
Automated Tagging for the Retrieval of Software Resources
in Grid and Cloud Infrastructures

Ioannis Katakis
University of Cyprus
katak@cs.ucy.ac.cy

George Pallis
University of Cyprus
gpallis@cs.ucy.ac.cy

Marios D. Dikaiakos
University of Cyprus

mdd@cs.ucy.ac.cy

Onisiforos Onoufriou
University of Cyprus
cs07oo2@cs.ucy.ac.cy

Abstract

A key challenge for Grid and Cloud infrastructures
is to make their services easily accessible and attrac-
tive to end-users. In this paper we introduce tagging
capabilities to the Minersoft system, a powerful tool
for software search and discovery in order to help
end-users locate application software suitable to their
needs. Minersoft is now able to predict and automat-
ically assign tags to software resources it indexes. In
order to achieve this, we model the problem of tag pre-
diction as a multi-label classification problem. Using
data extracted from production-quality Grid and Cloud
computing infrastructures, we evaluate an important
number of multi-label classifiers and discuss which one
and with what settings is the most appropriate for use
in the particular problem.

1. Introduction

A growing number of large-scale Grid and Cloud in-
frastructures are in operation around the world, provid-
ing production-quality computing and storage services
to numerous users from a wide range of scientific and
business fields. With the rapid proliferation of Cloud
and Grid application services, it is important to make
these services easily accessible and attractive to end-
users. To achieve this goal, advanced, user-friendly
tools for software search and discovery should be
established [1]. To motivate the importance of software
searching tools, let us consider a researcher searching
for graph mining software deployed on a Grid/Cloud
infrastructure. Unfortunately, the manual discovery of
such software is a daunting, nearly impossible task.
Taking the case of EGEE/EGI, one of the largest
production Grids currently in operation, the researcher
would have to gain access and search inside 300 sites,
several of which host well over 1 million software-
related files. The situation is equally challenging in

emerging Cloud infrastructures: the Amazon Elastic
Cloud provides access to a growing repository with
more than 2,000 virtual computational servers (AMIs),
with each AMI comprising over 14,000 files, includ-
ing application and utility software. Therefore, the
researcher would have to spawn some AMIs, connect
to them, and search manually for installed software.

Following this motivation and taking account that
software installed in Grid/Cloud infrastructures is un-
structured and software-related metadata or software
descriptions in natural language are typically poor
or unavailable, we developed the Minersoft software
search engine. A prototype implementation of Min-
ersoft is available at http://euclid.grid.ucy.ac.cy:1997/
MinerSoft/SimpSearch. Unlike desktop search, which
is designed to assist users in locating specific files,
Minersoft supports searching not only for source code
but also for executables and libraries stored in binary
format, and metadata situated in Cloud and Grid In-
frastructures. Minersoft visits multiple computational
resources, crawls the file systems of Grid and Cloud
computing sites, identifies software files of interest
(binaries, libraries, documentations etc), assigns type
information to these files, and discovers implicit asso-
ciations between them. Subsequently, it extracts words
from the context that surrounds software files, in order
to annotate the files with descriptions amenable to full-
text search. This work continues and improves upon
the authors’ preliminary efforts in [2], [1].

Tagging thrives in Web sites with user-submitted
content where tags are voluntarily assigned for infor-
mation retrieval purposes. In most cases, users can do
tag-based searches or browse objects of a particular
tag. Tags are currently assigned to many different
types of information sources such as, images (Flickr),
videos (YouTube) and music (Last.fm). Recently, tag-
ging has made an appearance in software repositories
like Google Code.

We exploit tagging and automated tagging in or-

der to improve software retrieval in Cloud and Grid
infrastructures. User-entered tags can add valuable
searchable meta-data to software files. For example,
a user can assign tags that represent general concepts
like “physics” and “data mining” that might not be
able to be extracted by Minersoft if those terms are
not appearing in the files (or in associated files). By
extending Minersoft in this direction, we allow the user
to assign tags to resources and, most importantly, the
user is now able to submit tag-based queries.

However, there are two important issues concerning
tagging: a) users are not always willing to submit
tags and the number of tags that they enter is usually
small; and b) users may select different words for
expressing the same concept or the same word for
different concepts. This creates a noisy tag space and
makes it harder to find software tagged by other users.

A key question is “how can we improve the tagging
process in Minersoft in order to avoid the afore-
mentioned obstacles?” To address it, we introduced
a machine learning approach that is able to “learn”
from user-tag examples and automatically assign tags
to new software resources. For instance, consider a
user who wants to search for “sympy” - a multimedia
library for Python. Minesoft returns a description of
this file with a listing of computational resources where
this software has been located. Using the proposed
auto-tagging approach, numerous tags will be auto-
matically assigned to this software (e.g., python, sym-
bolic, calculation, algebra, differentiation). The value
of tagging process is that searching software resources
in Clouds/Grids is significantly improving since some
of these tags are not included in the description of
this file. The main contributions of this work can be
summarized as follows:

• We extend Minersoft by enabling users to a)
enter their own tags into software files installed
in CloudGrid infrastructures and b) execute tag-
based queries - in addition to keyword-based
queries.

• We introduce a machine learning approach for
automatically assigning tags to software resources
that have no user-entered tags. Specifically, we
model the problem of tag recommendation as
a multi-label classification task. The advantages
of this approach can be summarized as follows:
a) it is content-based and therefore there is no
cold-start problem that limits the user-based and
item-based approaches (tag recommendations can
be produced even for new files), and, b) the
method is generic and any multi-label classifiers
can be used, based on application requirements
and available resources.

• We conduct an experimental evaluation of Min-
ersoft’s automated tagging on real, large-scale
Grid/Cloud testbeds, exploring performance is-
sues of the proposed approach. We evaluate five
multi-label classifiers on datasets of software files
installed in Grid/Cloud infrastructures with vary-
ing parameter settings. Through the evaluation,
we provide guidelines for selection of the most
appropriate classifier.

The structure of the paper is as follows. Section 2
presents an overview of related work. In Section 3,
we formulate the problem of automated tagging as a
multi-label classification task. Sections 4 and 5 de-
scribe the experimental setup and the evaluation results
respectively. Section 6 presents the implemented auto-
mated tagging features in Minersoft whereas Section
7 presents comments on the utility of tagging.

2. Related Work

This section provides an overview of the related
work in the area of software retrieval in Grid and Cloud
infrastructures. We also present cases where tagging
is used in software resources and some representative
approaches in automated tagging.

2.1. Software Retrieval in Grids and Clouds

A number of research efforts [3], [4] have inves-
tigated the problem of software-component retrieval
in the context of language-specific software reposito-
ries and CASE tools. Nowadays, software retrieval in
Clouds has become an important element in software
development, where software components and libraries
are used extensively in order to harness the capabilities
of these infrastructures. To the best of our knowledge,
Minersoft [1], [2] provides the first full-text search
facility for the retrieval of software installed in large-
scale Grid and Cloud infrastructures. Minersoft differs
from prior works on software retrieval [5], [3], [6] that
use the keyword paradigm in a number of key aspects.
Specifically, Minersoft supports searching for software
installed in file systems of distributed infrastructures
(Grids, Clouds, clusters), as well as in software reposi-
tories. Minersoft supports searching not only for source
code but also for executables and libraries stored in
binary format, and metadata (software versions, times-
tamps, permissions). In addition, Minersoft addresses
a number of additional implementation challenges that
are particular to Grid and Cloud infrastructures. Specif-
ically, harvesting is distributed to the computational
resources available in the infrastructure, achieving load
balancing and reducing data communication overhead

between the search engine and Grid or Cloud sites.
Finally, Minersoft’s architecture and implementation
adopts a non-intrusive approach, which facilitates the
deployment of the system on different Grids and
Clouds.

2.2. Tagging Software and Automated Tagging

An analysis of the tagging behavior of developers
and the tagging features of development environments
are presented in [7]. The focus of these research studies
is on how tagging can aid collaborative development
tools. TagSEA [8] is a tool that supports developers
in annotating source code and can be beneficial in
software development and maintenance. IBM Jazz1 al-
lows developers to enter keywords in order to annotate
source code. Contrary to our solution, these approaches
focus on tagging code segments and do not provide any
automated tagging capability.

Many research efforts have been made towards the
direction of automatically recommending tags. In [9]
tag recommendations are provided for the Flickr image
sharing social network based on the co-occurrence
of the tags. A similar approach is proposed in [10]
where tags are assigned to web-services in order
to improve web service discovery. However in the
last two approaches in order to recommend tags the
user has to enter some tags first. In [11], a content-
similarity based method for tag-recommendation for
the del.icio.us web site (a bookmark sharing social
network) has been proposed. This approach, being
content-based is not limited by the cold-start problem,
however, it can not be generalized using other machine
learning techniques.

3. Machine Learning Automated Tagging

In order to develop the automated tagging features of
Minersoft, we followed a machine learning approach.
More specifically we modeled the problem as a multi-
label classification task. The general architecture of
the tagging-enhanced Minersoft can be seen in Figure
1 (dotted lines represent the new automated tagging
components and procedures added to MinerSoft).

3.1. Multi-Label Classification Background

Supervised learning is the machine learning task of
inferring a function from a set of examples (training
data). Each example is a tuple consisting of an input
object −→x , and an output value which is called label

1. http://jazz.net

or class. Each object −→x is characterized by a set of
n attributes −→x =(x1, x2, . . . , xn). A supervised learn-
ing algorithm analyzes the training data and infers a
function called classifier. The classifier can predict the
correct output value for any input object.

A large body of research in supervised learning deals
with the analysis of single-label data, where training
examples are associated with a single label from a
set of labels L. However, training examples in several
application domains (like tagging) are often associated
with a set of labels Y ⊆ L. Such data are called multi-
label. Textual data, such as documents and web pages,
are frequently annotated with more than a single label.

Recently, the issue of learning from multi-label
data has attracted attention from a lot of researchers,
motivated from an increasing number of new applica-
tions, such as semantic annotation of images and video
[12]. Multi-label learning methods can be grouped into
three categories [12]: i) problem transformation, ii)
algorithm adaptation, iii) ensemble methods. Methods
of the first group transform the learning task into one
or more single-label classification tasks, for which a
large bibliography of learning algorithms exists. The
second group of methods extends learning algorithms
in order to handle multi-label data directly. Finally, in
the third group, approaches are combined in order to
achieve higher predictive accuracy.

3.2. Problem Modeling

In order to model the problem of automated tag
annotation of software resources we need to transform
these resources into attribute vectors (see Section 3.1).
To achieve this, Minersoft invokes file-system utilities
and object-code analyzers, implements heuristics for
file-type identification and filename normalization, and
performs document analysis algorithms on software
documentation files and source-code comments. The
results of Minersoft harvesting are encoded in the Soft-
ware Graph (a weighted, typed graph that represents
software files and their associations in a single data
structure), which is used to represent the context of
discovered software files. We process the Software
Graph to annotate software files with metadata and
keywords, and use these to build an inverted index
of software. Indexes from different computational re-
source providers in Grids and Clouds are retrieved and
merged into a central inverted index, which is used
to support full-text software retrieval. The inverted
index consists of the software resources, where each
software resource si is represented as an attribute
vector −→si = {w(i,1), . . . , w(i,|V |)}, where w(i,j) is the
weight of the word j for the file i, and |V | is the

Cloud / Grid Infrastructures
1. MinerSoft crawls multiple Cloud / Grid Infrastructures and extracts information about the file resources

MinerSoft Engine: Inverted Index & Software Graph
Keyword based

queryand / or tag based qu
ery Result Set

Machine Learning Algorithm Prediction ModelTraining

User entered tags
Examples Suggested TagsNew (untagged

) filesFile Information, meta-data extractionCrawling Tags
2. The Machine Learning Module learns how to assign tags to new files from examples. Examples occur from user entered tags

3. User can execute keyword and tag-based queries. In the result set, the user can add tags to files
QueriesResult Set

Figure 1. MinerSoft and Tagging

size of the vocabulary (the set of all distinct words).
The value of w(i,j) is based on the well-known tf-idf
measure. Figure 2 depicts the procedure of converting
the software files existing in Clouds/Grids into training
examples suitable for the machine learning algorithm.

Labels for the classification problem are the tags that
the users of Minersoft assign to each software file.
In order to create training data, we have extracted
the keywords and tags that have been used by the
EGI administrators in order to describe the installed
applications on ATLAS Virtual Organization (VO) of
EGI infrastructure (http://appdb.egi.eu/).

4. Experimental Evaluation

The purpose of the evaluation is to a) estimate the
predictive performance that can be achieved in the
automated tagging process using multi-label classifi-
cation methods, and b) evaluate an important number
of multi-label classifiers in order to find out the most
appropriate for this specific problem. For the above
reasons, we have performed evaluation of five well
known classifiers and study them in terms of quality
of prediction and time performance.

Quality of prediction is estimated using the micro-F
measure. The F-measure is a widely used metric for
information retrieval and classification tasks since it
captures precision and recall and it is not sensitive to
label imbalance. Given the number of true positives
(tp), true negatives (tn), false positives (fp) and false
negatives (fn), F is defined as follows:

F =
2 ∗ tp

2 ∗ tp+ fp+ fn
(1)

With micro-averaging, binary (two-label) evaluation
measures can be calculated across several labels. Con-
sider a binary evaluation measure B(tp, tn, fp, fn).
Let tpλ, fpλ, tnλ and fnλ be the number of true
positives, false positives, true negatives and false neg-
atives after binary evaluation for a label λ. The micro-
averaged version of B, is calculated as follows:

Bmicro = B

(
M∑
λ=1

tpλ,

M∑
λ=1

fpλ,

M∑
λ=1

tnλ,

M∑
λ=1

fnλ

)
(2)

Time Performance is measured in CPU time (seconds).
It is the time necessary for a method to learn from a
set of examples and classify the unknown cases.

We consider both of the above factors equally
important for selecting the classifier for creating the
automated tagger of Minersoft.

4.1. Testbed Description

We have deployed and operated Minersoft on real
production-rate testbeds. In particular, our testbed in-
cludes software installed on a) ATLAS of EGI in-
frastructure; b) 20 Virtual Servers of the Amazon
Elastic Computing Cloud; c) 10 Virtual Servers of
the Rackspace Cloud. To evaluate the effectiveness of
automated tagging feature of Minersoft, we use the
files installed on ATLAS. Note that EGI administrators
have included short descriptions for the software that
has been installed on ATLAS. We consider the words
in these descriptions as tags in order to create the
examples for the machine learning algorithms. After
the evaluation we apply the classifiers learned from

Cloud/Grid Infrastructures Software Graph
Inverted IndexMetadata & Zones Information Collect all words (vocabulary)Filter words based on FrequencyFor each file assign weights to words based on TF-IDF

UserTagsAttribute (word) weightsFiles Examples
Figure 2. Attribute Extraction and Examples Construction

Dataset Attr Tags AvgT TCO
D1 500 250 16.6 5760
D2 1000 250 16.5 5803
D3 1500 250 17.0 5718
D4 2000 100 10.9 4964
D5 2000 150 13.4 5415
D6 2000 200 14.3 5396
D7 2000 250 16.8 5798
D8 2000 300 17.8 5811
D9 2000 350 19.2 5959
D10 2000 400 19.5 5999
D11 2500 250 16.9 5763
D12 3000 250 16.8 5859
D13 3500 250 16.8 5749

Table 1. Datasets used in the experiments (Attr:
Number of attributes, Tags: Number of tags, AvgT:

Average number of tags per instance, TCO:
number of different tag combinations observed)

ATLAS data to all software files that are indexed in
Minersoft (see Section 6).

We split randomly the initial set of examples into
training and test set (50% split). The classifier is built
on the trained set and then evaluated by comparing its
predictions with the ground truth labels of the testing
set using micro-F. We then switch train with test and
repeat the procedure. Finally we compute the average
of the two obtained values of micro-F.

In order to study the scalability of each method we
have created datasets with varying number of attributes
(i.e. words) and varying number of labels that are
selected to be included in the dataset (the selection
in both cases was based on frequency of appearance).
Both factors, number of labels and attributes, can
significantly affect the performance in quality of pre-
diction and time performance. We have created two
series of datasets (13 datasets in total), the first one
with varying number of labels (tags) (from 100 to 400
with a step of 50) and the second one with a varying
number of attributes from 500 to 3500 with step of
500). In all cases the number of examples is 10,000
files. Table 1 presents information about all datasets.

Figure 3 depicts the distribution of the number of

0200400600800100012001400

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87 93 100 107 119 133
Fil
es

Number of Tags

Figure 3. Number of labels distribution

tags (labels) per file, in one of the datasets (200 labels,
1000 attributes). We observe that in terms of label
distribution the dataset simulates quite sufficiently the
long-tail distribution that appears in many tagging
systems i.e. a great number of files are tagged with
a small number of tags whereas only a small number
of files are annotated with large number of tags.

4.2. Algorithms

In the evaluation, we included five multi-label classi-
fication methods. We have tried to include at least one
representative from each category (see section 3.1).

• BR - Binary relevance is a popular problem trans-
formation method that learns one binary classifier
for each label [12]

• LP - Label powerset considers each unique set
of labels that exists in a multi-label training
set as one of the classes of a new single-label
classification task [12]

• MLkNN - Multi-label kNN is based on the popular
k Nearest Neighbor lazy learning algorithm [13]

• BPMLL - Back Propagation Multi-Label Learning
is an adaptation of the popular back-propagation
algorithm [14]

• RAkEL - Random k-labelsets, breaks the initial
set of labels into a number of small random

subsets, called labelsets and employs LP to train
a corresponding classifier [15]

For all methods, we used the implementations of the
Mulan [16] software library.

5. Results

In this section we present and discuss the results of
the experimental evaluation.

5.1. Varying the Number of Labels

Figure 4 displays the micro-F measure against the
varying number of labels. The first observation con-
cerns the superiority of BR and Rakel over all other
methods. BR and Rakel have presented high predictive
performance in many cases [15]. However the high
value of F-measure in this particular case is due to
the fact that many popular labels are appearing in
many files. This characteristic of the data was ex-
ploited by BR and Rakel. BR presents high predic-
tive performance because it divides the classification
tasks into simpler one-against-all tasks. This feature
is a critical advantage especially in cases when the
correlation between labels is weak. Rakel on the other
hand, manages to provide accurate decisions because
of its ensemble nature. BPMLL presents particulary
low prediction accuracy. As noted in other studies
[15], BPMLL can present low performance in some
cases due to its many parameters needing optimization.
Concerning the scalability with the number of labels,
we observe that all methods present a decrease in their
prediction quality since more labels lead to a more
complex problem.

In Figure 5 we observe the CPU time needed for
training and classification for each method against the
number of labels. In this case, we observe that LP
is an undemanding method in terms of computational
resources. This observation can be easily explained
as LP only maintains a single label classifier. On the
other hand, Rakel’s nature as an ensemble of multi-
label classifiers comes with a high computational cost.
BPMLL is also a time consuming algorithm since it is
based on a more complex Neural Network classifier.
Concerning the variation of performance with the
number of labels, we observe that MLkNN and LP
provide better scalability and seem not to be affected
by the increase in labels. This again can be explained
by considering the good scalability of the single-label
classifiers that MLkNN and LP are based (kNN and
J48 respectively). The worst scalability in this case
is presented by neural network based BPMLL. The
dataset with 200 labels leads to an increase in CPU

00,10,20,30,40,50,60,70,80,91

100 150 200 250 300 350 400
LPBRRakelMLkNNBPMLL

Figure 4. F-measure vs Number of Labels

0200040006000800010000

100 150 200 250 300 350 400
LPBRRakelMLkNNBPMLL

Figure 5. CPU Time vs Number of Labels

time in Rakel and BPMLL. This could be explained by
the different label combinations in this case that lead
to a more complex problem. This fact affects BPMLL
and Rakel since they are sensitive to number of labels.

5.2. Varying the Number of Attributes

In this section we study the scalability of the meth-
ods in terms of the number of words that are used as
input attributes. Figure 6 displays the F-measure of all
methods against the varying number of attributes. The
advantage of BR and Rakel in quality of prediction
is verified from this figure as well. From this graph
we observe, after an initial increase, no important
variations for BR and Rakel. However, MLkNN and
LP seem to have small decrease in predictive perfor-
mance. A small increase is expected when the learning
method is able to absorb the information in the extra
attributes (like BR and Rakel). However extra attributes
could lead to decrease in accuracy due to the higher
complexity of the problem and noise that the method
is not able to isolate (like MLkNN and LP).

By studying Figure 7 we could conclude that all
methods present an increase in time as the number of
attributes increases. This can be explained by the com-
plexity of a problem with a high number of attributes.

0,10,20,30,40,50,60,70,80,91

500 1000 1500 2000 2500 3000 3500
LPBRRakelMLkNNBPMLL

Figure 6. F-measure vs Number of Attributes

02000400060008000100001200014000

500 1000 1500 2000 2500 3000 3500
LPBRRakelMLkNNBPMLL

Figure 7. CPU Time vs Number of Attributes

6. Automated Tagging in Practice

Summarizing the important points of the evaluation,
we should note that the most accurate methods are BR
and Rakel with BR being the most efficient. In addi-
tion, BR has also good scalability in terms of attributes
and labels. Based on these results, we select BR to be
integrated in Minersoft in order to provide automated
tagging functionality. Our goal is to enrich the tags that
are assigned into software files and therefore enhance
the retrieval performance of Minersoft.

In this context, we have used the BR algorithm
trained on the software installed on Atlas VO (50,000
files) using 200 tags as described in Section 4.1. The
classifier is then applied in all indexed files of Miner-
soft (1,062,154 files). Figure 8 presents the advanced
search page of MinerSoft that provides the user with
the ability to perform a tag based search as well as
other options. Preliminary results have shown that there
are some very frequent tags and the rest of the tags
are assigned to a small number of files. However, as
users assign more tags, the classifier will be regularly
retrained and improve its predictive performance.

Figure 8. MinerSoft’s advanced search page

7. The Utility of Tagging

In order to demonstrate the utility of tagging for
the retrieval of software in Cloud infrastructures we
have extracted projects from Google Code2. In Google
Code, developers add tags to their projects. In Table
2 we present statistics regarding tagging behavior in
projects that we retrieved from Google Code. We
have installed these projects in a VM of our Cloud
infrastructure3. Nephelae is a cloud computing cluster
running Ubuntu Enterprise Cloud (UEC) - Ubuntu
Server 11.04 LTS and open source Eucalyptus v2.0.

After applying MinerSoft’s crawling and indexing
procedures in the Google code data set, we observe that
in the majority of the occasions, words that appear as
tags do not appear in the files of the projects. There-
fore, the keyword search in these cases would have
failed since tags express more abstract and representa-
tive concepts of the project that they are assigned to.
For example, psvm is a project installed in Nephelae
Cloud (an implementation of parallel Support Vector
Machine classification algorithm). In this case, we
observe that important tags like “Machine-Learning”,
”Support-vector-machine”, “Classifier” do not appear
as words in the software files contained in the project
and indexed by MinerSoft. Thus, without the tagging
process, a search using these tags would fail.

Finally, the frequent usage of tags demonstrates
the belief of developers that by tagging their projects
they will make them easier to be retrieved. Figure
9 depicts tag frequency of each tag (for the sake of
presentation we have not included tags that appear only
once). We observe that the there is a small number of
tags with high frequency while the majority present
a small number of appearances following a long-tail
distribution.

2. http://code.google.com/hosting/
3. http://grid.ucy.ac.cy/Nephelae/

Number of Projects 1208
Number of Tagged Projects 1160

Number of Unique Tags 3735
Average Tags per Project 6.03
Average Projects per Tag 1.95

Table 2. Tagging in projects from Google code

02040
6080100120140160180200

0 100 200 300 400 500 600 700 800 900
Number of Pr
ojects

Tag ID
Figure 9. Tag Frequencies in Google Code Data

8. Conclusions

In this paper, we introduced tagging and automated-
tagging capabilities into Minersoft, a software search
engine for Cloud and Grid infrastructures. In order to
provide automated tag assignments we formulated the
problem as a machine learning multi-label classifica-
tion task. Automated-tagging will improve the retrieval
of software resources in Grid/Cloud infrastructures
enabling users to easily located applications suitable
to their needs.

Acknowledgments

This work was supported by the authors’ Startup
Grant, funded by the University of Cyprus.

References

[1] G. Pallis, A. Katsifodimos, and M. D. Dikaiakos,
“Searching for software on the egee infrastructure,” J.
Grid Comput., vol. 8, no. 2, pp. 281–304, 2010.

[2] A. Katsifodimos, G. Pallis, and M. D. Dikaiakos,
“Harvesting large-scale grids for software resources,”
in CCGRID, F. Cappello, C.-L. Wang, and R. Buyya,
Eds. IEEE Computer Society, 2009, pp. 252–259.

[3] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshy-
vanyk, and C. Cumby, “A search engine for finding
highly relevant applications,” in Proceedings of the
32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ser. ICSE ’10. New York,
NY, USA: ACM, 2010, pp. 475–484.

[4] E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes,
and P. Baldi, “Sourcerer: mining and searching internet-
scale software repositories,” Data Min. Knowl. Discov.,
vol. 18, no. 2, pp. 300–336, 2009.

[5] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo, “Recovering traceability links between code
and documentation,” IEEE Trans. Softw. Eng., vol. 28,
no. 10, pp. 970–983, 2002.

[6] T. Vanderlei and et. al., “A cooperative classification
mechanism for search and retrieval software compo-
nents,” in SAC ’07. New York, NY, USA: ACM, 2007,
pp. 866–871.

[7] C. Treude and M.-A. Storey, “The implications of how
we tag software artifacts: exploring different schemata
and metadata for tags,” in Proceedings of the 1st
Workshop on Web 2.0 for Software Engineering, ser.
Web2SE ’10. New York: ACM, 2010, pp. 12–13.

[8] M.-A. Storey, J. Ryall, J. Singer, D. Myers, L.-T.
Cheng, and M. Muller, “How software developers use
tagging to support reminding and refinding,” IEEE
Trans. Softw. Eng., vol. 35, pp. 470–483, July 2009.

[9] B. Sigurbjörnsson and R. van Zwol, “Flickr tag recom-
mendation based on collective knowledge,” in Proceed-
ing of the 17th international conference on World Wide
Web, ser. WWW ’08. New York, NY, USA: ACM,
2008, pp. 327–336.

[10] L. Chen, L. Hu, Z. Zheng, J. Wu, J. Yin, Y. Li, and
S. Deng, “Wtcluster: Utilizing tags for web services
clustering,” in Service-Oriented Computing, ser. Lec-
ture Notes in Computer Science. Springer, 2011, vol.
7084, pp. 204–218.

[11] A. Byde, H. Wan, and S. Cayzer, “Personalized tag
recommendations via tagging and content-based sim-
ilarity metrics,” in Proceedings of the International
Conference on Weblogs and Social Media, March 2007.

[12] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Mining
multi-label data,” in Data Mining and Knowledge Dis-
covery Handbook, 2nd ed., O. Maimon and L. Rokach,
Eds. Springer, 2009.

[13] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning
approach to multi-label learning,” Pattern Recognition,
vol. 40, no. 7, pp. 2038–2048, 2007.

[14] M. Zhang and Z. Zhou, “Multi-label neural networks
with applications to functional genomics and text cate-
gorization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 10, pp. 1338–1351, 2006.

[15] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random
k-labelsets for multilabel classification,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 23,
pp. 1079–1089, 2011.

[16] G. Tsoumakas, E. Spyromitros-Xioufis, J. Vilcek, and
I. Vlahavas, “Mulan: A java library for multi-label
learning,” Journal of Machine Learning Research,
2011.

