social graph, but also the exchange of 

content) and the observation that an important fraction of content is “created at the edge” 

(is user-generated), with a web based scheme for caching using the access patterns of 

friends. Content exchange is kept within the same Internet Service Provider (ISP) with a 

drop-in component, that can be deployed by existing web browsers and is independent of 

the type of content exchanged. Browsing users online are protected with k-anonymity, 
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where k is the number of users connected to the same proxy and are able to view the 

content. 

Instead of optimizing the performance of User Generated Content (UGC) services 

exploiting spatial and temporal locality in access patterns, Huguenin et al., in [20], show 

on a large (more than 650,000 videos) YouTube dataset that content locality (induced by 

the related videos feature) and geographic locality are in fact correlated. More 

specifically, they show how the geographic view distribution of a video can be inferred to 

a large extent from that of its related videos, proposing a UGC storage system that 

proactively places videos close to the expected requests. Such an approach could be 

extended with the leverage of information from OSNs, in the way that Figure 22.4 

depicts. 

 

 

 

 

 

 

 

 

 

 

Figure 22.4. Overview of VOD service placement strategy leveraging OSNs 
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22.6 Future Research Directions  

In order to harness the power of social networks diffusion over CDN 

infrastructures, the key areas of interest that need to be explored include the large-scale 

data sets, the OSN evolution and semantic annotation.  

22.6.1 Large-scale Data Sets 

The amount of information in OSNs is an obstacle, since elaborate manipulation 

of the data may be needed. An open problem is the efficient handling of graphs with 

billions of nodes and edges [44]. Facebook, for example, reported that it had one billion 

monthly active users as of October 2012 and 604 million monthly active users who used 

Facebook mobile products as of September 2012.  

In order to generate aggregations and analyses that have meaning, the Facebook 

custom built-in data warehouse and analytics infrastructure has to apply ad-hoc queries 

and custom MapReduce jobs [12] in a continuous basis on over half a petabyte of new 

data every 24 hours, with the largest cluster containing more than 100PB of data and the 

process needs surpassing the 60.000 queries in Hive, the data warehouse system for 

Hadoop and Hadoop compatible file systems.  

The desired scaling property refers to the fact that the throughput of the presented 

approaches should remain unchanged with the increase in the data input size, such as the 

large datasets that social graphs comprise and the social cascades phenomena that 

amplify the situation. The cost of scaling such content can be expressed in different ways. 

For instance, in the case of CDNs, it can be the number of replicas needed for a specific 
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source, or it may take into account the optimal use of memory and processing time of a 

social-aware built system, etc.   

22.6.2 OSN Evolution 

 Existing works examine valuable insights into the dynamic world by posing 

queries on an evolving sequence of social graphs (e.g., [28]) and time evolving graphs 

tend to be increasingly used as a paradigm also for the emerging area of OSNs [16]. 

However, the ability to process queries concerning the information diffusion in a scalable 

way remains to a great extent unstudied. With the exception of sporadic works on 

specialized problems, such as that of inference of dynamic networks based on 

information diffusion data [29], we are not aware of relative studies on the information 

diffusion through OSNs under the prism of graphs dynamicity.  

22.6.3 Semantic Annotation  

It would also be interesting to know which social cascades will evolve as global 

and which of them will evolve as local, possibly making some associations with their 

content or context features. It is challenging to discover contextual associations among 

the topics, which are by nature implicit in the user-generated content exchanged over 

OSNs and spread via social cascades. In other words, we would like to derive semantic 

relations. This way the identification of a popular topic can be conducted in a higher, 

more abstract level with the augmentation of a semantic annotation.  While we can 

explicitly identify the topic of a single information disseminated through an OSN, it is 

not trivial to identify reliable and effective models for the adoption of topics as time 
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evolves ([17], [25]) characterized with some useful emergent semantics. Such knowledge 

would improve caching of Web content in CDN infrastructures [31]. 

 

To sum up, OSNs create a potentially transformational change in users’ behavior. 

This change will bring a far-reaching impact on traditional industries of content, media, 

and communications. In this context, the rapid proliferation of OSNs sites is expected to 

reshape CDN’s structure and design [18]. Investigating the geographical, structural and 

temporal properties of social cascades, new CDN infrastructures will be built where 

cache replacement strategies will exploit these properties. Traditional CDN systems 

support content distribution with specific needs, such as efficient resource discovery, 

large-scale replication of popular resources that follow zipfian resource-popularity 

distributions, and simple access-rights. In contrast, the next generation of CDN systems 

are required to support a variety of social interactions conducted through an open-ended 

set of distributed applications, going beyond resource discovery and retrieval and 

involving: synchronous and asynchronous messaging; “push” and “pull” modes of 

information access; finer access control for reading and writing shared resources; 

advanced mechanisms for data placement, replication and distribution for a large variety 

of resource types and media formats. 

22.7 Conclusions 

Understanding the effects of social cascading on content over the Web is of great 

importance towards improving CDN performance. Given the large amount of available 

resources, it is often difficult for users to discover interesting content. Relying on the 

suggestions coming from friends seems to be a popular way to choose what to see. 
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Taking into account the increasing popularity of Online Social Networks and the growing 

popularity of streaming media, we have presented existing approaches that can be 

leveraged for the scaling of rich media content in CDNs using information from OSNs. 
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