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Abstract— Grid infrastructures are in operation around the
world, federating an impressive collection of computational
resources and a wide variety of application software. In this
context, it is important to establish advanced software discovery
services that could help end-users locate software components
suitable to their needs. In this paper, we present the design,
architecture and implementation of an open-source keyword-
based paradigm for the search of software resources in Grid
infrastructures, called Minersoft. A key goal of Minersoft is to
annotate automatically all the software resources with keyword-
rich metadata. Using advanced Information Retrieval techniques,
we locate software resources with respect to users queries.
Experiments were conducted in EGEE, one of the largest Grid
production services currently in operation. Results showed that
Minersoft successfully crawled 12.3 million valid files (620 GB
size) and sustained, in most sites, high crawling rates.

I. I NTRODUCTION

Currently, a number of large-scale Grid infrastructures are in
operation around the world, federating an impressive collection
of computational resources and a wide variety of application
software [2], [3]. These infrastructures provide production-
quality computing and storage services to thousands of users
that belong to a wide range of scientific and business com-
munities. In the context of large-scale Grids, it is important to
establish advanced software discovery services that can help
end-users locate software components that are suitable for
their computational needs. Earlier studies have shown thatthe
difficulty in discovering software components was one of the
key inhibitors for the adoption of component technologies and
software reuse [7]. Therefore, the provision of a user-friendly
tool to search for software is expected to expand the base of
Grid users substantially.

To motivate the importance of such a tool, let us consider
a biologist who is searching for drug discovery software
deployed on a Grid infrastructure. Although informative tags
about installed software can be published through Grid in-
formation systems, Grid system administrators seldom follow
such a practice [10]. Consequently, there are no tools or
published information that would support searches of this
kind. Envisioning the existence of a Grid software search
engine, a biologist would submit a query to the search engine
using some keywords (e.g. “docking proteins biology,” “drug
discovery,” or “autodock”). In response to this query, the
engine would return a list of software matching the query’s
keywords, along with Grid sites where this software could be
found. Thus, the user would be able to identify the sites hosting

an application suitable to her needs, and would accordingly
prepare and submit jobs to these sites.

Adopting a keyword-based paradigm for the search of soft-
ware seems like an obvious choice, given that keyword-based
search is currently the dominant paradigm for information
discovery [15]. Keyword-based search traditionally relies on
Information Retrieval (IR) algorithms that explore the occur-
rence of words in documents. However, software components
usually come with few or no free-text descriptors. Conse-
quently, the problem cannot be addressed with traditional IR
approaches. Instead, we need new techniques that will discover
software-related resources, extract structure and meaning from
those resources, and discover implicit relationships among
them. Also, we need to develop methods for effective querying
and for deriving insight from query results. The provision of
keyword-based search over large, distributed collectionsof
unstructured data has been identified among the main open
research challenges in data management that are expected to
bring a high impact in the future [4]. Searching for software
falls under this general problem, because file systems treat
software resources as unstructured data and maintain very little
if any metadata about installed software.

To address the software search challenge, we developed
the Minersoft Grid harvesting system. Minersoft visits Grid
sites, crawls their file systems, identifies software resources
of interest (software, libraries, documentation), assigns type
information to these resources, and discovers implicit associa-
tions between software and documentation files. Subsequently,
it creates an inverted index of software resources that is
used to support keyword-based searches. To achieve these
tasks, Minersoft invokes file-system utilities and object code
analyzers, implements heuristics for file-type identification
and filename normalization, and performs document analysis
algorithms on software documentation files and source-code
comments. The major contributions of this article are the
following:

• We present the design, the architecture, and implementa-
tion of the Minersoft harvester.

• We provide a study about the installed software resources
in EGEE [2], one of the largest Grid production services
currently in operation.

• We conduct an experimental evaluation of Minersoft, on
a real, large-scale Grid testbed, exploring performance
issues of the proposed scheme. In particular, we use
Minersoft to harvest several sites of EGEE Grid.



The remainder of this paper is organized as follows: Section
2 presents an overview of related work and the Minersoft
challenges are discussed. Section 3 presents a descriptionof
the Minersoft harvesting. Section 4 describes the architecture
of Minersoft. In Section 5, we present an experimental as-
sessment of our work. Section 6 discusses the open issues for
harvesting the Grid. We conclude in Section 7.

II. RELATED WORK

A number of alternative approaches have been proposed
for addressing software-component retrieval. One of the key
distinguishing traits of these approaches is the corpus upon
which the search is conducted:
Searching in a software repository: The GURU system
by Maarek et al [16] is one of the first efforts to estab-
lish a keyword-based paradigm for the retrieval of source
code installed on standalone computers. Using standard IR
techniques, GURU exploits the comments of source code
and documentation files. SEC+ is a more recent keyword-
based paradigm for discovering software components [13];
an ontology is used to describe the properties of software
components. Maracatu [21] is another search engine for soft-
ware components which makes use of folksonomy concepts.
Folksonomy is a cooperative classification scheme where the
users assign keywords (called tags) to software resources.
A similar approach, based on file tagging, was presented
in [14]; there, the authors proposed a scheme for searching
and navigating huge file systems using faceted metadata, i.e.,
sets of key-value pairs associated with each file. The keys,
which are called “facets”, allow the values to be grouped
into semantically meaningful ways. Several research efforts
have also focused on the problem of identifying automatically
the associations between source-code and software-description
documents [6], [18]. Finally, another approach is to use
semantic file-systems [5], [11].
Searching in the Web:In [12], authors described an approach
for harvesting software components from the Web. The basic
idea is to use the Web as the underlying repository, and to
utilize standard search engines, such as Google, as the means
of discovering appropriate software assets. In the World-Wide
Web context, harvesting is a well-studied research problem.
In principle, a set of seed URLs is used as the basis for the
search, and those pages are fetched one by one. Each hyperlink
within those pages is extracted and, if it has not been explored
yet, appended to a queue of pending pages. Eventually, all
pages reachable from the seed set will have been accessed, and
the process can be repeated. Other researchers have crawled
through Internet publicly available CVS repositories to build
their own source code search engines (e.g., SPARS-J) [19].
Searching in the Grid: In the Grid context, a recent work has
proposed a component search service, called GRIDLE [20];
this scheme allows users to locate the source components they
need for building a Grid application. Users specify a high-level
workflow plan including the requirements of each component.
Then, GRIDLE presents a ranked list of components that
match partially or totally user requirements.

Minersoft is different from all the above works in a number
of key aspects:

• Minersoft supports searching not only for source codes
but also for executables and libraries stored in binary
format;

• Minersoft does not presume that file-systems maintain
metadata (tags etc) to support software search; instead,
the Minersoft harvester generates such metadata auto-
matically by invoking standard file-system utilities and
tools and by exploiting the hierarchical organization of
file-systems;

• Minersoft introduces the concept of the Software Graph,
a weighted, undirected, typed graph. The Software Graph
is used to represent software resources and associations
under a single data structure, amenable to further pro-
cessing.

• Minersoft addresses a number of additional implemen-
tation challenges that are specific to federated infras-
tructures: i) Software management is a decentralized
activity; different sites may follow different policies
about software installation, directory naming etc. Also,
software entities on a Grid site often come in a wide
variety of packaging configurations and formats. There-
fore, solutions that are language-specific or tailored to
some specific software-component architecture are not
applicable. ii) Harvesting the sites of a Grid infrastructure
is a demanding task for computational, storage, and
communication resources. Also, most Grid systems do
not support interactive computation. Therefore, software
harvesting needs to be performed in a distributed, non-
interactive manner. iii) The users of a Grid infrastructure
do not have direct access to local Grid sites. Therefore, a
harvester has to be either part of middleware services
(something that would require the intervention to the
middleware) or to be submitted for execution as a normal
job, through the middleware. In the Minersoft architecture
and implementation we adopt the latter approach, which
facilitates the deployment of the system on different Grid
infrastructures.

III. M INERSOFTHARVESTING
A software package that is installed on a Linux/Unix ma-

chine, typically comprises one or more software-related files
from a variety of possible categories:executables(binaries
or scripts), softwarelibraries, source codewritten in some
programming language, variousconfiguration filesrequired for
the compilation and/or installation of code (e.g. makefiles), and
various unstructured or semi-structuredsoftware-description
documents, which provide human-readable information about
the software, its installation, operation, and maintenance (man-
uals, readme files, etc). The Minersoft harvester seeks to
identify software resources of interest (software, libraries,
documentation), assign type information to these resources,
discover implicit associations between software and documen-
tation files, and capture this information in data structures
amenable to indexing and search.



A. Software Graph Definition

To represent the software-related files found in a file system
and the associations between them, we introduce the concept
of the Software Graph, a weighted, undirected metadata-
rich, typed graphG(V, E). The node-setV of the graph
comprises: i) nodes representing software-related files found
on the file-system of a computing node (file-vertices) and
ii) nodes representing directories of the file-system (directory-
vertices). The edgesE of the graph represent structural and
semantic associations between vertices. Structural associa-
tions correspond to relationships between file-system resources
(files and directories). These relationships are derived from
file-system structure according to various conventions (e.g.,
about the location and naming of documentation files) or from
configuration files that describe the structuring of software
packages (RPMs, tar files, etc).

The Software Graph is “typed” because its vertices and
edges are assigned to different types (classes). Each vertex
v of the Software GraphG(V, E) is annotated with a number
of associated metadata attributes, describing its contentand
context:

• name(v) is the normalized name of the file represented
by v.

• type(v) denotes the type ofv (binary executable, source
code, directory, etc).

• sites(v) denotes the Grid sites where filev is located.
• path(v) is a set of terms derived from the path-name of

file v in site(v)’s file system.
• zonel(v), l = 1, . . . , zv is a set of zones assigned to

vertexv. Each zone contains terms extracted either from
the content ofv or from the content of a file associated
to v.

Each edgee of the graph has two attributes:type(e) denotes
the association represented bye and w(e) is a real-valued
weight (0 ≤ w ≤ 1) expressing the degree of correlation
between the edge’s vertices. An association between two
graph-nodes can be structural (e.g., directory containment,
software library membership) or semantic (text similarity).

B. Minersoft Algorithm

A key responsibility of the Minersoft harvester is to con-
struct a Software Graph, starting from the contents of the file
system found on a Grid site. Then, given the Software Graph,
Minersoft builds an inverted index for software resources
installed on the site. The Minersoft harvester implements an
algorithm comprising a number of steps described below. An
in-depth discussion regarding the Software Graph construction
algorithm is beyond the scope of this paper.
FST construction: Initially, Minersoft scans the file-system
of a Grid node and creates aFile-System Tree(FST) data
structure. The internal vertices of the tree correspond to direc-
tories of the file-system; its leaves correspond to files. Edges
represent containment relationships between directoriesand
sub-directories or files. During the scan, Minersoft ignores a
stop listof files and directories that do not contain information
of interest to software search (e.g.,/tmp, /etc).

Classification and pruning: Names and pathnames play an
important role in file classification and in the discovery of
associations between files. Accordingly, Minersoft normalizes
filenames and pathnames of FST vertices, by identifying
and removing suffixes and prefixes. The normalized names
are stored as metadata annotations inside the zone-set of
FST nodes. Subsequently, Minersoft applies a combination of
system utilities and heuristics to classify each FST file-vertex
into a variety of possible categories that a software package
comprises. Finally, Minersoft prunes all FST leaves found to
be irrelevant to software search, dropping also all internal FST
nodes that are left with no descendants. This step results toa
pruned version of the FST that contains only software-related
file-vertices and the corresponding directory-vertices.
Structural dependency mining: Subsequently, Minersoft
searches for “structural” relationships between software-
related files (leaves of the file-system tree). Discovered rela-
tionships are inserted as edges that connect leaves of the FST,
transforming the tree into a graph. Structural relationships can
be identified by: i) Rules that represent expert knowledge
about file-system organization, such as naming and location
conventions. For instance, a set of rules link files that contain
man-pagesto the corresponding executables.Readmeandhtml
files are linked to related software files. ii) Dynamic depen-
dencies that exist between libraries and binary executables;
Binary executable files and libraries usually depend on other
libraries that need to be dynamically linked during runtime.
These dependencies are mined from the headers of libraries
and executables and the corresponding edges are inserted in
the graph; each of these edges is assigned a weight of one, as
there exists a direct association of files.

The structural dependency mining step produces the first
version of the Software Graph, which captures software-
related files and their structural relationships. Subsequently,
Minersoft seeks to enrich file-vertex annotation with additional
metadata and to add more edges into the Software Graph,
in order to better express semantic relationships between
software-related resources.
Keyword scraping: In this step, Minersoft performs deep
content analysis for each file-vertex of the Software Graph,in
order to extract its descriptive keywords. This is a resource-
demanding computation that requires the transfer of all file
contents from disk to memory to perform content pars-
ing, stop-word elimination, and keyword extraction. Different
keyword-scraping techniques are used for different types of
files: for instance, in the case of source code, we extract
keywords only from the comments inside the source, since
the actual code lines would create unnecessary noise without
producing descriptive features. Following the keyword extrac-
tion, Minersoft applies a feature extraction technique [16] to
estimate the quantity of information of individual terms and
to disregard keywords of low value. Binary executable files
and libraries contain strings that are used for printing out
messages to the users, debugging information, logging etc.
All this information can be used in order to get useful features
from these files. The extracted keywords are saved in the zones



of the file-vertices of the Software Graph.
Keyword flow: Software files (executables, libraries, source
code) usually contain little or no free-text descriptions.There-
fore, content analysis typically discovers very few keywords
inside such files. To enrich the keyword sets of software-
related file-vertices, Minersoft identifies edges that con-
nect software-documentation file-vertices with software file-
vertices, and copies selected keywords from the former into
the zones of the latter. As we referred above, each zone has
a different degree of importance in terms of describing the
content of a software file. For instance, thecontent zoneof a
nodeV is more important than itsdocumentation zones.
Semantic association mining:To further improve the den-
sity of the Software Graph, Minersoft calculates the cosine
similarity between the graph’s file-vertices. To implementthis
calculation, Minersoft represents each file-vertex as a weighted
term-vector derived from its associated zones. File-vertices
that exhibit a high cosine-similarity value are joined through
an edge that denotes the existence of a semantic relationship
between them.
Inverted index construction: To support full-text search
for software resources, Minersoft creates an inverted index
of software-related file-vertices of the Software Graph. The
inverted index has a set of terms, with each term being
associated to a “posting” list of pointers to the software files
containing the term. The terms are extracted from the zones
of Software Graph vertices.

C. Parallelization

For the efficient implementation of the Minersoft algorithm
in a Grid setting, we should take advantage of various paral-
lelization techniques in order to:

• Distribute parts of the Minersoft computation to Grid
sites, in order to take advantage of the Grid comput-
ing and storage power, to reduce the communication
exchange between the Minersoft system and local Grid
sites, and to sustain the scalability of Minersoft with
respect to the total number of Grid sites. Minersoft tasks
are wrapped as Grid jobs that are submitted to Grid sites
via the Grid workload-management system.

• Avoid overloading Grid sites by applying load-balancing
techniques when deploying Minersoft jobs to the Grid.

• Improve the performance of Minersoft jobs by employing
multi-threading to overlap local computation with I/O.

• Adapt to the policies put in place by different Grid sites
regarding the number of jobs that can be accepted by
their queuing systems, the total time that each of these
jobs is allowed to run on a given site, etc.

More details on the parallelization of the Minersoft algorithm
and its deployment on the EGEE Grid are given in the
following section.

IV. M INERSOFTARCHITECTURE
Creating a search engine for software that can cope with

the scale of emerging Grid infrastructures presents several
challenges. Fast crawling technology is required to gatherthe
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Fig. 1. Minersoft architecture.

Grid software resources and keep them up to date. Storage
space must be used efficiently to store indices and the files
themselves. The indexing system must process hundreds of
gigabytes of data efficiently.

In this section, we will provide a description of how the
whole system works as depicted in Figure 1. The crawling and
indexing is done by several distributed multi-threaded crawler
and indexer Grid jobs, which run in parallel on different Grid
sites for improved performance and efficiency. The crawler and
indexer jobs process a specific number of files, calledsplits. A
key component of the Minersoft architecture is theGrid job
manager, which has the overall supervision for crawler and
indexer jobs. Thegraph constructormodule is responsible for
constructing the Software Graph and identifying the software
components. Thequery processormodule is responsible for
providing quality search results efficiently.

A. Crawling phase

Crawling the Grid is a challenging task that needs to address
various performance, reliability and site-policy issues since it
involves interaction with hundreds of Grid sites, which are
beyond the control of the system. Minersoft undertakes the
crawling of Grid sites in a distributed manner. TheGrid job
managersends a number of multi-threaded crawler jobs to
each Grid site. A challenge for crawler jobs is to harvest
all the software resources residing within Grid sites, without
exceeding the time constraints imposed by site policies: jobs
which run longer than the allowed time are terminated by the
sites’ batch systems. The maximum wall clock time for a Grid
site usually ranges between 2 and 72 hours.

Considering that a Grid site contains a large volume of files,
we decompose the file system of each Grid site into a number
of splits, where the size of each split is chosen so that the
crawling can be distributed evenly and efficiently within the
time constraints of the underlying site. The splits are assigned
by theGrid job managerto crawler jobs on a continuous basis:
As a site finishes with its assigned splits, it is receives more
splits for processing. If a site becomes laggard, the crawler job
is canceled and rescheduled to run when the site’s workload is



reduced. Furthermore, if the batch system queue of a Grid site
is full and does not accept new jobs, theGrid job manager
stops submitting crawler jobs to that site until the batch
system becomes ready to accept more. Minersoft crawlers
undertake the task of classifying software files into categories,
as described earlier (e.g., binaries, libraries, documentations).
The files found to be irrelevant are dropped from the FST
data structure. The results of a crawler are stored at the Storage
Element of each Grid site. In particular, we keep in ametadata
store file the file-id, name, type, path, size and structural
dependencies of the identified software resources. Then, the
Grid job managerfetches the resultedmetadata store files
from all Grid sites and merges them into afile index. The
file indexcomprises information about each software resource
and is stored in Minersoft’s dedicated infrastructure. From
this index we can easily construct the first version of the
Software Graph, which captures software-related files and their
structural relationships.

B. Indexing phase

During the indexing phase, thefile index is used by the
Grid job managerin order to create multi-threaded indexer
jobs, and to dispatch them for execution to Grid sites. The
task of the indexers is to read and parse local files of interest
and create a full-text inverted index. Since most sites do not
allow jobs running more than 48 hours, several indexer jobs
should be submitted and executed simultaneously on each site,
to improve the file-processing throughput and to reduce the
overall indexing time per site. Each indexer job is responsible
for a specific number of files in a Grid site.

Similarly to the crawling process, the list of files of each
Grid site is decomposed into a number of splits where the
size of the split is chosen to ensure that indexing can be
distributed evenly and efficiently within the time constraints
of the system. In this context, theGrid job managerassigns
the splits to a number of indexer jobs, taking into account the
current status of the Grid site. As a site finishes indexing the
assigned splits, it receives the next ones. When the indexing
has been completed, each Grid site has a full-text inverted
index.

Since a large percentage of duplicate software resources
exists in Grid sites, Minersoft uses aduplicate reduction policy
to preprocess thefile index and identify the exact duplicate
files. Its ultimate goal is to further improve the performance of
indexing. Specifically, a file may belong to more than one Grid
sites. Files with the same name, path and size are considered
to be duplicates. According to our policy, a duplicate file is
assigned to the Grid site which has the minimum number of
assigned files that should be indexed. The key idea behind this
policy is to distribute the duplicate software resources inGrid
sites so as to prevent their overloading. In this context, for
each Grid site, the following steps take place:

1) Thefile index is sorted in ascending order with respect
to the count of sites that a file exists.

2) The files which do not have duplicates are directly
assigned to the corresponding Grid site.

3) If a file belongs to more than one Grid sites, the file
is assigned to the site with the minimum number of
assigned files.

Finally, the Grid job manager fetches all the resulted
local inverted-indexes and merges them into a global full-text
inverted index which is stored in the Minersoft repository.

C. Harvester Implementation and Deployment

The implementation of theGrid job managerrelies upon
the Ganga system [8], which is used to create and submit jobs
as well as to resubmit them in case of failure. We adopted
Ganga in order to have full control of the jobs and their
respective arguments and input files. TheGrid job manager
(through Ganga scripts) monitors the status of jobs after their
submission and keeps a list of sites and their failure rate.
If there are sites with a very high failure rate, theGrid
job managereventually puts them in a black list and stops
submitting jobs to them.

The crawler is written in Python. The Python code scripts
are put in a tar file and copied on a storage element before
job submission starts. The tar file is being downloaded and
untarred to the target site before the crawler execution starts.
By doing that, the size of the jobs’ input sandbox is reduced,
thus job submission is accelerated because the Workload
Management System has to deal with much less files per job.
The indexer is written in Java and Bash and uses an open-
source high performance, full-text index and search library
(Apache Lucene [1]). In order to execute the indexer jobs, we
follow the same code-deployment scenario as with crawlers.

Before the job submission starts, theGrid job managerhas
to distribute the crawling/indexing workload. This is doneby
creating splits for each site that Minersoft has to crawl. The
input file for each split is uploaded on a storage element and
registered to an LCG File Catalog (LFC). Every Job has its
own ID (given as an argument during submission). A job’s
ID is the split number that the job will have to process.
The split input is then downloaded from a storage element
and used to start the processing of files. The split input is a
text file containing the list of files that have to be crawled
or indexed. After execution, the jobs upload their outputs on
storage elements and register the output files to an LFC. The
logical file names and the directories containing them in the
LFC are properly named so that they implicitly state the split
number and the site that they came from or going to.

D. Constructing Software Graph

The main task ofgraph constructoris to construct the
Software Graph described earlier. The Software Graphs are
built locally in each Grid site. For each site, this module
performs structural dependency mining, keyword scrapping,
keyword flow and semantic association mining tasks (de-
scribed in previous section). These tasks result in enriching
the full-text inverted indexesof Grid sites.

E. Searching Software Resources

The goal of searching is to provide quality search results
efficiently. Thequery processormodule receives the results



Grid Site # of Files Size (MB) # of CPUs

HG-03-AUTH 2.659.554 153.560 118
RO-08-UVT 284.426 24.527 28
MK-01-UKIM-II 182.876 3.671 16
AEGIS01-PHY-SCL 150.874 5.162 689
HG-05-FORTH 1.434.525 94.039 232
BG01-IPP 3.632.212 108.814 18
CY-03-INTERCOLLEGE 91.783 2.648 10
HG-02-IASA 3.366.365 195.193 118
CY-01-KIMON 550.762 31.891 78

Total 12.353.377 619.505 1.307

TABLE I

TESTBED.

and ranks them with respect to the users’ queries. To this
end, a ranking algorithm is used to improve the accuracy
and relevance of the replies, especially when keyword-based
searching produces very large numbers of “relevant” software
packages. Minersoft uses the Lucene relevance ranking [1].In
particular, Lucene provides a scoring algorithm that includes
additional data to find best matches to users queries. The
default scoring algorithm is fairly complex and considers
such factors as the frequency of a particular query term with
individual software files and the frequency of the term in the
total population of software files. Finally, the users interact
with thequery-processormodule in order to receive the results.

V. EXPERIMENTAL EVALUATION

Testbed: Our experiments were conducted on EGEE, one of
the largest Grid production services currently in operation.
Table I presents the Grid sites that have been crawled and
indexed by Minersoft.

In this paper, we elaborate on the performance evaluation of
the crawling and indexing tasks of Minersoft. Our objectiveis
to show that Minersoft works sufficiently on a real, large-scale
Grid testbed. Regarding the information retrieval perspective,
we validated Minersoft by harvesting a site of the EGEE
infrastructure (CY-01-KIMON). For the experiments, we used
a collection of queries, expressed as a single keyword search
or multiple-keyword compound search. Results showed that
the Minersoft algorithm achieves both high search efficiency
(the response time is less than 1 sec) and accuracy (high
recall and precision values), and outperforms existing state-
of-the-art methods. We do not present any results regarding
the evaluation of the Software Graph since it is out of the
scope of this work.
Examined metrics: To assess the crawling and indexing in
Minersoft, we investigate the performance of crawler and
indexer jobs; recall that each job is responsible for a number
of files (called splits) that exist on a Grid site. In this context,
we use the following metrics:

• Run time: the average time that a crawler/indexer job
spends on a Grid site, including processing and I/O; this
metric measures the average elapsed time that Minersoft
needs to process (crawl or index) a split.

• CPU time: the average CPU time in seconds spent by
a crawler/indexer job while processing a split on a Grid
site.

• File rate: the number of files that Minersoft
crawls/indexes per second on a Grid site.

• Size rate: the size of files in bytes that Minersoft
crawls/indexes per second on a Grid site.

In our experiments, each crawler and indexer job was
configured to run with five threads. We also ran experiments
with different numbers of threads (from 1, 5, 9 to 13) and
concluded that 5 threads per crawler/indexer job provide a
good trade-off between crawling/indexing performance and
Grid site workload. Smaller or larger numbers of threads
per crawler/indexer job usually result to significantly higher
run times, due to poor CPU utilization or I/O contention,
respectively.
Crawling Evaluation: Figure 2 depicts theper-job average
run-time and per-job average CPU-timefor crawling the
Grid sites. The per-job CPU time takes into account the
total time that all the job’s threads spend in the CPU. The
run-time values are significantly larger than the CPU times
due to the system calls and Input/Output that each crawler
performs while processing its file split. I/O is much more
expensive in the case of sites with shared file systems. Another
observation is that the run-time and CPU-time of crawler jobs
vary significantly across different Grid sites. This imbalance is
due to several factors, including the hardware heterogeneity of
the infrastructure, the dynamic workload conditions of shared
sites, and the dependence of the crawler processing on site-
dependent aspects. For example, the crawler performs expen-
sive “deep” processing of binary and library files to deduce
their type and extract dependencies. This is not required for
text files. Consequently, the percentage of binaries/libraries
found in each site determines to some extent the corresponding
crawling computation. Overall, the crawling of a site can take
a few hours; for instance, the total crawling time for CY-01-
KIMON is about 4 hours. Table III depicts the throughput
achieved by the Minersoft crawler on different sites, expressed
in terms of the number of files and the number of bytes
processed.

The files found by the crawlers to be irrelevant to soft-
ware search are pruned from subsequent processing. Figure 3
presents the percentage of files that have been dropped. We
observe that a large percentage of content in Grid sites (50%-
90%) includes software resources. These files are categorized
with respect to their type (Table IV). From Table IV, we can
see that most software-related files in the Grid infrastructure
are documentation files (man-pages, readme files, html files)
and sources1(e.g. Java, C++). Finally, each crawler stores
within the storage element of its site ametadata store file
capturing the file-id, name, type, path, size and structural
dependencies of the identified software resources. The size
of eachmetadata store fileis presented in Table II.
Indexing Evaluation: Figure 2 depicts theper-job average
run-timeand theper-job CPU timefor indexing Grid sites. As
expected, we observe that indexing is more computationally-

1Sources are files written in any programming language. Executable scripts
(e.g. python, perl, bash) are also considered as sources.



Fig. 2. Average times for jobs.

Fig. 3. Percentage of irrelevant files.

Grid Sites Crawling Statistics Indexing Statistics
# of splits Metadata

store file
size (MB)

# of splits
(including
duplicates)

Inverted
Index size
(MB)

HG-03-AUTH 9 41 6 (8) 1261,33
RO-08-UVT 1 3,1 1 (1) 156,58
MK-01-UKIM-II 1 2,45 1 (1) 121,75
AEGIS01-PHY-SCL 1 2,2 1 (1) 163,55
HG-05-FORTH 5 20,5 5 (5) 586,05
BG01-IPP 13 38 6 (6) 850,9
CY-03-INTERCOLLEGE 1 1,5 1 (1) 75,06
HG-02-IASA 12 51 6 (11) 1511,75
CY-01-KIMON 2 7,3 2 (2) 128,9

TABLE II

CRAWLING & I NDEXING STATISTICS.

Grid Sites File Rate (files/sec) Size Rate (MB/sec)
Files/Run time MB/Run time

HG-03-AUTH 117,82 6,80
RO-08-UVT 231,82 19,99
MK-01-UKIM-II 275,24 5,52
AEGIS01-PHY-SCL 339,66 11,62
HG-05-FORTH 172,65 9,43
BG01-IPP 79,15 2,06
CY-03-INTERCOLLEGE 225,43 6,50
HG-02-IASA 27,74 1,60
CY-01-KIMON 34,93 2,02

TABLE III

CRAWLING RATES.

intensive than crawling, since we need to conduct “deep”
parsing inside the content of all files.

Removing the duplicate files via theduplicate reduction
policy leads to reducing either the number of splits or the
number of files within splits since we found that 33% of files
belong to more than one Grid sites. For instance, HG-02-IASA
has 6 splits instead of 11 splits (including duplicate files).
Consequently, the total indexing time is significantly reduced.
Table II presents the number of splits and the size of inverted

Grid Site Binaries Sources Libraries Docs Irrelevant

HG-03-AUTH 32.276 958.811 96.698 1.252.504 319.265
RO-08-UVT 8.134 56.784 4.199 68.332 146.977
MK-01-UKIM-II 15.083 62.856 8.010 57.806 39.121
AEGIS01-PHY-SCL 6.064 31.734 7.669 66.814 38.593
HG-05-FORTH 28.351 495.982 65.507 729.980 114.705
BG01-IPP 28.684 738.354 83.332 2.580.035 201.807
CY-03-INTERCOLLEGE 26.971 8.925 3.644 24.945 27.298
HG-02-IASA 50.096 1.313.373 121.979 1.597.527 283.390
CY-01-KIMON 28.690 166.285 22.571 287.304 45.912
Total 224.349 3.833.104 413.609 6.665.247 1.217.068

TABLE IV

FILES CATEGORIES.

Grid Sites File Rate (files/sec) Size Rate (MB/sec)
Files/Run time MB/Run time

HG-03-AUTH 38,65 1,75
RO-08-UVT 24,03 0,82
MK-01-UKIM-II 14,94 0,31
AEGIS01-PHY-SCL 59,04 1,98
HG-05-FORTH 10,75 0,40
BG01-IPP 92,25 1,93
CY-03-INTERCOLLEGE 37,09 1,82
HG-02-IASA 65,07 2,92
CY-01-KIMON 66,50 3,36

TABLE V

INDEXING RATES.

file indexes in each Grid site. Note that less number of splits
are required for indexing than crawling since the irrelevant
files have been deleted. Finally, Table V depicts the throughput
of the indexer expressed in terms of the number of files and
the number of bytes processed per second in each Grid site.
The performance of indexing is affected by the hardware (disk
seek, CPU/memory performance), file types, and the workload
of each site.

To sum up, our experimentations concluded to the following
empirical observations:

• Minersoft successfully crawled 12.3 million valid files
(620 GB size) and sustained, in most sites, high crawling
and indexing rates.

• A large percentage of duplicate files exists in Grid sites.
Specifically, 33% of files belongs to more than one Grid
sites.

• The crawling and indexing is significantly affected by the
hardware (local disk, shared file system), file types and
the current workload of Grid sites.

• It is important to establish advanced software discovery
services in the Grid since, in most cases, more than 50%
of files that exist in the workernodes file systems of Grid
sites are software files.

VI. OPEN ISSUES

We are currently exploring a number of open issues that
require further analysis:

• Determining the size of splits: As we referred above, the
files of each Grid site are split into a number of splits
where the size of the split is chosen to ensure that the
crawling and indexing can be distributed evenly and effi-
ciently within the time constraints of the underlying site.
Considering that in a Grid infrastructure the execution
time and workload cannot be determined in advance using
historical data, the size of splits should be adapted to the



working environment. To meet this challenge, theGrid
job managershould have a global view of the system’s
workload so as to dynamically rearrange the size of splits
as well as schedule them to Grid sites.

• Determining the number of threads per crawler/indexer
jobs: From our experiments it is obvious that the number
of threads per crawler/indexer job affects significantly
the performance of Minersoft. To improve the efficiency
of crawling and indexing, Minersoft should enhance
self-adaptive mechanisms in order to assign a sufficient
number of threads to Grid resources (CPUs in Grid
sites). Grid monitoring systems provide information about
resource utilization (CPU utilization, memory utilization,
disk utilization, etc.) and network connectivity in Grid
sites. Thus, if the current status of a Grid site has changed,
the Grid job managershould modify the number of
threads per crawler/indexer jobs in this site.

• Detecting duplicate software files: Files that are exact
duplicates of each other can be identified by either heuris-
tic techniques or checksumming techniques. In order to
prevent duplicate files, crawler jobs need to periodically
communicate to coordinate with each other. However, this
communication may result in overhead. Can we minimize
this communication overhead while maintaining the ef-
fectiveness of the crawler job? Authors in [9] dealt with
this problem in the context of the Web. Another issue
is the identification of near-duplicate files. If we could
successfully identify these files, we could improve the
performance of indexing, since a percentage of files will
be deleted. Manber [17] has developed algorithms for
near-duplicate detection to reduce storage in large-scale
file systems.

• Determining politeness: Minersoft jobs should not ob-
struct the normal operation of Grid sites. Minersoft
should adhere to strict rate-limiting policies when ac-
cessing poorly provisioned (in terms of workload) Grid
sites. To address this issue, Minersoft should implement a
flexible policy that would avoid running multiple crawler
jobs to overloaded Grid sites.

VII. C ONCLUSIONS- FUTURE WORK

In this paper, we present Minersoft - a Grid harvester
which enables keyword-based searches for software installed
on Grid computing infrastructures. The results of Minersoft
harvesting are encoded in a weighted, undirected, typed graph,
called the Software Graph. The Software Graph is used to
annotate automatically the software resources with keyword-
rich metadata. Then, each Grid site indexes its Software Graph.
Using a real testbed, we present the performance issues of
crawling and indexing. Minersoft successfully crawled 12.3
million valid files (620 GB size) and sustained, in most sites,
high crawling. Except of Grids, Minersoft can also be used
as keyword-based paradigm for any large-scale distributed
computing platform, such as Clouds, as well as, for stand-
alone computers. In future work we intend to enhance the
Map-Reduce paradigm in the Minersoft architecture.
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