Noname manuscript No.
(will be inserted by the editor)

Searching for Software on the EGEE Infrastructure

George Pallis - Asterios Katsifodimos -

Received: date / Accepted: date

Abstract Grid infrastructures are in operation around
the world, federating an impressive collection of com-
putational resources and a wide variety of application
software. In this context, it is important to establish
advanced software discovery services that could help
end-users locate software components suitable to their
needs. In this paper, we present the design, architecture
and implementation of an open-source keyword-based
paradigm for the search of software resources in large-
scale Grid infrastructures, called Minersoft. A key goal
of Minersoft is to annotate automatically all the soft-
ware resources with keyword-rich metadata. Using ad-
vanced Information Retrieval (IR) techniques, we locate
software resources with respect to users queries. The re-
sults of Minersoft harvesting are encoded in a weighted,
typed graph, named the Software Graph. Experiments

This work was supported in part by the European Commission
under the 7th Framework Programme through the SEARCHIN
project (Marie Curie Action, contract number FP6-042467) and
the Enabling Grids for E-sciencE project (contract number
INFSO-RI-222667) and makes use of results produced with the
EGEE (www.eu-egee.org) Grid infrastructure. The authors would
like to thank EGEE users that provided characteristic queries for
evaluating Minersoft.

George Pallis

Department of Computer Science
University of Cyprus, Nicosia, 1678, Cyprus
tel: 0035722892700

fax: 0035722892701

E-mail: gpallis@cs.ucy.ac.cy

Asterios Katsifodimos

Department of Computer Science
University of Cyprus, Nicosia, 1678, Cyprus
E-mail: asteriosk@cs.ucy.ac.cy

Marios D. Dikaiakos

Department of Computer Science
University of Cyprus, Nicosia, 1678, Cyprus
E-mail: mdd@cs.ucy.ac.cy

Marios D. Dikaiakos

were conducted in EGEE, one of the largest Grid pro-
duction services currently in operation. Experimental
results show that Minersoft is a powerful tool achieving
high search efficiency.

Keywords Software retrieval - Knowledge Grids -
Management Resources

1 Introduction

Currently, a number of large-scale Grid infrastructures
are in operation around the world, federating an impres-
sive collection of computational resources and a wide
variety of application software [1,2]. These infrastruc-
tures provide production-quality computing and stor-
age services to thousands of users that belong to a wide
range of scientific and business communities. In the con-
text of large-scale Grids, it is important to establish
advanced software discovery services that can help end-
users locate software components that are suitable for
their computational needs. Earlier studies have shown
that the difficulty in discovering software components
was one of the key inhibitors for the adoption of compo-
nent technologies and software reuse [8]. Therefore, the
provision of a user-friendly tool to search for software is
expected to expand the base of Grid users substantially.
Adopting a keyword-based search paradigm for lo-
cating software seems like an obvious choice, given that
keyword search is currently the dominant paradigm for
information discovery [26]. To motivate the importance
of such a tool, let us consider a biologist who is search-
ing for drug discovery software deployed on a Grid in-
frastructure. Unfortunately, the manual discovery of such
software is a daunting, nearly impossible task. Taking
the case of EGEE (Enabling Grids for E-SciencE), one
of the largest production Grids currently in operation,

the software developer would have to gain access and
search inside 300 sites, several of which host well over
1 million software-related files.

Existing alternatives to manual search for software
are limited. Although Grid infrastructures comprise cen-
tralized Grid information registries that can be queried
to provide information about the configuration and sta-
tus of Grid resources, these registries typically con-
tain scarce and poorly maintained tags about installed
software [14]. The lack of well organized and properly
maintained information about software is due to the
intrinsic characteristics of software management across
large-scale, federated infrastructures: software installa-
tion and maintenance is performed by various actors
in an uncoordinated manner, and does not follow a
common standard for software packaging and descrip-
tion. Similar problems arise in the context of Clouds,
as they grow larger and more diverse. Currently, Cloud
providers like Amazon, support only the capability to
search for AMIs based on their name and not on their
contents.

It should be noted that existing Web search en-
gines cannot be used for the retrieval of software re-
siding in Grid infrastructures, whose context is funda-
mentally different from the World-Wide Web: in con-
trast to Web pages, access to installed software can-
not be gained through a common protocol (HTTP).
Also, most software files are not amenable to tradi-
tional information extraction techniques used in Infor-
mation Retrieval: their content is often binary encoded
and/or contains little textual descriptions. Last, but
not least, software is stored in file systems along with
numerous other files of different kinds. Traditional file
systems do not maintain metadata representing file se-
mantics and distinguishing between different file types.
Also, there are no hyperlinks explicitly linking software-
related files. Consequently, the software-search problem
cannot be addressed by traditional IR approaches or se-
mantic search techniques.

Envisioning the existence of a Grid software search
engine, a biologist would submit a query to the search
engine using some keywords (e.g. “docking proteins bi-
ology,” “drug discovery,” or “autodock”). In response
to this query, the engine would return a list of soft-
ware matching the query’s keywords, along with Grid
sites where this software could be found. Thus, the user
would be able to identify the sites hosting an applica-
tion suitable to her needs, and would accordingly pre-
pare and submit jobs to these sites. In another use-case,
a researcher might need the Matlab software package in
order to run experiments. The Matlab software pack-
age is large in size and the deployment of the software
on each job submission is not realistic. In addition, li-

censing issues could prohibit such an action. Thus the
researcher would have to locate sites where this software
package is already installed. Instead of contacting site
administrators of over 300 sites, the researcher would
submit a query to the search engine searching for “Mat-
lab” and the search engine would provide a list of sites
that Matlab is already deployed. The user would then
contact the site administrators of the sites returned by
Minersoft, ensuring that he/she is licensed to use the
Matlab software and he/she would prepare and submit
jobs accordingly.

To meet this vision, we need a new methodology
that will: i) discover automatically software-related re-
sources installed in file systems that host a great num-
ber of files and a large variety of file types; ii) extract
structure and meaning from those resources, captur-
ing their context, and iii) discover implicit relationships
among them. Also, we need to develop methods for ef-
fective querying and for deriving insight from query re-
sults. The provision of full-text search over large, dis-
tributed collections of unstructured data has been iden-
tified among the main open research challenges in data
management that are expected to bring a high impact
in the future [3]. Searching for software falls under this
general problem since file-systems treat software re-
sources as unstructured data and maintain very little if
any metadata about installed software.

To address the software search challenge, we devel-
oped the Minersoft Grid harvesting system. Therefore,
the main intention of Minersoft is to locate comput-
ing resources that contain software interesting for a
user. Once the user has located the software that needs,
he/she submits jobs to the resources found in order to
use that software. This is important, since not all the
software resources can be deployed by one job submis-
sion (i.e., large software packages like Matlab). Also,
there are many licensing issues that do not permit dis-
tribution of software to third party resource providers
(you have to find where the software is installed and
run your experiments there, in case you have the right
to use that software).

To the best of our knowledge, Minersoft provides
the first full-text search facility for locating software
resources installed in large-scale Grid infrastructures.
Minersoft visits Grid sites, crawls their file systems,
identifies software resources of interest (software, librari-
es, documentation), assigns type information to these
resources, and discovers implicit associations between
software and documentation files. Subsequently, it cre-
ates an inverted index of software resources that is used
to support keyword-based searches. To achieve these
tasks, Minersoft invokes file-system utilities and ob-
ject code analyzers, implements heuristics for file-type

identification and filename normalization, and performs
document analysis algorithms on software documen-
tation files and source-code comments. The results of
Minersoft harvesting are encoded in the Software Graph,
which is used to represent the context of discovered soft-
ware resources. We process the Software Graph to an-
notate software resources with metadata and keywords,
and use these to build an inverted index of software. In-
dexes from different Grid sites are retrieved and merged
into a central inverted index, which is used to support
full-text searching for software installed on the nodes of
a Grid infrastructure. The present work continues and
improves upon the authors preliminary efforts in [22,
33]. The major contributions of this article are the fol-
lowing:

— We present the design, the architecture, and imple-
mentation of the Minersoft harvester.

— We provide a study about the installed software re-
sources in EGEE [1] infrastructure.

— We introduce the Software Graph, a typed, weighted
graph that captures the types and properties of soft-
ware resources found in a file system, along with
structural and content associations between them
(e.g. directory containment, library dependencies,
documentation of software).

— We present the Software Graph construction algo-
rithm. This algorithm comprises techniques for dis-
covering structural and content associations between
software resources that are installed on the file sys-
tems of large-scale distributed computing environ-
ments.

— We conduct an experimental evaluation of Miner-
soft, on a real, large-scale Grid testbed - the EGEE
infrastructure, exploring performance issues of the
proposed scheme.

The remainder of this paper is organized as follows.
Section 2 presents an overview of related work. In Sec-
tion 3, we provide the definitions for software resources,
software package and Software Graph. Section 4 de-
scribes the proposed algorithm to create a Software
Graph annotated with keyword-based metadata. Sec-
tion 5 describes the architecture of Minersoft. In Sec-
tion 6 we present an experimental assessment of our
work. We conclude in Section 7.

2 Related Work

A number of research efforts [27,40] have investigated
the problem of software-component retrieval in the con-
text of language-specific software repositories and CASE
tools (a survey of recent work can be found in [29]).

The distinguishing traits of these approaches are i) the
searching paradigm; ii) the corpus upon which the search
is conducted; iii) the access and the retrieval process of
software resources. Table 1 presents a summary of the
most indicative tools for software retrieval.

2.1 Searching paradigm

The keyword-based search paradigm for locating soft-
ware is the dominant paradigm for software resources
discovery. In [30], Maarek et. al. presented GURU, pos-
sibly the first effort to establish a keyword-based para-
digm for the retrieval of source codes and software de-
scription documents. Other well-known keyword-based
IR systems for software resources are the Maracatu [38],
SEC [23], SPARS-J [32], Sourcerer [27], Google Code-
Search Search! and Koders?.

2.2 Corpus

Most software retrieval systems (GURU [30], Maraca-
tu [38], SEC [23]) have been developed for the retrieval
of source code residing inside software repositories or
file systems (Wumpus [39]). Also, the Web has been
used as a platform for storing and publishing software
repositories. A number of research efforts and tools have
focused on supporting topical Web searches that tar-
get software resources. Specifically, in [27], authors de-
veloped a keyword-based paradigm, called Sourcerer,
for searching source-code repositories available on the
Web. Google Code Search is for developers interested in
open-source development. The user can search for open
source-code and a list of Google services which support
public APIs. Koders is a search engine for open source
code. It enables software developers to easily search and
browse source code in thousands of projects posted at
hundreds of open source repositories. Finally, other re-
searchers use as corpus publicly available CVS reposito-
ries, in order to build their own software search engines
(e.g., SPARS-J) [32].

2.3 Software Resources Retrieval

All the existing software-dedicated IR systems retrieve
source files, while most of them retrieve also software-
description documents. Regarding the mapping between
queries and documented software resources, the cosine

1 Google Code search engine: http://google.com/codesearch
2 Koders search engine: http://www.koders.com/

similarity metric is mainly used. GURU uses probabilis-
tic modeling (quantity of information) to map docu-
ments to terms providing results that include both full
and partial matches. Similar approaches have also been
proposed in [6,28,31]. All these works exploit source-
code comments and documentation files. The method-
ology that they follow is to represent them as term-
vectors and then they use similarity metrics from Infor-
mation Retrieval (IR) to identify associations between
software resources. Results showed that such schemes
work well in practice and are able to discover links be-
tween documentation files and source codes [6,28,31].

In order to improve the representation of software
resources, the use of folksonomy concepts has been in-
vestigated in the context of the Maracatu system [38].
Folksonomy is a cooperative classification scheme where
the users assign keywords (called tags) to software re-
sources. A drawback of this approach is that it requires
user intervention to manually tag software resources.
Finally, the use of ontologies is proposed in [23]; how-
ever, this work provides little evidence on the applica-
bility and effectiveness of its solution.

The search for software can also benefit from ex-
tended file systems that capture file-related metadata
and/or semantics, such as the Semantic File System [16],
the Linking File System (LiFS) [5], or from file sys-
tems that provide extensions to support search through
facets [24], contextualization [36], desktop search (e.g.,
Confluence [17], Wumpus [39]), etc. Although Miner-
soft could easily take advantage of the above file sys-
tems offering this kind of support, in our current design
we assume that the file system provides the metadata
found in traditional Unix and Linux systems that are
common in most Grid and Cloud infrastructures.

Regarding the crawling process, in [18], authors
described an approach for harvesting software compo-
nents from the Web. The basic idea is to use the Web
as the underlying repository, and to utilize standard
search engines, such as Google, as the means of discov-
ering appropriate software assets.

2.4 Minersoft vs. existing approaches

Although we are not aware of any work that provides
keyword-based searching for software resources on large-
scale Grid infrastructures, our work overlaps with prior
work on software retrieval [6,30,31,38]. These works
mostly focus on developing schemes that facilitate the
retrieval of software source files using the keyword-based
paradigm. Minersoft differs from these works in a num-
ber of system and implementation aspects:

— System aspects:

— Minersoft supports searching for software installed
in the file systems of Grid and cluster infrastruc-
tures, as well as in software repositories;

— Minersoft supports searching not only for source
codes but also for executables and libraries stored
in binary format;

— Implementation aspects:

— Minersoft does not presume that file systems
maintain metadata (tags etc.) to support soft-
ware search; instead, the Minersoft harvester gen-
erates such metadata automatically by invoking
standard file-system utilities and tools and by
exploiting the hierarchical organization of file
systems;

— Minersoft introduces the concept of the Software
Graph, a weighted, typed graph. The Software
Graph is used to represent software resources
and associations thereof under a single data struc-
ture, amenable to further processing.

— Minersoft addresses a number of additional im-
plementation challenges that are specific to Grid
infrastructures:

e Software management is a decentralized ac-
tivity; different machines in Grids may fol-
low different policies about software instal-
lation, directory naming etc. Also, software
entities on such infrastructures often come
in a wide variety of packaging configurations
and formats. Therefore, solutions that are
language-specific or tailored to some specific
software-component architecture are not ap-
plicable in the Minersoft context.

e Harvesting the software resources found in
Grid infrastructures is a computationally de-
manding task. Therefore, this task can be
distributed to the computational resources
available in the infrastructure, achieving load
balancing and reducing data communication
overhead between the search engine and Grid
sites.

e The users of a Grid infrastructure do not
have direct access to servers. Therefore, a
harvester has to be either part of middle-
ware services (something that would require
the intervention to the middleware) or to
be submitted for execution as a normal job,
through the middleware. Minersoft is imple-
mented to operate at the application level in
the software stack of a Grid infrastructure so
as to work on top of many different Grid in-
frastructures. Although, part of Minersoft’s
search facilities could be integrated in the
information services of a Grid middleware,

such a service has been kept out of the Grid
middleware stack to preserve middleware in-
dependency.

3 Background

In this section we provide some background about EGEE
infrastructure and define software resource, software
package and Software Graph, which are the main fo-
cus of this paper.

3.1 EGEE Infrastructure

The EGEE (Enabling Grid for E-sciencE) project brings
together experts from over 50 countries with the com-
mon aim of building on recent advances in Grid tech-
nology and developing a production Grid infrastructure
which is available to scientists. The project aims to pro-
vide researchers in academia and industry with access
to major computing resources, independent of their ge-
ographic location.

The EGEE infrastructure® comprises large numbers
of heterogeneous resources (computing, storage), dis-
tributed across multiple administrative domains (sites)
and interconnected through an open network. Coor-
dinated sharing of resources that span multiple sites
is made possible in the context of Virtual Organiza-
tions [15]. A Virtual Organization (VO) provides its
members with access to a set of central middleware ser-
vices, such as resource discovery and job submission.
Through those services, the VO offers some level of re-
source virtualization, exposing only high-level function-
ality to Grid application programmers and end-users.

The conceptual architecture of EGEE consists of
four layers: fabric, core middleware, user-level middle-
ware and Grid applications. The Grid fabric layer con-
sists of the actual hardware and local Operating Sys-
tem resources. The core Grid middleware provides ser-
vices that abstract the complexity and heterogeneity
of the fabric layer (i.e., remote process management,
storage access, information registration and discovery
etc.). The user-level Grid middleware utilizes the inter-
faces provided by the low level middleware so as to pro-
vide higher abstractions and services, such as program-
ming tools, resource brokers for managing resources and
scheduling application tasks for execution on global re-
sources. Finally, the Grid applications layer utilizes the
services provided by user-level middleware so as to of-
fer engineering and scientific applications and software
toolkits to Grid users.

3 EGEE Project Web site: http://project.eu-egee.org/

3.2 Definitions

Definition 1 Software Resource. A software resource
is a file that is installed on a machine and belongs
to one of the following categories: i) ezecutables (bi-
nary or script), ii) software libraries, iii) source codes
written in some programming language, iv) configura-
tion files required for the compilation and/or installa-
tion of code (e.g. makefiles), v) unstructured or semi-
structured software-description documents, which pro-
vide human-readable information about the software,
its installation, operation, and maintenance (manuals,
readme files, etc).

The identification of a software resource and its clas-
sification into one of these categories can be done by
heuristics that have been addressed by human experts
(system administrators, software engineers, advanced
users). The heuristics used for classification are defined
manually and are based on the file’s filename, its place-
ment in the filesystem and the output of the GNU
Linux “file” command when executed against the file
(the “file” command prints a description of the file that
it runs against trying to describe it). For instance, two
examples of classification rules are: i) a file described as
an EFL/LSB executable by the “file” command is con-
sidered an “executable”, ii) if a file is under a directory
called man followed by a number between 1 and 9 (e.g.
man6, manl) and its content is described as troff by
the “file” command, then it is considered a “software-
description file”.

The heuristics used for classification are defined man-
ually and are based on i) files’ command descriptions,
ii) filenames and iii) files’ placements in the filesystem.

Definition 2 Software Package. A software package
consists of one or more content or/and structurally as-
sociated software resources that function as a single en-
tity to accomplish a task, or group of related tasks.

Human experts can recognize the associations that es-
tablish the grouping of software resources into a soft-
ware package. Normally, these associations are not rep-
resented through some common, explicit metadata for-
mat maintained in the file-system. Instead, they are ex-
pressed implicitly by location and naming conventions
or hidden inside configuration files (e.g., makefiles, soft-
ware libraries). Therefore, the automation of software-
file classification and grouping is a non-trivial task. To
represent the software resources found in a file-system
and the associations between them we introduce the
concept of the Software Graph.

Definition 3 Software Graph. Software Graph is a
weighted, metadata-rich, typed graph G(V, E). The ver-

Approach Searching Corpus Software Resources Retrieval
paradigm
binaries/ source software- Binary li-
scripts codes/ descri- braries
libraries ption
docu-
ments
GURU keyword-based Repository v v
Marakatu keyword-based Repository v
SEC keyword-based Repository v
Wumpus keyword-based File system v
search
Extreme Har- keyword-based Web v
vesting
SPARS-J keyword-based CVS reposito- v
ries
Sourcerer keyword-based Internet reposi- v
tories
Koders keyword-based Internet open- v v
source reposi-
tories
Google Code || keyword-based Web v v
Search
Minersoft keyword-based Grid, Cloud, | v v v v
Cluster, Repos-
itory

Table 1 Existing Tools for Software Retrieval

tex-set V' of the graph comprises: i) vertices represent-
ing software resources found on the file-system of a com-
puting node (file-vertices), and ii) vertices representing
directories of the file-system (directory-vertices). The
edges F of the graph represent structural and content
associations between vertices.

Structural associations correspond to relationships
between software resources and file-system directories.
These relationships are derived from file-system struc-
ture according to various conventions (e.g., about the
location and naming of documentation files) or from
configuration files that describe the structuring of soft-
ware packages (RPMs, tar files, etc). Content associa-
tions correspond to relationships between software re-
sources derived by text similarity.

The Software Graph is “typed” because its vertices
and edges are assigned to different types (classes). Each
vertex v of the Software Graph G(V, E) is annotated
with a number of associated metadata attributes, de-
scribing its content and context:

— name(v) is the normalized name* of the software

resource represented by v.

type(v) denotes the type of v; a vertex can be classi-
fied into one of a finite number of types (more details
on this are given in the next sections).

site(v) denotes the computing site where file v is
located.

Normalization techniques for filenames are presented in [35].

— path(v) is a set of terms derived from the path-name
of software resource v in the file system of site(v).

— zone;(v),l = 1,..., 2, is a set of zones assigned to
vertex v. Each zone contains terms extracted from
a software resource that is associated to v and which
contains textual content. In particular, zone; (v) sto-
res the terms extracted from v’s own contents, whereas
zones(v), ..., zone,, (v) store terms extracted from
software documentation files associated to v. The
number (z, — 1) of these files depends on the file-
system organization of site(v) and on the algorithm
that discovers such associations (see subsequent sec-
tion). Each term of a zone is assigned an associated
weight w;, 0 < w; <1 equal to the term’s TF/IDF
value in the corpus (software resources found on the
file-system of a computing node). Furthermore, each
zone;(v) is assigned a weight g; so that >, g = 1.
Zone weights are introduced to support weighted
zone scoring in the resolution of end-user queries.

Each edge e of the graph has two attributes: e =
(type, w), where type denotes the association represented
by e and w is a real-valued weight (0 < w < 1) ex-
pressing the degree of correlation between the edge’s
vertices.

The Software Packages are coherent clusters of “cor-
related” software resources in Software Graph. Next,
we focus on presenting how the Software Graph can be

Minersoft SG edge
/D Directory
B: Binary Executable
M: Manual Page
T: Text File
S: Source Code
L: Library File
/: Filesystem Tree Root

Fig. 1 An example of a filesystem tree converted to a Software
Graph

constructed (section 4), the architecture of Minersoft
(section 5) and we evaluate its contribution (section 6).

4 Software Graph Construction and Indexing
4.1 Overview

A key responsibility of the Minersoft harvester is to
construct a Software Graph (SG) for each computing
site, starting from the contents of its file system. Fig-
ure 1 depicts an example of a filesystem that contains a
set of software resources (binary executables, libraries,
text files, source codes, readme files and manual pages)
and it is converted to a Software Graph.

To this end, we propose an algorithm comprising of
the following steps:

1. FST construction.
2. Classification and pruning.
3. Structural dependency mining.
(a) Structural-context enrichment
4. Keyword scraping.
5. Keyword flow.
(a) Content enrichment
6. Content association mining.
(a) Content association
7. Inverted index construction.

The main objectives of the Minersoft algorithm are
to 1) discover software-related resources installed in file
systems; ii) extract structure and meaning from those
resources, capturing their context, iii) discover implicit

relationships among them, and iv) enrich them with
keywords. In the subsequent sections, we provide in de-
tail these steps as well as the algorithms for finding rela-
tionships between documentation and software-related
files (subsection 4.2.1), keyword extraction and keyword
flow (subsection 4.2.2), and content association mining
(subsection 4.2.3).

4.2 Minersoft Algorithm

FST construction: Initially, Minersoft scans the file
system of a site and creates a file-system tree (FST)
data structure. The internal vertices of the tree corre-
spond to directories of the file system; its leaves cor-
respond to files. Edges represent containment relation-
ships between directories and sub-directories or files.
All FST edges are assigned a weight equal to one. Dur-
ing the scan, Minersoft ignores a stop list of files and
directories that do not contain information of interest
to software search (e.g., /tmp, /proc).
Classification and pruning: Names and pathnames
play an important role in file classification and in the
discovery of associations between files. Accordingly, Min-
ersoft normalizes filenames and pathnames of FST ver-
tices, by identifying and removing suffixes and prefix-
s [35]. The normalized names are stored as metadata
annotations in the FST vertices. Subsequently, Miner-
soft applies a combination of system utilities and heuris-
tics to classify each FST file-vertex into one of the fol-
lowing categories: binary executables, source code (e.g.
Java, C++ scripts), libraries, software-description doc-
uments (e.g. man-pages, readme files, html files) and
irrelevant files. Minersoft prunes all FST leaves found
to be irrelevant to software search (vertices that do not
belong to any category), dropping also all internal FST
vertices (directories) that are left with no descendants.
This step results to a pruned version of the FST that
contains only software-related file-vertices and the cor-
responding directory-vertices.
Structural dependency mining: Subsequently, Min-
ersoft searches for “structural” relationships between
software-related files (leaves of the file-system tree).
Discovered relationships are inserted as edges that con-
nect leaves of the FST, transforming the tree into a
graph. Structural relationships can be identified by: i) Ru-
les that represent expert knowledge about file-system
organization, such as naming and location conventions.
For instance, a set of rules link files that contain man-
pages to the corresponding executables; Readme and
html files are linked to related software files. ii) Dy-
namic dependencies that exist between libraries and bi-
nary executables. Binary executables and libraries usu-
ally depend on other libraries that need to be dynam-

ically linked during runtime. iii) Package management
tools that exist in operating systems (i.e., Unix/Linux).
These dependencies are mined from the headers of li-
braries and executables.

The structural dependency mining step produces
the first version of the SG, which captures software re-
sources and their structural relationships. Subsequently,
Minersoft seeks to enrich file-vertex annotation with ad-
ditional metadata and to add more edges into the SG,
in order to better express content associations between
software resources.

Keyword scraping: In this step, Minersoft performs
deep content analysis of each file-vertex of the SG in or-
der to extract descriptive keywords. This is a resource-
demanding computation that requires the transfer of
all file contents from disk to memory to perform con-
tent parsing, stop-word elimination, stemming and key-
word extraction. Different keyword-scraping techniques
are used for different types of files: for instance, in the
case of source code, we extract keywords only from the
comments inside the source, since the actual code lines
would create unnecessary noise without producing de-
scriptive features. Binary executable files and libraries
contain strings that are used for printing out messages
to the users, debugging information, logging etc. All
this textual information can be used to extract use-
ful features for these resources. Hence, Minersoft parses
the binary files byte by byte and captures the printable
character sequences that are at least four characters
long and are followed by an unprintable character. The
extracted keywords are saved in the zones of the file-
vertices of the SG.

Keyword flow: Software files (executables, libraries,
source code) usually contain little or no free-text de-
scriptions. Therefore, keyword scraping typically dis-
covers very few keywords inside such files. To enrich the
keyword sets of software-related file-vertices, Minersoft
identifies edges that connect software-documentation
file-vertices with software file-vertices, and copies se-
lected keywords from the former into the zones of the
latter.

Content association mining: Similar to [6] and [31],
we further improve the density of SG by calculating
the cosine similarity between the SG vertices of source
files. To implement this calculation, we represent each
source-file vertex as a weighted term-vector derived from
its source-code comments. To improve the performance
of content association mining, we apply a feature ex-
traction technique [30] to estimate the quantity of infor-
mation of individual terms and to disregard keywords
of low value. Source codes that exhibit a high cosine-
similarity value are joined through an edge that denotes
the existence of a content relationship between them.

Inverted index construction: To support full-text
search for software resources, Minersoft creates an in-
verted index of software-related file-vertices of the SG.
The inverted index has a set of terms, with each term
being associated to a “posting” list of pointers to the
software files containing the term. The terms are ex-
tracted from the zones of SG vertices.

4.2.1 Structural-Context Enrichment

During the structural dependency mining phase, Min-
ersoft seeks to discover associations between documen-
tation and software leaves of the file-system tree. These
associations are represented as edges in the SG and con-
tribute to the enrichment of the context of software
resources. The discovery of such associations is rela-
tively straightforward in the case of Unix/Javadoc on-
line manuals since, by convention, the normalized name
of a file storing a manual is identical to the normalized
file name of the corresponding executable. Minersoft
can easily detect such a connection and insert an edge
joining the associated leaves of the file-system tree. The
association represented by this edge is considered strong
and the edge is assigned a weight equal to 1.

In the case of readme files, however, the association
between documentation and software is not obvious:
software engineers do not follow a common, unambigu-
ous convention when creating and placing readme files
inside the directory of some software package. There-
fore, we introduce a heuristic to identify the software-
files that are potentially described by a readme, and
to calculate their degree of association. The key idea
behind this heuristic is that a readme file describes its
siblings in the file-system tree; if a sibling is a direc-
tory, then the readme-file’s “influence” flows to the di-
rectory’s descendants so that equidistant vertices re-
ceive the same amount of “influence” and vertices that
are farther away receive a diminishing influence. If, for
example, a readme-file leaf v has a vertex-set V" of
siblings in the file-system tree, then:

— Each leaf v] € V" receives an “influence” of 1 from
vertex v'.

— Each leaf f that is a descendant of an internal node
v}, € V7, receives from v” an “influence” of 1/(d—1),
where d is the length of the FST path from v" to f.

The association between software-file and readme-
file vertices can be computed easily with a simple linear-
time breadth-first search traversal of the FST, which
maintains a stack to keep track of discovered readme
files during the FST traversal. For each discovered as-
sociation we insert a corresponding edge in the SG; the
weight of the edge is equal to the association degree.

4.2.2 Content Enrichment

During the “keyword-flow” step, Minersoft enriches soft-
ware-related vertices of the SG with keywords mined
from associated documentation-related vertices. The key-
word-flow algorithm is simple: for all software-related
vertices v, we find all adjacent edges e = (w,v) in
the SG, where w is a documentation vertex. For each
such edge ey4, we create an extra documentation zone
for v. Consequently, v ends up with an associated set of
zones zone(v) = {zoney, ..., zone? }, where zonej cor-
responds to textual content extracted from v itself and
zonef, i = 2,...,2, correspond to keywords extracted
from documentation vertices adjacent to v.

Each zone has a different degree of importance in
terms of describing the content of the software file of
v. Thus, we assign to each zone] a different weight g;,
which is computed as follows: i) For ¢ = 1, namely for
the zone that includes the textual content extracted
from v itself, we set g1 = «a,, where 0 < o < 1. ii) For
each remaining zone of v (i = 2...,2,), g; i set to «,
multiplied by the weight of the SG edge that introduced
zoney to v. The value of «, is chosen so that Zf;l gi =
1.

4.2.3 Content Association

Minersoft enriches the SG with edges that capture con-
tent association between source-code files in order to
support, later on, the automatic identification of soft-
ware packages in the SG.

To this end, we represent each source file s as a
weighted term-vector ‘_/)(s) in the Vector Space Model
(VSM). We estimate the similarity between any two
source-code files s; and s; as the cosine similarity of
their respective term-vectors: V (s;) - 7(sj) If the sim-
ilarity score is larger than a specific threshold (for our
experiments we have set the threshold > 0.05), we add
a new typed, weighted edge to the SG, connecting s; to
sj. The weight w of the new edge equals the calculated
similarity score.

The components of the term-vectors correspond to
terms of our dictionary. These terms are derived from
comments found inside source-code files and their weights
are calculated using a TF-IDF weighing scheme. To re-
duce the dimensionality of the vectors and noise, we
apply a feature selection technique in order to choose
the most important terms among the keywords assigned
to the content zones of source-code files. Feature selec-
tion is based on the quantity of information Q(t) metric
that a term ¢ has within a corpus, and is defined by the
following equation: Q(t) = —log2(P(t)), where P(t) is
the observed probability of occurrence of term ¢ inside

a corpus [30]. In our case, the corpus is the union of
all content zones of SG vertices of source files. To esti-
mate the probability P(t), we measure the percentage
of content zones of SG vertices of source files wherein ¢
appears; we do not count the frequency of appearance
of ¢ in a content zone, as this would create noise.

Subsequently, we drop terms with quantity of infor-
mation value less than a specific threshold (for our ex-
periments we remove the terms where Q(¢) < 3.5). The
reason is that low-() terms would be useful for identi-
fying different classes of vertices. In our case, however,
we already know the class where each vertex belongs
to (this corresponds to the type of the respective file).
Therefore, by dropping terms that are frequent inside
the source-code class, we maintain terms that can be
useful for discriminating between files inside a source-
code class.

5 Minersoft Architecture

Creating an information retrieval system for software
resources that can cope with the scale of emerging dis-
tributed computing infrastructures (Grids and Clouds)
presents several challenges. Fast crawling technology is
required to gather the software resources and keep them
up to date. Storage space must be used efficiently to
store indices and metadata. The indexing system must
process hundreds of gigabytes of data efficiently. In this
section, we provide a description of how the Minersoft
architecture, depicted in Figure 2.

For the efficient implementation of Minersoft in a
Grid setting, we take advantage of various paralleliza-
tion techniques in order to:

— Distribute parts of the Minersoft computation to
Grid resource providers. Thus, we take advantage
of their computation and storage power, to speedup
the file retrieval and indexing processes, to reduce
the communication exchange between the Minersoft
system and local Grid sites, and to sustain the scal-
ability of Minersoft with respect to the total number
of Grid sites. Minersoft tasks are wrapped as jobs
that are submitted for execution to the Grid work-
load management system.

— Avoid overloading Grid sites by applying load-bala-
ncing techniques when deploying Minersoft jobs to
Grid .

— Improve the performance of Minersoft jobs by em-
ploying multi-threading to overlap local computa-
tion with Input/Output (I/0).

— Adapt to the policies put in place by different Grid
resource providers regarding their limitations, such
as the number of jobs that can be accepted by their

10

queuing systems, the total time that each of these
jobs is allowed to run on a given Grid site, etc.

5.1 Overview

Minersoft adopts a MapReduce-like architecture [13];
the crawling and indexing is done by several distributed
multi-threaded crawler and indexer jobs, which run in
parallel for improved performance and efficiency. The
crawler and indexer jobs process a specific number of
files, called splits. The key components of the Minersoft
architecture are (see Figure 2):

1. The job manipulator manages crawler and indexer
jobs and their outputs.

2. The monitor module maintains the overall super-
vision of Minersoft jobs. To this end, the monitor
communicates with the job manager, the datastore,
the LCG File Catalogs and the Logging and Book-
keeping services of EGEE infrastructure.

3. The datastore module stores the resulted Software
Graphs and the full-text inverted indexes centrally.

4. The query engine module is responsible for provid-

ing quality search results in response to user searches.

The query engine module comprises the query pro-
cessor and the ranker. The former receives search
queries and executes them against the inverted in-
dexes of Minersoft. The latter ranks query results.
To this end, a ranking algorithm is used to im-
prove the accuracy and relevance of replies, espe-
cially when keyword-based searching produces very

large numbers of “relevant” software resources. Ranker

uses the Lucene relevance ranking®. In particular,
Lucene provides a scoring algorithm that includes
additional data to find best matches to user queries.
The default scoring algorithm is fairly complex and
considers such factors as the frequency of a partic-
ular query term with individual software resources
and the frequency of the term in the total popula-
tion of software resources.

5.2 Minersoft Crawler

The crawler is a multi-threaded program that performs
FST construction, classification and pruning, and struc-
tural dependency mining. To this end, the crawler scans
the file-system of a computing site and constructs the
FST, identifies software-related files and classifies them
into the categories described earlier (binaries, libraries,
documentation, etc), drops irrelevant files, and applies

5 Apache Lucene: http://lucene.apache.org/java/docs/

Minersoft

Query Executor

Query Interface
[Gumy e
Processor

et i e el
Inverted Software
Index Graphs

Job Manager (Ganga)

Job Submitter }

Data/Job Monitor
[Data Retriever } [
[
(_ Crawler)

Indexer

v y
Workload Management Logging & Bookkeeping
Services Services

Computing Elements

EGEE Infrastructure

D —
Storage LCG File
Elements Catalogs

Fig. 2 Minersoft architecture.

the structural dependency mining rules and algorithms
described earlier. The crawler terminates after finishing
with the processing of all splits assigned to it by the job
manager.

The output of the crawler is the first version of the
SG that corresponds to the site assigned to the crawler.
This output is saved as a metadata store file compris-
ing the file-id, name, type, path, size, and structural
dependencies for all identified software resources. The
metadata store files are saved at the storage services as-
sociated with the computing site visited by the crawler,
that is, at the local Storage Element of a Grid site.

5.3 Minersoft Indexer

The Minersoft indexer is a multi-threaded program that
reads the files captured in the metadata store files and
creates full-text inverted indexes. To this end, the in-
dexer performs first keyword scraping, keyword flow
and content association mining, in order to enrich the
vertices of its assigned SG with keywords mined from
associated documentation-related vertices. This results
in enriching the terms and posting lists of inverted in-
dexes with extra keywords. At the end of indexing pro-
cess, for each Grid site there is an inverted index con-
taining a set of terms, with each term associated to a
posting list of pointers to the software files containing
the term. The terms are extracted from the zones of SG
vertices.

11

5.4 Distributed Crawling and Indexing Process in
EGEE Infrastructure

The crawling and indexing of EGEE Grid sites for soft-
ware requires the retrieval and processing of large parts
of the file systems of numerous sites. These tasks need
to address various performance, reliability and policy is-
sues. To address these issues, Minersoft undertakes the
crawling and indexing of software resources installed in
EGEE infrastructure in a distributed manner. The job
submitter sends a number of multi-threaded crawler/
indexer jobs to the Workload Management Services (W-
MSs) of Grid sites.

A challenge for crawler/indexer jobs is to process
all the software resources residing within EGEE Grid
sites, without exceeding the time constraints imposed
by site policies. The jobs which run longer than the
allowed time are terminated by the sites batch systems.
The maximum wall clock time for an EGEE Grid site
usually ranges between 2 and 72 hours.

In this context, the file-system of each EGEE Grid
site is decomposed into a number of splits, where the
size of each split is chosen so that the crawling can be
distributed evenly and efficiently within the constraints
of the underlying networked computing infrastructure.
The number of splits is determined by the communi-
cation between the job manager and the monitor. The
splits are assigned to crawler/indexer jobs on a con-
tinuous basis: When a Grid site finishes with its as-
signed splits, the monitor informs the job manager in
order to send more splits for processing. If a Grid site
becomes laggard, the monitor sends a message to job
manager. Then, the crawler /indexer job is canceled and
rescheduled to run when the Grid site’s workload is re-
duced. Furthermore, if the batch system queue of a Grid
site is full and does not accept new jobs, the monitor
sends a signal and the job submitter suspends submit-
ting crawler/indexer jobs to that Grid site until the
batch system becomes ready to accept more.

When the crawling completes, Minersoft’s data re-
triever module fetches the metadata store files from all
machines, and merges them into a file index. The file
indexr comprises information about each software re-
source and is temporally stored in the Datastore. The
file index will be used in order to identify the dupli-
cate files during the indexing process; the duplication
reduction policy is described in the following subsec-
tion. When the indexing has been completed, the file
index is deleted. Then, the data retriever fetches the
resulted inverted indexes and the individual SGs from
all sites. Both the full-text inverted indexes and the SGs
are stored in the Datastore.

- Minersoft

|
2. Submit Jobs
|

|
|
|
Workload Management
Service
I

T m—
Storage LCG File
Elements Catalogs

[Computing Element J

‘3. Retrieve executables \1/
[

4. Jobs Running

I
1. Store & register executables | /T\

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

5. Store & register outputs - — :
|

|

Workernodes
————————— 6. Retrieve Outputs — — ——————1

Fig. 3 Minersoft crawler/indexer job’s lifecycle.

5.5 Duplication Reduction Policy

Typically, popular software applications and packages
are installed on multiple sites of distributed computing
infrastructures. If we identify duplicates, we will be able
to avoid indexing them multiple times. Consequently,
the performance of indexing is improved.

To address this issue, the job manager uses a du-
plicate reduction policy to identify the exact duplicate
files. According to our policy, a duplicate file is assigned
to the Grid site which has the minimum number of as-
signed files that should be indexed. The key idea behind
this policy is to avoid multiple indexing of duplicate
software resources in Grid sites so as to prevent their
overloading. In this context, for each Grid site/, the
following steps take place:

1. The file index is sorted in ascending order with re-
spect to the count of Grid sites that a file exists.

2. The files which do not have duplicates are directly
assigned to the corresponding Grid site.

3. If a file belongs to more than one Grid sites, the file
is assigned to the site with the minimum number of
assigned files.

12

5.6 Minersoft Crawler/Indexer Job’s Lifecycle in
EGEE Infrastructure

Minersoft indexer and crawler jobs follow the same prin-
ciples for file-staging and execution. The lifecycle of a
crawler/ indexer job in EGEE infrastructure starts by
copying its executable files to a Storage Element (SE)
and terminates by downloading its output files (file-
indexes, SGs, inverted file indexes) to the centralized
Minersoft infrastructure. Their lifecycle is depicted in
Figure 3. The details of each of the individual steps are
described below:

1. Store & register executables: In order to submit and
run crawler and indexer jobs efficiently, the exe-
cutable files of these jobs are stored into SEs and
registered to LCG File Catalogs (LFCs). Thus, the
Workload Management System (WMS) and Miner-
soft avoid extra workload. Note that in most cases
we have to submit a large number of jobs, where
each job needs executables that their total size is
about 3 MB.

2. Submit jobs: When the executables have been stored
to the SEs, Minersoft submits the crawler/ indexer
jobs using the WMS. The WMS moves the crawler/
indexer jobs to the Computing Elements (CEs) of
EGEE infrastructure in order to be executed.

3. Retrieve job executables: The crawler/ indexer jobs
are moved from the CE into one of its workernodes.
The executable files of jobs are downloaded from the
SEs.

4. Jobs running: When the executables have been down-
loaded, the crawler/indexer jobs start their execu-
tion.

5. Store & register outputs: When the jobs have suc-
cessfully finished their execution, their outputs are
stored in the SEs and registered to the LFCs making
them available to Minersoft for further processing
(SG processing, merging inverted indexes etc.).

6. Retrieve outputs: The data retriever module of Min-
ersoft retrieves the outputs from the SEs and stores
them to its centralized infrastructure.

5.7 Minersoft Implementation and Deployment

The implementation of the job manager and monitor
relies upon the Ganga system [10], which is used to
create and submit jobs as well as to resubmit them in
case of failure. We adopted Ganga in order to have full
control of the jobs and their respective arguments and
input files. In this context, the monitor (through Ganga
scripts) monitors the status of jobs after their submis-
sion and keeps a list of Grid sites and their failure rate.

If there are Grid sites with a high failure rate, the moni-
tor eventually puts them in a black list and notifies job
manager so as to stop submitting jobs to them, thus
excluding them from the current indexing/crawling ses-
sion. Sites that are not fully crawled or indexed are not
included in the search results.

The crawler is written in Python. The Python code
scripts are put in a tar file and copied on a SE before job
submission starts. The tar file is being downloaded and
untarred to the target Grid site before the crawler exe-
cution starts. By doing that, the size of the jobs input
sandbox is reduced, thus job submission is accelerated
because the workload management system has to deal
with much less files per job.

The indexer is written in Java and Bash and uses
an open-source high performance, full-text index and
search library (Apache Lucene). In order to execute the
indexer jobs, we follow the same code-deployment sce-
nario as with crawlers.

The job manager has to distribute the crawling and
indexing workload before the job submission starts. This
is done by creating splits for each Grid site that Min-
ersoft has to crawl. The input file (list of files) for each
split resides on a SE and is registered to a file cata-
log. The split input is then downloaded from a SE and
used to start the processing of files. The split input is
a text file containing the list of files that have to be
crawled or indexed. After execution, the jobs upload
their outputs on SEs and register the output files to a
file catalog. The logical file names and the directories
containing them in the file catalog are properly named
so that they implicitly state the split number and the
site that they came from or going to.

6 Evaluation
6.1 Testbed

The usefulness of the findings of any study depends on
the realism of the data upon which the study operates.
For this purpose, the experiments are conducted on 10
Grid sites of EGEE (Enabling Grid for E-sciencE). The
EGEE infrastructure is one of the largest Grid produc-
tion services currently in operation and its objective is
to provide researchers in academia and industry with
access to major computing resources, independent of
their geographic location. Totally, the Grid testbed in-
cludes 6 million files where their total size is over 366
GB. Table 2 presents the Grid that have been crawled
and indexed by Minersoft.

Files in the workernodes of EGEE are not always
readable by all users that are allowed to run jobs on

13

Grid Site

| # of Files | Size (MB) |

ce01.kallisto.hellasgrid.gr 3.541.403 259.953.246,2
ce301.intercol.edu 97.906 3.711.925,517
grid-ce.ii.edu.mk 194.556 4.981.889,552
paugridl.pamukkale.edu.tr 132.645 3912.987,884
ce0l.grid.info.uvt.ro 270.445 10.849.994,58
grid-lab-ce.ii.edu.mk 109.286 2.824.409,829
ce0l.mosigrid.utcluj.ro 70.419 19.539.562,62
celOl.grid.ucy.ac.cy 1.278.851 64.886.738,85
ce64.phy.bg.ac.yu 150.661 6.685.600,57
testbed001.grid.ici.ro 125.028 7.117.152,75
[Total [5.971.200 [384.463.508,4 |

Table 2 EGEE Testbed.

them. In some cases, access to files is only given to spe-
cific VOs because of licensing and/or site-policy rea-
sons. In our experiments, Minersoft runs as a user from
the South East Europe (SEE) VO and the files that it
can read are all the files that are readable by that VO
users in each EGEE site.

6.2 Crawling and Indexing Evaluation

In this section, we elaborate on the performance eval-
uation of the crawling and indexing tasks of Minersoft.
Our objective is to show that Minersoft is a useful ap-
plication for developers, administrators and researchers
in EGEE infrastructure.

6.2.1 Examined metrics

To assess the crawling and indexing in Minersoft, we
investigate the performance of crawler and indexer jobs;
recall that each job is responsible for a number of files
(called splits) that exist on a Grid site. In this context,
we use the following metrics:

— Run time: the average time that a crawler/indexer
job spends on a Grid site, including processing and
I/0; this metric measures the average elapsed time
that Minersoft needs to process (crawl or index) a
split.

— CPU time: the average CPU time in seconds spent
by a crawler/indexer job while processing a split on
a Grid site.

— File rate: the number of files that Minersoft crawls/
indexes per second on a Grid site.

— Size rate: the size of files in bytes that Minersoft
crawls/indexes per second on a Grid site.

In our experiments, each crawler and indexer job
was configured to run with five threads. We also ran ex-
periments with different numbers of threads (from 1, 5,
9 to 13) and concluded that 5 threads per crawler /indexer
job provide a good trade-off between crawling/indexing

performance and server workload. Smaller or larger num-
bers of threads per crawler/indexer job usually result
to significantly higher run times, due to poor CPU uti-
lization or I/O contention, respectively. Recall, that the
crawler and indexer jobs process a specific number of
files, called splits. In our experiments, the maximum
number of files that a split can process is 100.000.

6.2.2 Crawling Evaluation

Figure 4 depicts the per-job average run-time and per-
job average CPU-time for crawling the Grid sites. The
per-job CPU time takes into account the total time that
all the job’s threads spend in the CPU. The run-time
values are significantly larger than the CPU times due
to the system calls and I/O that each crawler performs
while processing its file split. I/O is much more expen-
sive in the case of Grid sites with shared file systems.
Another observation is that the run-time and CPU-time
of crawler jobs vary significantly across different Grid
sites. This imbalance is due to several factors, including
the hardware heterogeneity of the infrastructure, the
dynamic workload conditions of shared sites, and the
dependence of the crawler processing on site-dependent
aspects. For example, the crawler performs expensive
“deep” processing of binary and library files to deduce
their type and extract dependencies. This is not re-
quired for text files. Consequently, the percentage of
binaries/libraries found in each site determines to some
extent the corresponding crawling computation.

Table 3 depicts the throughput achieved by the Min-
ersoft crawler on different Grid sites, expressed in terms
of the number of files and the number of bytes pro-
cessed. Results show that Minersoft achieves high crawl-
ing rates.

The files found by the crawlers to be irrelevant to
software search are pruned from subsequent process-
ing. Figure 5 presents the percentage of files that have
been dropped in Grid sites. We observe that a large
percentage of content in most Grid sites includes soft-
ware resources. Specifically, on average 75% of total
files’ size that exist in Grid sites have been classified as
software resources. These findings confirm the need to
establish advanced software services in Grid infrastruc-
tures. The software-related files are categorized with
respect to their type. From Table 4, we can see that
most software-related files in the EGEE infrastructure
are documentation files (man-pages, readme files, html
files) and sources. Sources are files written in any pro-
gramming language. Executable scripts (e.g. python,
perl, bash) are also considered as sources (e.g. Java,
C++). Table 5 presents the number of splits that have
been created in order to crawl the files.

14

Avg. Time per 100000 files (sec)

OCPU Time (crawling)

@DRun Time (crawling)

BCPU Time (indexing)

BRun Time (indexing)

4500
4000
3500
3000
2500
2000
1500
1000

500

Fig. 4 Average times for jobs in EGEE infrastructure.

Grid Sites

[Grid Site File rate (files/sec) [Size rate(MB /sec)]
ce01.kallisto.hellasgrid.gr 59,287 4,067
ce301.intercol.edu 335,773 6,085
grid-ce.ii.edu.mk 255,395 4,141
paugridl.pamukkale.edu.tr 372,467 4,744
ce01.grid.info.uvt.ro 557,289 14,762
grid-lab-ce.ii.edu.mk 300,905 2,766
ce0l.mosigrid.utcluj.ro 245,074 23,382
celOl.grid.ucy.ac.cy 211,604 9,577
ce64.phy.bg.ac.yu 417,031 9,075
testbed001.grid.ici.ro 134,300 3,111

Table 3 Crawling rates in EGEE infrastructure.
Grid Site Binaries | Sources | Libraries Docs Irrelevant
ce01.kallisto.hellasgrid.gr 41.990 1.407.701 142.873 1.672.246 276.593
ce301.intercol.edu 34.134 8.972 3.724 23.536 27.540
grid-ce.ii.edu.mk 16.869 69.915 8.080 61.469 38.223
paugridl.pamukkale.edu.tr 7.383 47.388 7.935 43.861 26.078
ce0l.grid.info.uvt.ro 8.999 40.442 3.778 42.652 174.574
grid-lab-ce.ii.edu.mk 7.703 46.116 2.983 37.333 15.151
ce0l.mosigrid.utcluj.ro 17.828 12.475 2.310 18.091 19.715
celOl.grid.ucy.ac.cy 26.377 433.115 37.463 672.211 109.685
ce64.phy.bg.ac.yu 6.047 31.889 7.672 67.388 37.665
testbed001.grid.ici.ro 29.261 22.961 6.120 28.239 38.447
Total 196.591 2.120.974 222.938 2.667.026 763.671

Table 4 Files Categories in EGEE infrastructure.

6.2.3 Indexing Evaluation

Figure 4 depicts the per-job average run-time and the
per-job CPU time for indexing Grid sites. As expected,
we observe that indexing is more computationally-inte-
nsive than crawling, since we need to conduct “deep”
parsing inside the content of all files.

Removing the duplicate files via the duplicate re-
duction policy leads to reducing the number of files.
Consequently, this improves the indexing performance.
Our results showed that about 11% of files belong to

more than one Grid sites. In a previous study [22] we
had also observed a large number of duplicate files in
Grid infrastructure. So, the main conclusion of these
findings is that there is a large number of duplicate
files in Grid infrastructures. Table 5 presents the num-
ber of splits and the size of inverted file indexes in each
Grid site of EGEE. In order to study the benefits of du-
plicate reduction policy, we also present the number of
splits without performing duplication. From this table
we observe that ce0l.kallisto.hellasgrid.gr has 31 splits

15

Oirrelevant Files Mlrrelevant Files Size

Percentage

Fig. 5 Percentage of irrelevant files in EGEE infrastructure.

Grid Sites

Grid Sites Crawling Statistics | Indexing Statistics
of splits # of splits # of splits in- | Inverted Index | Inverted Index
cluding dupli- | size with stem- | size w/o stem-
cates ming (MB) ming (MB)
ce01.kallisto.hellasgrid.gr 37 31 33 58.129,359 60.988,246
ce301.intercol.edu 2 1 1 358,0312 395,089
grid-ce.ii.edu.mk 1 1 2 702,796 778,972
paugridl.pamukkale.edu.tr 3 1 2 632,035 702,296
ce01.grid.info.uvt.ro 4 1 1 1.152,386 1.258,464
grid-lab-ce.ii.edu.mk 3 1 1 57,414 62,863
ce0l.mosigrid.utcluj.ro 2 1 1 257,984 288,214
celOl.grid.ucy.ac.cy 14 10 12 13.588,468 14.073,417
ce64.phy.bg.ac.yu 3 1 2 871,449 964,621
testbed001.grid.ici.ro 3 1 1 646,671 715,148

Table 5 Crawling & Indexing statistics in EGEE infrastructure.

instead of 33 splits (including duplicate files). More-
over, even if the number of splits is not reduced, it is
reduced the number of files that have been assigned in
a split. Consequently, the total indexing time is signifi-
cantly reduced. Regarding the size of inverted indexes,
we present the size of inverted indexes with and with-
out performing stemming. We observe that stemming
decreases the size of inverted indexes about 10%.

Finally, Table 6 depicts the throughput of the in-
dexer expressed in terms of the number of files and the
number of bytes processed per second in each Grid site
of EGEE. The performance of indexing is affected by
the hardware (disk seek, CPU/memory performance),
file types, and the workload of each site.

To sum up, our experimentations concluded to the
following empirical observations:

— Minersoft successfully crawled about 6 million valid
files (384 GB size) and sustained high crawling rates.

— A large percentage of duplicate files exists in EGEE
infrastructure. Identifying these files, the performance
of indexing is significantly improved.

— The crawling and indexing in EGEE infrastructure
is significantly affected by the hardware (local disk,
shared file system), file types and the current work-

load of Grid sites.

— In most cases, more than 70% of files that exist in
the workernodes file systems of Grid sites are soft-
ware files. Advanced software discovery services in
Grid infrastructures should be established.

6.3 Software Retrieval Evaluation

In this section, we evaluate the effectiveness of the Min-
ersoft search engine for locating software on EGEE in-
frastructure. A difficulty in the evaluation of such a
system is that there are not widely accepted any bench-
mark data collections dedicated to software (e.g., TREC,
OHSUMED etc). In this context, we use the following
methodology in order to evaluate the performance of
Minersoft:

— Data collection: Our dataset consists of the software
installed in 10 Grid sites of EGEE infrastructure

16

Grid Site

File rate (files/sec) [Size rate (MB/sec)]

ce01.kallisto.hellasgrid.gr 25,359 1,363
ce301.intercol.edu 84,620 1,238
grid-ce.ii.edu.mk 93,297 1,211
paugridl.pamukkale.edu.tr 106,283 1,135
ce0l.grid.info.uvt.ro 39,143 0,618
grid-lab-ce.ii.edu.mk 45,387 0,323
ce0l.mosigrid.utcluj.ro 55,363 2,850
celOl.grid.ucy.ac.cy 31,231 1,149
ce64.phy.bg.ac.yu 106,818 1,760
testbed001.grid.ici.ro 51,127 0,827

Table 6 Indexing rates in EGEE infrastructure.

(Table 2). Table 4 presents the software resources
that have been identified by Minersoft on those Grid
sites.

— Queries: We use a collection of 26 keyword queries,
which were extracted i) by EGEE users and ii) by
real user-queries from the Sourcerer system [27]. The-
se queries comprise either single- or multiple-keywords.
Each query has an average of 2 keywords; this is
comparable to values reported in the literature for
Web search engines [37]. To further investigate the
sensitivity of Minersoft, we have classified the queries
into two categories: general-content and software-
specific (see Table 7).

— Relevance judgment: A software resource is consid-
ered relevant if it addresses the stated information
need and not because it just happens to contain
all the keywords in the query. A software resource
returned by Minersoft in response to some query
is given a binary classification as either relevant or
non-relevant with respect to the user information
need behind the query. In addition, the result of
each query has been rated at three levels of user
satisfaction: “not satisfied”, “satisfied”, “very satis-
fied”. These classifications have been done manually
by EGEE administrators and experienced users and
are referred to as the gold standard for our experi-
ments.

6.3.1 Performance Measures

The effectiveness of Minersoft should be evaluated on
the basis of how much it helps users achieve their soft-
ware searches efficiently and effectively. In this context,
we used the following performance measures:

— Precision@10 reports the fraction of software re-
sources ranked in the top 10 results that are labeled
as relevant. The relevance of the retrieved results
is determined by the gold standard. By default, we
consider that the results are ranked with respect to
the ranking function of Lucene, which is based on

General-content

Software-specific

queries queries
java virtual machine; sta- imagemagick; octave nu-
tistical analysis software; merical computations;

ftp client; regular expres-
sion; sigmoid function; his-
togram plot; binary tree;

lapack library; gsl library;
boost c++ library; glite
data management; xerces

xml; subversion client;
gee fortran; lucene; jboss;
mpich; autodock docking;
atlas software; linear alge-
bra package; fftw library;
earthquake analysis

zip deflater; pdf reader

Table 7 Queries.

TF-IDF of software files and has extensively been
used in the literature [7,12]. The maximum Preci-
sion@10 value that can be achieved is 1.

— NDCG (Normalized Discounted Cumulative Gain)
is a retrieval measure devised specifically for eval-
uating user satisfaction [19]. For a given query q,
the top — K ranked results are examined in de-
creasing order of rank, and the NDCG computed
as: NDCG, = M, - Zf:llo %, where each
r(j) is an integer relevance label (0=“not satisfied”,
1="“satisfied”, 2="“very satisfied”) of the result re-
turned at position j and M, is a normalization con-
stant calculated so that a perfect ordering would
obtain NDCG of 1.

— NCG (Normalized Cumulative Gain) is the prede-
cessor of NDCG and its main difference is that it
does not take into account the position of the re-
sults. For a given query g, the NCG is computed
ass NCG, = M, - Zf:lw r(j). A perfect ordering
would obtain NCG of 1.

Cumulative gain measures (NDCG, NCG) and pre-
cision complement each other when evaluating the ef-
fectiveness of IR systems [4,11]. In our evaluation met-
rics we do not consider the recall metric (the percent-
age of the number of relevant results). Such a metric
requires to have full knowledge about all the relevant
software resources with respect to a query. However,

17

such a knowledge is not feasible in a large-scale net-
worked environment.

6.3.2 Examined Approaches

In order to evaluate the Minersoft efficiency, we evalu-
ate the construction phases of Minersoft’s inverted in-
dex. Specifically, we examine the following:

— Full-text search: Inverted index terms are only ex-
tracted from the full-text content of discovered files
in the examined testbed infrastructure without any
preprocessing. This approach is relevant to the desk-
top search systems (also known as file system search
- e.g., Confluence [17], Wumpus [39]). Full-text search
is used as a baseline for our experiments.

— Path-enhanced search: The terms of inverted index
are extracted from the content and path of SG ver-
tices. The irrelevant files are discarded.

— Context-enhanced search:The files have been clas-
sified into file categories. The irrelevant files are
discarded. We also exclude the software-description
documents from the posting lists. The terms of the
inverted index are extracted from the content and
path of SG vertices.

— Software-description-enriched search: The terms of
inverted index are extracted from the content of SG
vertices as well as from the zones of documentation
files (i.e., man-pages and readme files) and the path
of SG vertices.

— Text-files-enriched search: The terms of inverted in-
dex are extracted from the content, the path and the
zones from the other text files of SG vertices with
the same normalized filename. Recall that Minersoft
normalizes filenames and pathnames of SG vertices,
by identifying and removing suffixes and prefixes.

6.3.3 Evaluation

Figures 6, 7, and 8 present the results of the exam-
ined approaches with respect to the query types for
Precision@10, NDCG and NCG. Each approach is a
step towards the construction of the inverted index that
is implemented in Minersoft. For completeness of pre-
sentation, we present the average and median values of
the examined metrics. The general observation is that
Minersoft improves significantly both the Precision@10
and the examined cumulative gain measures compared
with the baseline approach - full-text search - for both
types of queries. Specifically, Minersoft improves the
Precision@10 about 139%, the NDCG about 142% and
the NCG about 135% with respect to the baseline ap-
proach. Another general observation is that Minersoft

achieves quite similar performance for both software-
specific and general-content queries.

Regarding the intermediate steps for the construc-
tion of SG, the highest improvement is observed at
Context-enhanced search. This explained by the fact
that the non-relevant software files have been removed
and the searching is done only at software files. Our
findings show also that the addition of metadata at-
tribute of path in software resources makes Minersoft
more effective. In particular, Path-enhanced search im-
proves both the Precision@10 about 40% and the cu-
mulative gain measures about 53% for NDCG and 44%
for DCG with respect to the baseline approach. This
is an indication that the paths of software files include
descriptive keywords for software resources.

The enrichment of software-description documents
increases the precision as well as user satisfaction. Specif-
ically, Software-description-enriched search achieves high-
er Precision@l10 (about 3%) and higher cumulative
gain measures (on average about 3% for NDCG and
4.3% for NCG) than the Context-enhanced search. The
improvements during the Software-description-enriched
search step are affected by the number of the executa-
bles and software libraries that exist in the data set.
The larger the number of these types of files exist in
repositories, the better results are obtained. Another
interesting observation is that most of queries indicate
Precision@10 close to 1 (see median values), whereas
the average Precision@10, NDCG and NCG values for
all the queries are about 0.77, 0.71, 0.69 respectively.

Regarding the text-files-enriched search, we observe
that this approach does not improve the general sys-
tem’s performance. This is explained by the fact the
software developers use similar filenames in their soft-
ware packages. However, taking a deeper look at the
results, we observe text-files-enriched search improves
user satisfaction about 2% for software-specific queries
since more results are returned to users than the previ-
ous examined approach.

To sum up, the results show that Minersoft is a pow-
erful tool since it achieves high effectiveness for both
types of queries. Focusing on the query types, we ob-
serve that Minersoft presents high efficiency for both
types of queries, achieving very high performance for
software-specific queries. Specifically, our experimenta-
tions concluded to the following empirical observations:

— Minersoft improves the Precision@10 about 139%
and Cumulative gain measures (NDCG, NCG) over
135% with respect to the baseline approach.

— The paths of software files in file-systems include
descriptive keywords for software resources.

— Software developers use similar filenames for their
software packages.

18

0.9
0.8
0.7
0.6

Precision@10

Fig. 6 Precision@10 results.

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

NDCG

Fig. 7 NDCG results.

NCG

Fig. 8 NCG results.

OTotal

@ Software-specific

O General-content

median

average

Full-text search

average | median

Full-text search

average

Path-enhanced
search

median

average | median

Context-enhanced
search

average

enriched search

BTotal

@ Software-specific @General-content

average

Path-enhanced
search

median

average | median

average | median

Context-enhanced |Software-description-

enriched search

OTotal

@ Software-specific

OGeneral-content

median

average | median

[Software-description{ Text-files-enriched
search

average | median

Text-files-enriched
search

median

average

Full-text search

average | medial

Path-enhanced
search

n | average | median

Context-enhanced
search

average | median

enriched search

median

average

[Software-description{ Text-files-enriched

search

19

[Grid Sites A% [E (total edges) [Esp [Eca
ce01.kallisto.hellasgrid.gr 3.264.810 1.291.884.123 9.540.597 1.282.343.526
ce301.intercol.edu 70.366 150.033 96.922 53.111
grid-ce.ii.edu.mk 156.333 1.659.309 322.495 1.336.814
paugridl.pamukkale.edu.tr 106.567 1.195.702 223.529 972.173
ce0l.grid.info.uvt.ro 95.871 1.465.779 199.537 1.266.242
grid-lab-ce.ii.edu.mk 94.135 179.127 158.733 20.394
ce0l.mosigrid.utcluj.ro 50.704 158.451 86.249 72.202
cel01.grid.ucy.ac.cy 1.169.166 97.967.442 2.117.300 95.850.142
ce64.phy.bg.ac.yu 112.996 987.759 201.950 785.809
testbed001.grid.ici.ro 86.581 772.005 225.591 546.414

[Total [5.207.529 [1.396.419.730 [13.172.903 | 1.383.246.827

Table 8 Software Graphs statistics in EGEE infrastructure.

6.3.4 Software Graph Statistics

Table 8 presents the statistics of the resulted SGs. Re-
call that Minersoft harvester constructs a SG in each
Grid site. We do not present further analysis of the SGs
since this is out of the scope of this work. Of course, a
thorough study of the structure and evolution of SGs
would lead to insightful conclusions in software engi-
neering community. In the literature, a large number
of dynamic large-scale networks have been extensively
studied [25] in order to identify their latent character-
istics.

Here, we briefly present the main characteristics of
these graphs. Table 8 presents the edges that have been
added due to structure dependency (Esp) and content
associations (Fc4). For completeness of presentation,
the index size of each graph is presented. Based on these
statistics, a general observation is that the SGs are not
sparse. Specifically, we found that most of them fol-
low the relation £ = V%, where 1.1 < a < 1.36; note
that o = 2 corresponds to an extremely dense graph
where each node has, on average, edges to a constant
fraction of all nodes. Another interesting observation
is that most of the edges are due to content associa-
tions. However, most of these edges have lower weights
(0,05 < w < 0,2) than the edges which are due to
structure dependency associations.

7 Conclusion

In this paper, we present Minersoft - a tool which en-
ables keyword-based searches for software installed on
Grid computing infrastructures. The software design
of Minersoft enables the distribution of its crawling
and indexing tasks to large-scale network environments.
The results of Minersoft harvesting are encoded in a
weighted, typed graph, called the SG. The SG is used
to annotate automatically the software resources with
keyword-rich metadata. Using a real testbed, we present
the performance issues of crawling and indexing. Exper-
imental results showed that SG represents in an efficient

way the software resources, improving the searching of
software packages in large-scale network environments.

Minersoft can be easily extended to support search
on Cloud infrastructures like Amazon’s EC2. There are
two main issues that Minersoft has to overcome in or-
der to support searching in Cloud infrastructures: i) job
submission protocol: Minersoft has to be provided ac-
cess to machines on an infrastructure through a job sub-
mission protocol or other means of access; ii) data stor-
age facilities: Minersoft needs storage space available in
order to store the software graph and index files as well
as a data access protocol to manipulate them. In order
to overcome the job submission protocol issues, Miner-
soft uses the Ganga system to submit and monitor jobs.
Ganga is a middleware/infrastructure which is indepen-
dent and it can be extended to support many protocols
of job submission to different infrastructures through
plugins (e.g., it can submit jobs through the SSH proto-
col). Cloud infrastructures that provide virtual servers
on demand (like Amazon’s EC2 and Rackspace’s Cloud
Servers) can be searched from Minersoft by changing
the underlying job submission protocol in Ganga to
use SSH (or any connectivity tool that is provided by
the Cloud service provider). As far as data storage is
concerned, instead of storing files in Grid Storage Ele-
ments, file storage services, such as the Amazon S3 and
Rackspace Cloud Files can be used, given the APIs of
the respective data access protocols.

For future work, we plan to further exploit the SG
so as to be able to identify software packages. In the lit-
erature, a wide range of algorithms have been proposed
towards to this goal [21]. The identification of coher-
ent clusters of software resources is also beneficial in
terms of locating relevant individual softwares, classi-
fying and labeling them with a set of tags [34]. Last but
not least, the SG may contribute in improving the rank-
ing of query results [20]. Ranking is an integral compo-
nent of any information retrieval system. In the case of
software search in large-scale network environments the
role of ranking the results becomes critical. To this end,

20

the SG may offer a rich context of information which is
expressed through its edges. A ranking function can be
built by analyzing these edges. Kleinberg, and Brin and
Page have built upon this idea by introducing the area
of link analysis ranking on the Web, where hyperlink
structures are used to rank Web pages [9].

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Enabling Grids for E-SciencE project.

http://www.eu-
egee.org/ (last accessed February 2010).

teragrid. http://www.teragrid.org/index.php (last accessed
February 2010).

R. Agrawal and et al. The claremont report on database
research. SIGMOD Rec., 37(3):9-19, 2008.

A. Al-Maskari, M. Sanderson, and P. Clough. The relation-
ship between ir effectiveness measures and user satisfaction.
In SIGIR 07, pages 773-774, New York, NY, USA, 2007.
A. Ames, C. Maltzahn, N. Bobb, E. L. Miller, S. A. Brandt,
A. Neeman, A. Hiatt, and D. Tuteja. Richer file system meta-
data using links and attributes. In MSST 05, pages 49—60,
Washington, DC, USA, 2005. IEEE Computer Society.

G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code and
documentation. IEEE Trans. Softw. Eng., 28(10):970-983,
2002.

S. Bao, G. Xue, X. Wu, Y. Yu, B. Fei, and Z. Su. Optimizing
web search using social annotations. In WWW ’07, pages
501-510, New York, NY, USA, 2007. ACM.

L. Bass, P. Clements, R. Kazman, and M. Klein. Evaluating
the software architecture competence of organizations. In
WICSA 08, pages 249-252, 2008.

A. Borodin, G. O. Roberts, J. S. Rosenthal, and P. T'saparas.
Link analysis ranking: algorithms, theory, and experiments.
ACM TOIT, 5(1):231-297, 2005.

F. Brochu, U. Egede, J. Elmsheuser, and K. H.
et al. Ganga: a tool for computational-task man-
agement and easy access to Grid resources. Com-
puter Physics ~ Communications (submitted), 2009.

http://ganga.web.cern.ch/ganga/documents/index.php.

C. L. Clarke and et al. Novelty and diversity in information
retrieval evaluation. In SIGIR 08, pages 659666, New York,
NY, USA, 2008. ACM.

S. Cohen, C. Domshlak, and N. Zwerdling. On ranking tech-
niques for desktop search. ACM TOIS, 26(2):1-24, 2008.

J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of OSDI ’04: 6th
Symposium on Operating System Design and Implemention,
pages 137-150. Usenix Association, December 2004.

M. D. Dikaiakos, R. Sakellariou, and Y. Ioannidis. Informa-
tion Services for Large-scale Grids: A Case for a Grid Search
Engine, chapter Engineering the Grid: status and perspec-
tives, pages 571-585. American Scientific Publishers, 2006.
I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the
Grid: Enabling Scalable Virtual Organizations. International
J. Supercomputer Applications, 15(3):200-222, 2001.

D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James
W. O’Toole. Semantic file systems. In SOSP ’91, pages 16—
25, New York, NY, USA, 1991. ACM.

K. A. Gyllstrom, C. Soules, and A. Veitch. Confluence: en-
hancing contextual desktop search. In SIGIR ’07, pages 717—
718, New York, NY, USA, 2007. ACM.

O. Hummel and C. Atkinson. Extreme harvesting: Test
driven discovery and reuse of software components. In Pro-
ceedings of the 2004 IEEE International Conference on In-
formation Reuse and Integration, IRI - 2004, Las Vegas
Hilton, Las Vegas, NV, USA, pages 66—72, 2004.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

. K. Jarvelin and J. Kekéldinen. Cumulated gain-based eval-

uation of ir techniques. ACM TOIS, 20(4):422-446, 2002.
H.-Y. Kao and S.-F. Lin. A fast pagerank convergence
method based on the cluster prediction. In WI ’07, pages
593-599, Washington, DC, USA, 2007. IEEE.

D. Katsaros, G. Pallis, K. Stamos, A. Vakali, A. Sidiropoulos,
and Y. Manolopoulos. Cdns content outsourcing via gener-
alized communities. IEEE TKDE, 21(1):137-151, 2009.

A. Katsifodimos, G. Pallis, and D. M. Dikaiakos. Harvesting
large-scale grids for software resources. In CCGRID ’09,
Shanghai, China, 2009. IEEE Computer Society.

S. Khemakhem, K. Drira, and M. Jmaiel. Sec+: an enhanced
search engine for component-based software development.
SIGSOFT Softw. Eng. Notes, 32(4):4, 2007.

J. Koren, A. Leung, Y. Zhang, C. Maltzahn, S. Ames, and
E. Miller. Searching and navigating petabyte-scale file sys-
tems based on facets. In PDSW 07, pages 21-25, 2007.

J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution:
Densification and shrinking diameters. ACM TKDD, 1(1),
2007.

G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: an ef-
fective 3-in-1 keyword search method for unstructured, semi-
structured and structured data. In SIGMOD 2008, pages
903-914, New York, NY, USA, 2008. ACM.

E. Linstead, S. Bajracharya, T. Ngo, P. Rigor, C. Lopes,
and P. Baldi. Sourcerer: mining and searching internet-scale
software repositories. Data Min. Knowl. Discov., 18(2):300—
336, 2009.

A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Re-
covering traceability links in software artifact management
systems using information retrieval methods. ACM Trans.
Softw. Eng. Methodol., 16(4):13, 2007.

D. Lucrédio, A. F. do Prado, and E. S. de Almeida. A survey
on software components search and retrieval. In Proceedings
of the 30th Euromicro Conference, pages 152-159, 2004.

Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An information
retrieval approach for automatically constructing software li-
braries. IEEE Trans. Softw. Eng., 17(8):800-813, 1991.

A. Marcus and J. Maletic. Recovering documentation-to-
source-code traceability links using latent semantic indexing.
In ICSE 2003, pages 125-135, May 2003.

M. Matsushita. Ranking significance of software components
based on use relations. IEEE Trans. Softw. Eng., 31(3):213—
225, 2005.

G. Pallis, A. Katsifodimos, and D. M. Dikaiakos. Effective
keyword search for software resources installed in large-scale
grid infrastructures. In 2009 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence, Milano, Italy, 2009.
D. Ramage, P. Heymann, C. D. Manning, and H. Garcia-
Molina. Clustering the tagged web. In WSDM 09, pages
54-63, New York, NY, USA, 2009. ACM.

D. Robinson, I. Sung, and N. Williams. File systems, unicode,
and normalization. In Unicode ’06, 2006.

C. A. N. Soules and G. R. Ganger. Connections: using
context to enhance file search. SIGOPS Oper. Syst. Rev.,
39(5):119-132, 2005.

J. Teevan, E. Adar, R. Jones, and M. A. S. Potts. Information
re-retrieval: repeat queries in yahoo’s logs. In SIGIR 07,
pages 151-158, New York, NY, USA, 2007. ACM.

T. Vanderlei and et. al. A cooperative classification mecha-
nism for search and retrieval software components. In SAC
07, pages 866—871, New York, NY, USA, 2007. ACM.

P. C. Yeung, L. Freund, and C. L. Clarke. X-site: a workplace
search tool for software engineers. In SIGIR ’07, New York,
NY, USA, 2007. ACM.

A. M. Zaremski and J. M. Wing. Specification matching of
software components. ACM TOSEM, 6(4):333-369, 1997.

