
Extrinsic and Intrinsic Text Cloning

Marios Kleanthous, Yiannakis Sazeides, and Marios D. Dikaiakos

Department of Computer Science, University of Cyprus
75 Kallipoleos Street, P.O. Box 20537, CY-1678 Nicosia, Cyprus

{mklean,yanos,mdd}@cs.ucy.ac.cy

Abstract. Text Cloning occurs when a processor is storing in its shared
caches the same text multiple times. There are several causes of Text
Cloning and we classify them either as Extrinsic or Intrinsic.

Extrinsic Text Cloning can happen due to user and software prac-
tices, or middleware policies, which result into making multiple copies
of a binary and concurrently executing the multiple copies on the same
processor.

Intrinsic Text Cloning can happen when an instruction cache is Virtu-
ally Indexed/Virtually Tagged. A simultaneous multithreaded processor,
that employs such cache, will map different processes of the same binary
to different instruction cache space due to their distinct process identifier.

Text cloning can be wasteful to performance, especially for simulta-
neous multithreaded processors, because concurrent processes compete
for cache space to store the same instruction blocks.

Experimental results on simultaneous multithreaded processors indi-
cate that the performance overhead of this type of undesirable cloning is
significant.

Keywords: cache, cache duplication, compression, text cloning.

1 Introduction

Power constraints and diminishing returns from increasing the issue width on
superscalar processors have lead to the emergence of general-purpose single-chip
multi-core processors. Furthermore, with continuous technology miniaturization
more and more cores are integrated on-chip. Cores are typically multithreaded
[28,27] to leverage unutilized core resources, due to a stalled or low performing
thread, to execute concurrently multiple threads in the same processor. Niagara2
[20] contains 8 cores each supporting 8 threads, Intel’s i7 [7] contains a quad core
each 2-way simultaneous multithreaded (SMT), and Power7 [23] contains 8 cores
each 4-way SMT.

The combination of multi-cores and multi-threading is effective in improving
processor utilization as long as the memory hierarchy can satisfy all running
threads instructions and data needs. Consequently, modern processors devote a
large fraction of their real estate for the cache hierarchy and numerous research
studies are conducted on how to efficiently share the cache hierarchy among
concurrent on-chip threads [4,8,21].

A.L. Varbanescu et al. (Eds.): ISCA 2010 Workshops, LNCS 6161, pp. 324–340, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Extrinsic and Intrinsic Text Cloning 325

In this work we identify Text Cloning as a potential inefficiency in the cache
hierarchy of modern multi-core processors. Text Cloning occurs when a processor
is storing at one or more levels of its cache hierarchy the same text multiple times.
Text cloning can be wasteful to performance, especially for SMT cores, because
processes compete for cache space to store the same instruction blocks at the
same time. There are several causes of text cloning and we divide them into
Extrinsic and Intrinsic.

Extrinsic Text Cloning can happen when a user, many users, or middleware,
copy a binary and concurrently execute the multiple copies on the same proces-
sor. The Operating System is unable to detect that these binaries are identical
and will map them during execution in different physical address space, there-
fore, creating unnecessary pressure at all cache levels. Such a scenario is very
common in Grid Computing job flow where the binary of each submitted job is
copied in a temporary directory, a sandbox, with all its inputs and data.

Intrinsic Text Cloning can happen when an instruction cache is Virtually In-
dexed/Virtually Tagged and the process identifier (PID) is included in the tag.
A simultaneous multithreaded processor , that uses such cache, will map the text
of concurrent processes of the same binary to different instruction cache space
due to their distinct process identifier. A Virtually Indexed/Virtually Tagged
instruction cache is found in the Intel’s hyperthreaded (SMT) Netburst microar-
chitecture [14].

This paper identifies and explains the causes of Text Cloning both, Extrinsic
and Intrinsic, and demonstrates experimentally, on real and simulated SMT
hardware, the significant performance implications of Text Cloning. The paper
discusses ways to mitigate the effects of Text Cloning and shows the potential
of a hardware-based approach to identify and eliminate it.

The rest of the paper is organized as follows: Section 2 discusses the vari-
ous causes of Extrinsic and Intrinsic Text Cloning, demonstrates the sensitivity
of real hardware performance to text cloning and discusses possible ways to
mitigate its detrimental effects. Sections 3 describes in detail the Text Cloning
in Grid Computing Systems. Section 4 presents simulation based experimental
analysis that underlines the importance of eliminating text cloning and demon-
strates that a hardware based scheme can effectively identify text cloning and
eliminate it. Section 5 presents related work on cache duplication and, finally, in
Section 6 we conclude.

2 Text Cloning: Causes, Implications, Remedies

This section introduces Extrinsic and Intrinsic Text Cloning through discussion
about when it can occur, how much it hurts performance and possible methods
to avoid it.

2.1 Extrinsic Text Cloning

Extrinsic Text Cloning (ETC) can happen due to user and software practices
that result in the execution of multiple copies of the same binary on the same

326 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

processor. The Operating System is unable to understand that these binaries
are clones and will map them in different physical address spaces. Consequently,
each process is associated to a different text segment and will eventually create
duplication in shared caches of the processor.

The ETC is common within Grid Computing Systems [11] due to Grid’s dis-
tributed file system and the middle-ware design. In particular, typical Grid job
flow requires the binary of each submitted job to be copied in a temporary
directory, a sandbox, with all its inputs and data. Although Grid computing
consists of a large number of computing nodes and provides high throughput,
its efficiency is highly dependent on the middle-ware that schedules and sub-
mits the different jobs to computing nodes. In the case that two or more jobs,
that use the same binary, are submitted to the same multicore or SMT comput-
ing node the middle-ware, or even the OS in the Grid computing node itself, is
unaware of this duplication.

Another emerging case of ETC is due to virtualized cloud computing where
multiple users can run local copies of the same applications that happen to
execute on the same physical processor [19].

Furthermore, ETC can happen when an application contains self-modifying
code routines. When a process, that shares its physical address space with other
processes, self modifies its code then the memory page that contains the modified
code has to be copied in different address. This will result to duplicated blocks
that were contained in the copied memory page but remain unaffected from the
code self-modifying routine [3].

Finally, a common habit among users is to keep their own copies of same ap-
plications in their home directories. This might lead in ETC when two users
are logged in the same machine and run the same application, using their
own copy.

2.2 Intrinsic Text Cloning

Intrinsic Text Cloning (ITC) is specific to VIVT instruction caches. A VIVT
cache uses the Virtual Address to tag match a block. In the case of a shared
VIVT cache the tag also contains the PID of the process to avoid homonym
problems. However, each instance of the application will have different PID and
this will create synonyms [24] in the instruction cache. ITC is equivalent to the
occurrence of synonyms in an instruction cache.

VIVT caches are used for L1 Instruction caches to have lower access latency
and lower energy per access by avoiding ITLB translations on every cache access.
Cloning in IL1 caches only occurs when the tag of the Virtually Tagged (VT)
caches includes also the PID. Single thread cores do not require keeping the
process ID in the tag unless they want to avoid cache flashing after each context
switch. On the other hand, for an SMT processor, the PID is essential in the tag
of a VT cache because multiple threads co-exist in the cache at the same time.

The ITC can happen either when we run multiple copies of the same binary or
multiple instances of the same binary. For the first scenario, the reasons are the
same as those discussed in Section 2.1. The second scenario, multiple instances

Extrinsic and Intrinsic Text Cloning 327

Fig. 1. Intrinsic and Extrinsic Text Cloning in Intel Pentium 4

Fig. 2. Intrinsic and Extrinsic Text Cloning in Intel i7

of the same binary, is very common when running the same application with
different inputs, or using applications that by default create a different process
for each instance due to lack of multithreading support or other programming
reasons. For example, versions of Microsoft Excel and Internet Explorer create
a distinct instance each time they are invoked.

Another possible cause of ITC is the service daemons running on servers.
Not all of these applications are multithread, and create a different process each
time a user request the service. A very common category of services that spawns
multiple processes are the kernel services.

2.3 How Important Is ETC and ITC

This Section uses two real processors with 2-way SMT cores, the Intel Pentium 4
(P4) [18] with VIVT 12KB Trace Cache and the Intel i7 [7] with a VIPT 32KB
IL1 cache to measure the performance impact of Text Cloning in IL1 cache.

328 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

We used a synthetic benchmark (see APPENDIX) that exercises the instruction
cache by executing a large basic block of calculations for different basic block
sizes. The benchmark has minimal data requirements, only few initial capacity
misses, effectively no-conditional branches and several random indirect uncon-
ditional branches to measure only the impact of the instruction references on
performance.

We measure the implications of ETC and ITC by performing two experiments
for each processor. First, two instances of the same binary are executed in par-
allel. The OS is aware that both processes refer to the same binary and it will
load the text only once in the physical address space but it will create two dif-
ferent virtual address spaces, one for each process. This causes ITC only in the
P4 with VIVT caches since the address mapping of the threads in the i7 VIPT
cache will be the same. For the second experiment, two copies of the same binary
are run again in parallel for the SMT execution. This causes the two processes to
be mapped in different physical address spaces and as a result different virtual
address spaces. This manifests into Text Cloning both for P4 and i7 caches in
all levels of the cache hierarchy.

For both experiments, the two processes are forced to run on the same logical
core using the taskset command. In this way the two processes will be executed
in parallel using one SMT core and share the same IL1 cache.

Intel Pentium 4 with a VIVT IL1. Figure 1 shows the results for the Intel
P4. The y-axis of the figure shows the SMT speedup compared to running the
two processes back to back. The x-axis shows the static instruction footprint of
each process. For the VIVT IL1 cache of P4, running either copies or multiple
instances of the same binary does not make any difference. In both cases the
two processes will be mapped in different virtual address spaces. The evidence
for ETC (two copies) and ITC (same binary) are supported by the behavior
from 1KB to 12KB instruction footprint. For this sizes the single thread will fit
perfectly on the IL1 cache while the SMT executions will suffer with cache misses
after the 6KB instruction footprint. In the figure, we can clearly see that the
speedup of SMT for both experiments is dropping once the instruction footprint
exceeds the 6KB from 80% down to 55% for 12KB.

Intel i7 with a VIPT IL1. Figure 2 shows the effects of running concurrently
the same binary and two copies of the binary on an i7. The trends for i7 are
clearly different as compared to P4. In particular, comparing the two bars in
Figure 2 we observe that when running two different copies of the same binary
the SMT speedup is reduced when we go beyond the 16KB instruction footprint
because now the combined workload of the two copies occupies 32KB in total
which barely fits the i7 32KB IL1 cache. This is clearly due to ETC. On the other
hand, the runs with the same binary experience no Text Cloning, as opposed
to P4. Specifically, with the 16KB instruction footprint the instructions of both
processes are mapped in the same physical space and hence are mapped only

Extrinsic and Intrinsic Text Cloning 329

Fig. 3. Intrinsic and Extrinsic Text Cloning in Intel i7

once in the VIPT IL1 cache of i7. Comparing Figures 1 and 2 we clearly see that
ETC can affect both cores while ITC affects only Pentium 4 that uses a VIVT
IL1 cache.

Furthermore we have evaluated the effects of ETC using a real application,
the SMTSIM simulator with the SPEC2000 benchmarks as inputs. Figure 3
shows the effects of running concurrently two clones of SMTSIM simulator with
the same input on an i7. The bottom bar shows the total execution time when
there is no cloning, while the top bar indicates the extra overhead when ETC
is introduced due to cloning. The results show that ETC can increase execution
time by up to 11% and most of the times more than 5%.

2.4 How to Eliminate ETC and ITC

ETC can be avoided if the OS is enhanced with the ability to detect copies of the
same binary and map them at the same physical address space, similar to what
linux does with Kernel Samepage Merging [2]. This however can cause security
problems since someone can exploit this to inject harmful code in applications
that are commonly used among many users.

Another possible solution is to enable the hardware to detect this duplication
with hints from the OS or in real time to completely avoid user intervention.
At this low level, the detection of cloned text can be more efficient and more
secure. Two such mechanisms that have already been proposed are [13,17] and
with certain modifications can be applied to ETC.

More specifically [13] proposed CATCH, a mechanism that dynamically de-
tects and eliminates duplicated instruction sequences, valid blocks, from the
IL1 cache. Duplicate instructions sequences can exists because of copy paste
programming, macro expansion, function inlining and other compiler and pro-
gramming optimizations. Mohamood et al. [17] proposed a mechanism to detect
DLL sharing between different threads that use the same DLLs. The mecha-
nisms described are based on both VIVT and VIPT caches that are aware of

330 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

DLL sharing using a bit in the ITLB table that is set with aid of the Operating
System. The mechanisms described can be used to prevent text cloning but we
believe that a simpler mechanism may be sufficient because the granularity of
duplication is much bigger in the Text Cloning scenario.

ITC can be avoided by using a VIPT IL1 cache. The VIPT cache requires
an access to the ITLB on very cache access to translate the Virtual to Physical
address. This costs both energy for accessing the ITLB but also performance
because even though the Indexing in a VIPT can be done with Virtual address
this is not enough to hide the ITLB access and tag matching. This extra trans-
lation might increase more than a cycle the IL1 cache access latency. Previous
SMT processors, like Intel Pentium 4, kept the L1 Instruction Cache to be VIVT
but modern processors, like Intel i7, have a Virtually Indexed/Physically Tagged
(VIPT) cache with the extra overhead of the ITLB translation on every IL1 cache
access. Therefore, the particular instruction cache configuration may depend on
power and performance trade-offs.

Another possible solution for the ITC problem is the hardware mechanisms
proposed to detect and eliminate Cache-Content-Duplication dynamically [13,17].
These mechanism may help eliminate both ETC and ITC.

3 Grid Computing Systems

In this section we will explain in detail how and where Extrinsic Text Cloning
manifests in Grid Computing Systems and specifically in EGEE project [1].

3.1 Grid Architecture

Figure 4 shows the basic components of EGEE grid system that uses the gLite
middleware to submit, schedule, execute and manage users’ jobs. The figure
shows that this grid computing systems is composed from four basic elements,
(a) the User Interface (UI), (b) the Workload Management System (WMS), (c)
the Computing Element (CE) and (d) the Worker Node (WN) [16].

The UI provides the tools for the user to submit or cancel his job and also to
retrieve the output result of the submitted job. Once a job is submitted from a
UI it arrives to a WMS. The WMS is responsible for the load balancing of the
whole grid infrastructure by keeping records of the balance in each cluster and
which clusters are available for execution. Once the WMS chooses the cluster
to submit a job it sends the job description in a WMS wrapper script to the
appropriate CE of the cluster. The CE is responsible for keeping track of the
workload in its own cluster and submits jobs to different WNs that belong to
the cluster. Finally the WN is running a job resource manager, for EGEE is
Torque/PBS, which executes the WMS job wrapper script that setup, download
and upload the job’s sandbox, execute the job, log and clean up once the job
is done.

Extrinsic and Intrinsic Text Cloning 331

Fig. 4. gLite job submission chain
(http://web.infn.it/gLiteWMS/index.php/techdoc/howtosandguides)

http://web.infn.it/gLiteWMS/index.php/techdoc/howtosandguides

332 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

3.2 Extrinsic Text Cloning in Grid

ETC is caused by the very last stage of the grid job flow, at the WN, where
the WMS job wrapper creates a different sandbox for each job. This prevents
multiple jobs that run on the same worker node, multicore or SMT, to share
their binaries but also provides secure execution of the job.

The architecture of grid is build to provide abstraction in each level but also
security for the users to run their job without interfering with each other [11].

This approach provides little or no opportunity to the middleware to opti-
mize job submission and execution to share binaries because there is a high risk
of compromising security. For example, even if the WMS component is smart
enough to group jobs together that use the same binary and submit them to the
same CE it would still need to run in different sandboxes to prevent interference
between jobs’ inputs and outputs and even malicious activity from other users
that may try to exploit this hole.

Accordingly to eliminate ETC in grid computing either the OS running on
the worker node or hardware support or a co-design of the two is essential.

For example, a service running in the OS that compares the binaries start
executing with binaries already running can be used. This can be done using
a table that keeps a content id (e.g. the CRC code) of the text of all running
binaries. When a new binary starts executing, its content id is compared with all
the running ones and if there is a match the texts are compared for validation.
If two texts are identical they can be mapped at the same physical address
space. In case of self-modifying code the OS must be aware to split merged texts
into different physical address spaces. This technique will require no hardware
modifications but requires for the OS to do all the comparisons and monitoring
for self-modifying code or another possibly malicious actions from the users.

Another approach is to have a hardware mechanism detecting text cloning.
The granularity of duplication can be chosen statically for each set of bina-
ries or it can change dynamically. For example, for two identical binaries only
a relation between the PIDs needs to be recorded. On the other hand if two
binaries are very similar but not identical, for example an open source simula-
tor that is slightly modified by each user, detection at the granularity of pages
or cache blocks is more appropriate. By reducing the detection granularity, the
duplication opportunity increases but the number of relations to be recorded in-
creases also. Smaller granularity also provides duplication detection across very
different applications and even within the same binary. Furthermore, detecting
self-modifying code and invalidating relations is easier in hardware because it
can monitor the instructions that write the text segment.

A possible efficient design can be the combination of software and hardware.
For example, a co-design where an OS software mechanism provides hints, for
the relations and the text cloning granularity, to the hardware mechanism that
will validate, create and detect the duplicate relations. The OS has a broader
view of the processes running and can detect if two texts are identical, similar or

Extrinsic and Intrinsic Text Cloning 333

Table 1. Processor Configuration

fetch/issue/commit width 4/4/4

INT Issue Queue/FP Issue Queue/ROB 64/64/256

Pipeline Stages 10

L1 instruction cache VIPT 16KB 8-way 32B/block, 1 cycle

L1 data cache VIPT 16KB 8-way 32B/block, 1 cycle

L2 unified cache VIPT 512KB 8-way 32B/block, 20 cycles

Main memory latency 200 cycles

very different. This can help the hardware mechanism to adapt the granularity
to detect text duplication. Finally, the hardware can detect self-modifying code
and invalidate any relations that become invalid.

Provided that Text Cloning is a frequent phenomenon, future work should
evaluate and engineer all these options to determine how to best to detect and
eliminate it.

4 Evaluation Using Simulation

For simulation evaluation of the effects of text cloning we consider only the
scenario where multiple copies of the same binary are executed using a VIPT
IL1 cache of an SMT core. This corresponds to a scenario with Extrinsic Text
Cloning (ETC).

4.1 Experimental Framework

In order to evaluate the performance we have used the SMTSIM simulator [26]
with a selection of 7 benchmarks of the SPEC2000 suite. The 7 benchmarks se-
lected where 3 with a large instruction workload, fmad3d, crafty and perl, 2 with
a medium instruction workload eon and vortex, and 2 with a small instruction
workload load, ammp and lucas. This benchmark selection is done to show the
potential performance of ETC for different cases of instruction cache pressure.
All benchmarks are run using reference inputs.

Table 1 shows the processor configuration used and Table 2 shows the skipped,
executed and shift regions of the benchmarks used. The shift region is the dif-
ference in dynamic instructions between the two copies of the binary that are
executed simultaneously to avoid overlapping program phases. For these shift
regions we have verified that there is no overlapping between the simulated re-
gions of the two copies. The skipped and executed regions were selected using a
Simpoint-like tool [22]. Table 2 also includes the misses per 1K instructions for
each benchmark for a 16KB L1 instruction cache that are used as criterion for
the selection of the benchmarks.

4.2 Results

Figure 5 shows the Weighted Speedup [25] normalized to the first bar, which is
the performance of 2 instances of the same binary running on an SMT processor.

334 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

Table 2. Simulated benchmarks

SPECINT Skip Execute Shift Misses Per
2000 (106) (106) (106) 1K instructions

fma3d 10250 120 500 27.191

crafty 950 240 500 24.841

perlbmk 13800 240 500 21.758

eon 26400 240 500 13.491

vortex 18550 240 500 6.222

ammp 4950 240 500 0.006

lucas 2650 240 500 0.002

Fig. 5. Weighted SpeedUp. Detecting and eliminating ETC with overlapping program
phases.

Fig. 6. Weighted SpeedUp. Detecting and eliminating ETC with 500 million instruc-
tions shift in program phase.

Extrinsic and Intrinsic Text Cloning 335

For experiments in Figure 5 all applications are running synchronized, that means
they are executing exactly the same program phase. The results show that the
performance degradation due to ETC, when running 2 copies of the same binary,
is up to 60% for crafty and more than 20% for the other benchmarks. For lucas
and ammp that have very little pressure on the instruction cache ETC does not
affect the performance.

Figure 6 shows a more common scenario where the two applications running
simultaneously are in different program phase, 500 million instructions shift, in
their execution. We have verified that none of the applications is overlapping
with its copy during the execution. The results here show that the performance
degradation is a little less, mainly because by executing a different phase we can
avoid some conflict misses. Still the bigger instruction footprint due to ETC can
cause 55% slowdown for eon and crafty and about 20% for the other benchmarks.
The ammp and lucas are again not affected by ETC due to the very small
instruction cache workload.

These results suggest that the use of a hardware mechanism, OS support or a
combination of the two will be useful to eliminate the performance degradation
due to text cloning. In this work we chose a mechanism, proposed in [13], to
show how a hardware mechanism can be used to recover performance loss due
to Text Cloning.

Figure 5 shows how CATCH can reduce the overhead of cloning. The third bar
shows the performance when two copies of the same binary are executing and
CATCH is used to detect and eliminate cloning. We can see that when using
CATCH the performance degradation is reduced to 0.07% on average. There
is even one case, for vortex, that the performance of CATCH is even better
compared to the run where we have executed the same binary twice. This is
because CATCH detects duplication not only across different binaries, but also
within the same binary and thus improving the performance of the single thread
execution.

The results in Figure 6 are similar to 5 but this time we can see that CATCH
eliminates completely the cloning overheads on average. We would like to note
again that CATCH is not for free and each duplication detection is penalized with
one extra cycle that corresponds to an extra cache access to use the duplicated
block. The CATCH mechanism is described in detail in [13].

We have used CATCH as a case study to show how a hardware mechanism
can be applied to eliminate ETC. The results indicate that an Operating System
mechanism or a hardware mechanism that is aware of text cloning can be very
useful to improve the performance of modern platforms that suffer from ETC,
such as the Grid Computing and Cloud Computing Systems .

5 Related Work

Previous work on mitigating code duplication mainly aim to compress the in-
structions by either profiling the applications or by dynamically detecting and
correlating duplicated sequences.

336 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

Lefurgy et al. [15] explored the idea of keeping compressed code in instruction
memories of embedded processors. Based on static analysis, common sequences
of instructions are assigned unique codes. These codes are stored in instruction
memory and are expanded to their original form after being read.

Code compaction work has also been dealing with the reduction of static
code of a single binary[5,9,10]. Code compaction methods are used to reduce
the executable code size without a need to decompress the compacted code to
execute it.

Harizopoulos and Ailamaki [12] proposed the synchronization of threads in
OLTP applications. By synchronizing different threads of the same application
to reuse the instructions between them, the total instruction cache footprint of
the application is reduced.

Biswas et. al. [6] investigate the phenomenon of data similarity in multi-
execution programs. They observed that when multiple instances of the same
application are running on a multicore sharing the same L2-cache, their data are
usually very similar.

All these techniques tried to dynamically detect and exploit duplication at
the granularity of cache blocks. In the case of text cloning the duplication can
be detected at the granularity of memory pages or even the whole binary, with
the help of the Operating System or simple hardware mechanisms.

6 Conclusions

This work analyzes the effects of Extrinsic and Intrinsic Text Cloning (ETC) in
caches. Extrinsic text cloning can occur when a binary is copied and executed
concurrently multiple times, for example in Grid Computing Systems. In that
case the OS is unaware of the Text Cloning and two or more copies of the same
binary will be mapped in different physical addresses. Intrinsic Text Cloning
(ITC) can occur in the case of Virtually Index/Virtually Tagged caches where
the same text segment is mapped in different virtual address spaces.

We evaluate the effects of ETC and ITC, using two SMT Intel processors, P4
and i7 with a synthetic benchmark. The results indicate that the slowdown in
execution due to Text Cloning is significant and a mechanism for detecting and
eliminating this overhead can be important.

Simulation based evaluation has shown that the performance overheads of
ETC can be completely eliminated using a hardware mechanism previously pro-
posed to detect duplication between instruction sequences.

Overall, the analysis in this paper suggests the importance of OS and architec-
tural support to eliminate Text Cloning. As a next step we plan to characterize
the Text Cloning in Grid Computing and Cloud Computing frameworks to de-
termine its frequency and performance implications in a realistic setup.

Acknowledgments. This work was supported by Intel and University of Cyprus
grants and in part by the European Commission under the Seventh Framework

Extrinsic and Intrinsic Text Cloning 337

Programme through the SEARCHiN project (Marie Curie Action, contract num-
ber FP6-042467) and the Enabling Grids for E-sciencE project (contract number
INFSO-RI-222667).

We would like to acknowledge the efforts of all Cyprus Grid members for
providing us the support and resources for this work.

References

1. Enabling Grids for E-sciencE, http://www.eu-egee.org/
2. KVM: Kernel Based Virtual Machine, http://www.linux-kvm.org/
3. ARM: Cortex-A8 Technical Reference Manual (2007)
4. Beckmann, B.M., Wood, D.A.: Managing wire delay in large chip-multiprocessor

caches. In: MICRO 37: Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 319–330. IEEE Computer Society, Washing-
ton, DC (2004)

5. Beszedes, A., Ferenc, R., Gyimuthy, T., Dolenc, A., Karsisto, K.: Survey of Code-
Size Reduction Methods. ACM Comput. Surv. 35(3) (September 2003)

6. Biswas, S., Franklin, D., Savage, A., Dixon, R., Sherwood, T., Chong, F.T.: Multi-
execution: multicore caching for data-similar executions. In: ISCA (June 2009)

7. Casazza, J.: First the tick, now the tock: Intelmicroarchitecture (nehalem). Intel
Corporation

8. Chishti, Z., Powell, M.D., Vijaykumar, T.N.: Optimizing replication, communica-
tion, and capacity allocation in cmps. SIGARCH Comput. Archit. News 33(2),
357–368 (2005)

9. Cooper, K.D., McIntosh, N.: Enhanced Code Compression for Embedded RISC
Processors. In: Proceedings of PLDI (May 1999)

10. Debray, S., Evans, W., Muth, R., Sutter, B.D.: Compiler Techniques for Code
Compaction. ACM Transactions on Programming Languages and Systems 22(2)
(March 2000)

11. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid - enabling scal-
able virtual organizations. International Journal of Supercomputer Applications
15, 2001 (2001)

12. Harizopoulos, S., Ailamaki, A.: Improving instruction cache performance in oltp.
ACM Trans. Database Syst. 31(3), 887–920 (2006)

13. Kleanthous, M., Sazeides, Y.: Catch: A mechanism for dynamically detecting cache-
content-duplication and its application to instruction caches. In: DATE (March
2008)

14. Koufaty, D., Marr, D.T.: Hyper-Threading Technology in the Netburst Microar-
chitecture. IEEE Micro 23(2), 56–65 (2003)

15. Lefurgy, C., Bird, P., Chen, I.C., Mudge, T.: Improving Code Density Using Com-
pression Techniques. In: Proceedings of the 30th Annual ACM/IEEE International
Symposium on Microarchitecture, pp. 194–203 (December 1997)

16. Marco, C., Fabio, C., Alvise, D., Antonia, C., Francesco, G., Alessandro, M.,
Moreno, M., Salvatore, M., Fabrizio, P., Luca, P., Francesco, P.: The glite work-
load management system. In: 4th International Conference on Grid and Pervasive
Computing (2009)

17. Mohamood, F., Ghosh, M., Lee, H.H.S.: DLL-conscious Instruction Fetch Op-
timization for SMT Processors. Journal of Systems Architecture 54, 1089–1100
(2008)

http://www.eu-egee.org/
http://www.linux-kvm.org/

338 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

18. Sager, D., Group, D.P., Corp, I.: The microarchitecture of the pentium 4 processor.
Intel Technology Journal (2001)

19. Services, A.W.: Amazon elastic compute cloud: User guide. Tech. Rep. API Version
2009-11-30 (2010)

20. Shah, M., Barreh, J., Brooks, J., Golla, R., Grohoski, G., Gura, N., Hetherington,
R., Jordan, P., Luttrell, M., Olson, C., Saha, B., Sheahan, D., Spracklen, L., Wynn,
A.: Ultrasparc t2: A highly-threaded, power-efficient, sparc soc. In: A-SSCC 2007
(November 2007)

21. Shayesteh, A., Reinman, G., Jouppi, N., Sair, S., Sherwood, T.: Dynamically con-
figurable shared cmp helper engines for improved performance. SIGARCH Comput.
Archit. News 33(4), 70–79 (2005)

22. Sherwood, T., Perelman, E., Hamerly, G., Calder, B.: Automatically characterizing
large scale program behavior. In: ASPLOS (October 2002)

23. Sinharoy, B.: Power7 multi-core processor design. In: MICRO 42: Proceedings of the
42nd Annual IEEE/ACM International Symposium on Microarchitecture (2009)

24. Smith, A.J.: Cache Memories. ACM Computing Surveys (CSUR) 14(3), 473–530
(1982)

25. Snavely, A., Tullsen, D.M.: Symbiotic job scheduling for a simultaneous multi-
threaded processor. ACM SIGARCH Computer Architecture News 28(5), 234–244
(2000)

26. Tullsen, D.M.: Simulation and modeling of a simultaneous multithreading proces-
sor. In: Int. CMG Conference (1996)

27. Tullsen, D., Eggers, S., Levy, H.: Simultaneous Multithreading: Maximizing On-
Chip Parallelism. In: 22nd Annual International Symposium on Computer Archi-
tecture (June 1995)

28. Yamamoto, W., Serrano, M., Talcott, A., Wood, R., Nemirosky, M.: Performance
estimation of multistreamed, superscalar processors. In: Twenty-Seventh Hawaii
Internation Conference on 1994

Extrinsic and Intrinsic Text Cloning 339

A APPENDIX: Synthetic Benchmark to Exercises
Instruction Caches

void emptyFunc (){ r e tu rn ;}
unsigned long long x = 0 ;

void oddN() {
x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
re turn ;}

void evenN(){
x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
re turn ;}

void (∗ funct ionN [3]) () = {&emptyFunc,&oddN,&evenN} ;

i n t execFlagN−1 = 1 ;
void oddN−1(){

x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
execFlagN−1 = execFlagN−1 && ! (depth == 2) ;
i n t ca l lFunc = gen rand () & (execFlagN −1);
functionN [execFlagN−1 + cal lFunc] () ;
functionN [execFlagN−1 + ((ca l lFunc ˆ1) & execFlagN − 1)] () ;
execFlagN−1 ˆ= 1 ;
r e turn ;}

void evenN−1(){
x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
execFlagN−1 = execFlagN−1 && ! (depth == 2) ;
i n t ca l lFunc = gen rand () & (execFlagN −1);
functionN [execFlagN−1 + cal lFunc] () ;
functionN [execFlagN−1 + ((ca l lFunc ˆ1) & execFlagN − 1)] () ;
execFlagN−1 ˆ= 1 ;
r e turn ;}

void (∗ functionN −1 [3]) () = {&emptyFunc ,&oddN−1,&evenN−1};
.
.
.
void (∗ funct ion2 [3]) () = {&emptyFunc,&odd2 ,&even2 } ;

i n t execFlag1 = 1 ;
void odd1 (){

x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
execFlag1 = execFlag1 && ! (depth == 1) ;
i n t ca l lFunc = gen rand () & (execFlag1) ;
funct ion2 [execFlag1 + cal lFunc] () ;
funct ion2 [execFlag1 + ((ca l lFunc ˆ1) & execFlag1)] () ;
execFlag1 ˆ= 1 ;
r e turn ;}

340 M. Kleanthous, Y. Sazeides, and M.D. Dikaiakos

void even1 (){
x = 0 ; x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;x++;
execFlag1 = execFlag1 && ! (depth == 1) ;
i n t ca l lFunc = gen rand () & (execFlag1) ;
funct ion2 [execFlag1 + cal lFunc] () ;
funct ion2 [execFlag1 + ((ca l lFunc ˆ1) & execFlag1)] () ;
execFlag1 ˆ= 1 ;
r e turn ;}

void (∗ funct ion1 [3]) () = {&emptyFunc,&odd1 ,&even1 } ;

i n t main (i n t argc , char∗ argv []) {
unsigned long long i = 0 ;
unsigned long long k = ato i (argv [1]) ;
depth = ato i (argv [2]) ;
s t r u c t t imeval t s t a r t , t f i n ;
gett imeofday (& t s t a r t ,NULL) ;
f o r (i = 0 ; i < k ; i++){

i n t ca l lFunc = gen rand () & (0x1) ;
funct ion1 [ca l lFunc +1] () ;
funct ion1 [(ca l lFunc ˆ 1)+1] () ;}

gett imeofday (& t f i n ,NULL) ;
t imeva l sub t r a c t(& t f i n ,& t s t a r t) ;
r e turn 0 ;}

	Extrinsic and Intrinsic Text Cloning
	Introduction
	Text Cloning: Causes, Implications, Remedies
	Extrinsic Text Cloning
	Intrinsic Text Cloning
	How Important Is ETC and ITC
	How to Eliminate ETC and ITC

	Grid Computing Systems
	Grid Architecture
	Extrinsic Text Cloning in Grid

	Evaluation Using Simulation
	Experimental Framework
	Results

	Related Work
	Conclusions
	References

