Harvesting Large-Scale Grids for

Software

Asterios Katsifodimos, George

Resources

Palli¢, Marios D. Dikaiakos

Computer Science Department, University of Cyprus, N&caSl 1678, Cyprus
lasteri osk@s. ucy.ac.cy, Z2gpallis@s.ucy.ac.cy, 3mdd@s.ucy.ac.cy

Abstract— Grid infrastructures are in operation around the
world, federating an impressive collection of computatioml
resources and a wide variety of application software. In thé
context, it is important to establish advanced software disovery
services that could help end-users locate software compants
suitable to their needs. In this paper, we present the design
architecture and implementation of an open-source keyword
based paradigm for the search of software resources in Grid
infrastructures, called Minersoft. A key goal of Minersoft is to
annotate automatically all the software resources with kewyord-
rich metadata. Using advanced Information Retrieval techiques,
we locate software resources with respect to users queries.
Experiments were conducted in EGEE, one of the largest Grid
production services currently in operation. Results showe that
Minersoft successfully crawled 12.3 million valid files (62 GB
size) and sustained, in most sites, high crawling rates.

I. INTRODUCTION

Currently, a number of large-scale Grid infrastructuresiar
operation around the world, federating an impressive ctitia

an application suitable to her needs, and would accordingly
prepare and submit jobs to these sites.

Adopting a keyword-based paradigm for the search of soft-
ware seems like an obvious choice, given that keyword-based
search is currently the dominant paradigm for information
discovery [15]. Keyword-based search traditionally rel@n
Information Retrieval (IR) algorithms that explore the occ
rence of words in documents. However, software components
usually come with few or no free-text descriptors. Conse-
qguently, the problem cannot be addressed with traditioRal |
approaches. Instead, we need new techniques that will\gisco
software-related resources, extract structure and mgdrgm
those resources, and discover implicit relationships amon
them. Also, we need to develop methods for effective queryin
and for deriving insight from query results. The provisidn o
keyword-based search over large, distributed collectiohs
unstructured data has been identified among the main open
research challenges in data management that are expected to

of computational resources and a wide variety of applicatidring a high impact in the future [4]. Searching for software

software [2], [3]. These infrastructures provide prodoicti

falls under this general problem, because file systems treat

quality computing and storage services to thousands obkussoftware resources as unstructured data and maintainittéey |
that belong to a wide range of scientific and business coffiany metadata about installed software.

munities. In the context of large-scale Grids, it is impotte

To address the software search challenge, we developed

establish advanced software discovery services that ciin hiae Minersoft Grid harvesting system. Minersoft visits Grid

end-users locate software components that are suitable
their computational needs. Earlier studies have showntligat

sites, crawls their file systems, identifies software resesir
of interest (software, libraries, documentation), assitype

difficulty in discovering software components was one of thieformation to these resources, and discovers implicibcias

key inhibitors for the adoption of component technologied a
software reuse [7]. Therefore, the provision of a usemrftlg

tions between software and documentation files. Subselguent
it creates an inverted index of software resources that is

tool to search for software is expected to expand the baseuskd to support keyword-based searches. To achieve these

Grid users substantially.
To motivate the importance of such a tool, let us consid

tasks, Minersoft invokes file-system utilities and objeatle
analyzers, implements heuristics for file-type identifimat

a biologist who is searching for drug discovery softwarand filename normalization, and performs document analysis

deployed on a Grid infrastructure. Although informativggsa
about installed software can be published through Grid i
formation systems, Grid system administrators seldonovoll

algorithms on software documentation files and source-code
pomments. The major contributions of this article are the
following:

such a practice [10]. Consequently, there are no tools ore
published information that would support searches of this
kind. Envisioning the existence of a Grid software search «
engine, a biologist would submit a query to the search engine
using some keywords (e.g. “docking proteins biology,” ‘glru
discovery,” or “autodock”). In response to this query, the e
engine would return a list of software matching the query’s
keywords, along with Grid sites where this software could be
found. Thus, the user would be able to identify the sitesihgst

We present the design, the architecture, and implementa-
tion of the Minersoft harvester.

We provide a study about the installed software resources
in EGEE [2], one of the largest Grid production services
currently in operation.

We conduct an experimental evaluation of Minersoft, on
a real, large-scale Grid testbed, exploring performance
issues of the proposed scheme. In particular, we use
Minersoft to harvest several sites of EGEE Grid.

The remainder of this paper is organized as follows: SectionMinersoft is different from all the above works in a number
2 presents an overview of related work and the Minersaff key aspects:

challenges are discussed. Section 3 presents a descrgition
the Minersoft harvesting. Section 4 describes the ardhitec
of Minersoft. In Section 5, we present an experimental as-

Minersoft supports searching not only for source codes
but also for executables and libraries stored in binary
format;

sessment of our work. Section 6 discusses the open issues fQr \inersoft does not presume that file-systems maintain

harvesting the Grid. We conclude in Section 7.

1. RELATED WORK

A number of alternative approaches have been proposed
for addressing software-component retrieval. One of the ke
distinguishing traits of these approaches is the corpusiupo
which the search is conducted:
Searching in a software repository: The GURU system
by Maarek et al [16] is one of the first efforts to estab-
lish a keyword-based paradigm for the retrieval of source
code installed on standalone computers. Using standard IR
techniques, GURU exploits the comments of source code
and documentation files. SEC+ is a more recent keyword-
based paradigm for discovering software components [13];
an ontology is used to describe the properties of software
components. Maracatu [21] is another search engine for soft
ware components which makes use of folksonomy concepts.
Folksonomy is a cooperative classification scheme where the
users assign keywords (called tags) to software resources.
A similar approach, based on file tagging, was presented
in [14]; there, the authors proposed a scheme for searching
and navigating huge file systems using faceted metadata, i.e
sets of key-value pairs associated with each file. The keys,
which are called “facets”, allow the values to be grouped
into semantically meaningful ways. Several research sffor
have also focused on the problem of identifying automdtical
the associations between source-code and software-ol@scri
documents [6], [18]. Finally, another approach is to use
semantic file-systems [5], [11].
Searching in the Web:In [12], authors described an approach
for harvesting software components from the Web. The basic
idea is to use the Web as the underlying repository, and to
utilize standard search engines, such as Google, as thesmean
of discovering appropriate software assets. In the Worldewn
Web context, harvesting is a well-studied research problem

metadata (tags etc) to support software search; instead,
the Minersoft harvester generates such metadata auto-
matically by invoking standard file-system utilities and
tools and by exploiting the hierarchical organization of
file-systems;

Minersoft introduces the concept of the Software Graph,
a weighted, undirected, typed graph. The Software Graph
is used to represent software resources and associations
under a single data structure, amenable to further pro-
cessing.

Minersoft addresses a number of additional implemen-
tation challenges that are specific to federated infras-
tructures: i) Software management is a decentralized
activity; different sites may follow different policies
about software installation, directory naming etc. Also,
software entities on a Grid site often come in a wide
variety of packaging configurations and formats. There-
fore, solutions that are language-specific or tailored to
some specific software-component architecture are not
applicable. ii) Harvesting the sites of a Grid infrastruetu

is a demanding task for computational, storage, and
communication resources. Also, most Grid systems do
not support interactive computation. Therefore, software
harvesting needs to be performed in a distributed, non-
interactive manner. iii) The users of a Grid infrastructure
do not have direct access to local Grid sites. Therefore, a
harvester has to be either part of middleware services
(something that would require the intervention to the
middleware) or to be submitted for execution as a hormal
job, through the middleware. In the Minersoft architecture
and implementation we adopt the latter approach, which
facilitates the deployment of the system on different Grid
infrastructures.

IIl. MINERSOFTHARVESTING

In principle, a set of seed URLs is used as the basis for theA software package that is installed on a Linux/Unix ma-
search, and those pages are fetched one by one. Each hlgpeditine, typically comprises one or more software-relatessfil
within those pages is extracted and, if it has not been egglorfrom a variety of possible categoriesxecutablegbinaries
yet, appended to a queue of pending pages. Eventually, @llscripts), softwardibraries, source codewritten in some
pages reachable from the seed set will have been accessed pragramming language, varioaenfiguration filesequired for
the process can be repeated. Other researchers have cratledompilation and/or installation of code (e.g. makejlaad
through Internet publicly available CVS repositories tdldu various unstructured or semi-structuredftware-description
their own source code search engines (e.g., SPARS-J) [19Hocumentswhich provide human-readable information about
Searching in the Grid: In the Grid context, a recent work hasthe software, its installation, operation, and mainteegntan-
proposed a component search service, called GRIDLE [20kls, readme files, etc). The Minersoft harvester seeks to
this scheme allows users to locate the source components tlaentify software resources of interest (software, lilrsyr

need for building a Grid application. Users specify a highel

documentation), assign type information to these resaurce

workflow plan including the requirements of each componertiscover implicit associations between software and darum
Then, GRIDLE presents a ranked list of components thidtion files, and capture this information in data structure

match partially or totally user requirements.

amenable to indexing and search.

A. Software Graph Definition Classification and pruning: Names and pathnames play an

To represent the software-related files found in a file systdfportant role in file classification and in the discovery of
and the associations between them, we introduce the concagstociations between files. Accordingly, Minersoft noires
of the Software Graph a weighted, undirected metadatafilenames and pathnames of FST vertices, by identifying
rich, typed graphG(V,E). The node-set’ of the graph and removing suffixes and prefixes. The normalized names
comprises: i) nodes representing software-related fileado are stored as metadata annotations inside the zone-set of
on the file-system of a computing nodélg-vertice3 and FST nodes. Subsequently, Minersoft applies a combination o
i) nodes representing directories of the file-systefinectory- System utilities and heuristics to classify each FST filgese
verticed. The edges? of the graph represent structural and"to & variety of possible categories that a software paekag
semantic associations between vertices. Structural iassog0mprises. Finally, Minersoft prunes all FST leaves found t
tions correspond to relationships between file-systenuress b€ irrelevant to software search, dropping also all inteffi$a
(files and directories). These relationships are derivedfr nodes that are left with no descendants. This step resulis to
file-system structure according to various conventiong.(e.Pruned version of the FST that contains only software-eelat
about the location and naming of documentation files) or froffe-vertices and the corresponding directory-vertices.
configuration files that describe the structuring of sofevaStructural dependency mining: Subsequently, Minersoft
packages (RPMs, tar files, etc). searches for “structural” relationships between software

The Software Graph is “typed” because its vertices ariglated files (leaves of the file-system tree). Discoverdat re
edges are assigned to different types (classes). Eachxvett@nships are inserted as edges that connect leaves of fie FS
v of the Software Grapli(V, E) is annotated with a numbertransforming the tree into a graph. Structural relatiopsttian
of associated metadata attributes, describing its corstedt be identified by: i) Rules that represent expert knowledge
context: about file-system organization, such as naming and location

« name(v) is the normalized name of the file representegPnventions. For instance, a set of rules link files that @ont
by v. man-pages$o the corresponding executablBeadmendhtml

« type(v) denotes the type of (binary executable, sourcefiles are linked to related software files. ii) Dynamic depen-
code, directory, etc). dencies that exist between libraries and binary execwable

. sites(v) denotes the Grid sites where fiteis located. Binary executable files and libraries usually depend onrothe

« path(v) is a set of terms derived from the path-name dibraries that need to be dynamically linked during runtime
file v in site(v)’s file system. These dependencies are mined from the headers of libraries

e zone(v),l = 1,...,z, is a set of zones assigned t@hd executables and the corresponding edges are inserted in
vertexv. Each zone contains terms extracted either frofi€ 9raph; each of these edges is assigned a weight of one, as

the content ofv or from the content of a file associatedh€re exists a direct association of files. _
to v. The structural dependency mining step produces the first
version of the Software Graph, which captures software-
the association represented byand w(e) is a real-valued related files and their structural relationships. Subsetye
weight (0 < w < 1) expressing the degree of correlatiorjl\/”nerSOft seeks to enrich file-vertex annotation with aiddial
between the edge’s vertices. An association between t_m?tadata and to add more edges !nto the_ Softyvare Graph,
graph-nodes can be structural (e.g., directory containmef order to better express semantic relationships between

software library membership) or semantic (text similgrity software-relateq resources.)
Keyword scraping: In this step, Minersoft performs deep

B. Minersoft Algorithm content analysis for each file-vertex of the Software Graph,

A key responsibility of the Minersoft harvester is to conerder to extract its descriptive keywords. This is a reseurc
struct a Software Graph, starting from the contents of thkee fillemanding computation that requires the transfer of all file
system found on a Grid site. Then, given the Software Grapfgntents from disk to memory to perform content pars-
Minersoft builds an inverted index for software resourceésg, stop-word elimination, and keyword extraction. Diffat
installed on the site. The Minersoft harvester implememts &eyword-scraping techniques are used for different types o
algorithm comprising a number of steps described below. Aites: for instance, in the case of source code, we extract
in-depth discussion regarding the Software Graph contstruc keywords only from the comments inside the source, since
algorithm is beyond the scope of this paper. the actual code lines would create unnecessary noise vtithou
FST construction: Initially, Minersoft scans the file-systemproducing descriptive features. Following the keyword &st
of a Grid node and creates File-System TredFST) data tion, Minersoft applies a feature extraction technique] [tbe
structure. The internal vertices of the tree correspondreced estimate the quantity of information of individual termsdan
tories of the file-system; its leaves correspond to files.ésdgto disregard keywords of low value. Binary executable files
represent containment relationships between direct@ies and libraries contain strings that are used for printing out
sub-directories or files. During the scan, Minersoft igrsose messages to the users, debugging information, logging etc.
stop listof files and directories that do not contain informatiodll this information can be used in order to get useful featur
of interest to software search (e.gt,nmp, /etc). from these files. The extracted keywords are saved in theszone

Each edge of the graph has two attributesipe(e) denotes

Batch system queue
Grid Site 1
Max Wall Clock Time

Users Minersoft Grid

of the file-vertices of the Software Graph.
Keyword flow: Software files (executables, libraries, source
code) usually contain little or no free-text descriptiohkere-

fore, content analysis typically discovers very few keyagr o Consmustor

inside such files. To enrich the keyword sets of software- y / i
related file-vertices, Minersoft identifies edges that con- processor | :

nect software-documentation file-vertices with softwate- fi A areger ||

vertices, and copies selected keywords from the former into
the zones of the latter. As we referred above, each zone has
a different degree of importance in terms of describing the
content of a software file. For instance, tbentent zonef a
nodeV is more important than itdocumentation zones
Semantic association mining:To further improve the den-
sity of the Software Graph, Minersoft calculates the cosine
similarity between the graph'’s file-vertices. To implemtns Fig. 1. Minersoft architecture.

calculation, Minersoft represents each file-vertex as glted

term-vector derived from its associated zones. File-vesti

that exhibit a high cosine-similarity value are joined thgh Grid software resources and keep them up to date. Storage
an edge that denotes the existence of a semantic relagonsiiace must be used efficiently to store indices and the files
between them. themselves. The indexing system must process hundreds of
Inverted index construction: To support full-text search gigabytes of data efficiently.

for software resources, Minersoft creates an invertedxinde In this section, we will provide a description of how the
of software-related file-vertices of the Software Graphe Thwhole system works as depicted in Figure 1. The crawling and
inverted index has a set of terms, with each term beifgdexing is done by several distributed multi-threadedaviza
associated to a “posting” list of pointers to the softwaresfil and indexer Grid jobs, which run in parallel on different @ri
containing the term. The terms are extracted from the zorgites for improved performance and efficiency. The crawber a

<

(1> —riasten

@Max Wall Cloc

-

] e
i

of Software Graph vertices. indexer jobs process a specific number of files, caliglids A
o key component of the Minersoft architecture is Be&d job
C. Parallelization manages which has the overall supervision for crawler and

For the efficient implementation of the Minersoft algorithnindexer jobs. Thgraph constructomodule is responsible for

in a Grid setting, we should take advantage of various pargPnstructing the Software Graph and identifying the sofewa
lelization techniques in order to: components. Theuery processomodule is responsible for

« Distribute parts of the Minersoft computation to GridProviding quality search results efficiently.

sites, in order to take advantage of the Grid compuf Crawling phase

ing and storage power, to reduce the communication) o)
exchange between the Minersoft system and local GrigCrawling the Grid is a challenging task that needs to address

sites, and to sustain the scalability of Minersoft witlfarious performance, reliability and site-policy issuges it
respect to the total number of Grid sites. Minersoft tasi8Volves interaction with hundreds of Grid sites, which are
are wrapped as Grid jobs that are submitted to Grid sitB§Yond the control of the system. Minersoft undertakes the
via the Grid workload-management system. crawling of Grid sites in a distributed manner. TGeid job

. Avoid overloading Grid sites by applying load-balancing?@nagersends a number of multi-threaded crawler jobs to
techniques when deploying Minersoft jobs to the Grid.€ach Grid site. A challenge for crawler jobs is to harvest

. Improve the performance of Minersoft jobs by employing!l the software resources residing within Grid sites, with
multi-threading to overlap local computation with 1/0. €Xceeding the time constraints imposed by site policiéss jo

. Adapt to the policies put in place by different Grid Siteg\{hlch run longer than the aIIO_/ved time are termlnated by the
regarding the number of jobs that can be accepted BS;es’ batch systems. The maximum wall clock time for a Grid

their queuing systems, the total time that each of theSke usually ranges between 2 and 72 hours. _
jobs is allowed to run on a given site, etc. Considering that a Grid site contains a large volume of files,

More details on the parallelization of the Minersoft algiom we de_compose the fllg system of each G”d site into @ number

. : . . of splits where the size of each split is chosen so that the

and its deployment on the EGEE Grid are given in the " N .- L

following section grawllng can be distributed ev_enly_and eff|C|e_ntIy W|th|re_th
' time constraints of the underlying site. The splits aregrssil

IV. MINERSOETARCHITECTURE by theGrid job manageto crawler jobs on a continuous basis:

Creating a search engine for software that can cope wifis a site finishes with its assigned splits, it is receivesemor
the scale of emerging Grid infrastructures presents skvesplits for processing. If a site becomes laggard, the crgote

challenges. Fast crawling technology is required to gatmer is canceled and rescheduled to run when the site's workbad i

reduced. Furthermore, if the batch system queue of a Gad sit 3) If a file belongs to more than one Grid sites, the file
is full and does not accept new jobs, tBeid job manager is assigned to the site with the minimum number of
stops submitting crawler jobs to that site until the batch assigned files.

system becomes ready to accept more. Minersoft crawlersrinally, the Grid job managerfetches all the resulted
undertake the task of classifying software files into catiego local inverted-indexes and merges them into a global &xt-t
as described earlier (e.g., binaries, libraries, docuat@mts). inverted index which is stored in the Minersoft repository.
The files found to be irrelevant are dropped from the FSE Harvester Implementation and Deployment

data structure. The results of a crawler are stored at tha@to)) o _

Element of each Grid site. In particular, we keep imetadata 1h€ implementation of thé&rid job managerrelies upon
store file the file-id, name, type, path, size and structur&l® Ganga system [8], which is used to create and submit jobs
dependencies of the identified software resources. Then, # Well as to resubmit them in case of failure. We adopted
Grid job managerfetches the resultethetadata store files Ga@nga in order to have full control of the jobs and their
from all Grid sites and merges them intofie index The réspective arguments and input files. TGed job manager

file indexcomprises information about each software resour€&rough Ganga scripts) monitors the status of jobs afteir th
and is stored in Minersoft's dedicated infrastructure. froSubmission and keeps a list of sites and their failure rate.
this index we can easily construct the first version of thé there are sites with a very high failure rate, tirid
Software Graph, which captures software-related files eid t 0P managereventually puts them in a black list and stops

structural relationships. submitting jobs to them. _
_ The crawler is written in Python. The Python code scripts
B. Indexing phase are put in a tar file and copied on a storage element before

During the indexing phase, thile indexis used by the job submission starts. The tar file is being downloaded and
Grid job managerin order to create multi-threaded indexetintarred to the target site before the crawler executionssta
jobs, and to dispatch them for execution to Grid sites. THay doing that, the size of the jobs’ input sandbox is reduced,
task of the indexers is to read and parse local files of interégus job submission is accelerated because the Workload
and create a full-text inverted index. Since most sites do danagement System has to deal with much less files per job.
allow jobs running more than 48 hours, several indexer jod&e indexer is written in Java and Bash and uses an open-
should be submitted and executed simultaneously on eagh sipurce high performance, full-text index and search liprar
to improve the file-processing throughput and to reduce tk@pache Lucene [1]). In order to execute the indexer jobs, we
overall indexing time per site. Each indexer job is respolesi follow the same code-deployment scenario as with crawlers.
for a specific number of files in a Grid site. Before the job submission starts, t@eid job managerthas

Similarly to the crawling process, the list of files of eaclo distribute the crawling/indexing workload. This is dome
Grid site is decomposed into a number of splits where tifgeating splits for each site that Minersoft has to crawle Th
size of the split is chosen to ensure that indexing can But file for each split is uploaded on a storage element and
distributed evenly and efficiently within the time consttai registered to an LCG File Catalog (LFC). Every Job has its
of the system. In this context, tH@rid job managerassigns own ID (given as an argument during submission). A job’s
the splits to a number of indexer jobs, taking into accouat thD is the split number that the job will have to process.
current status of the Grid site. As a site finishes indexirgy tAhe split input is then downloaded from a storage element
assigned splits, it receives the next ones. When the indexind used to start the processing of files. The split input is a
has been completed, each Grid site has a full-text inverti&xt file containing the list of files that have to be crawled
index. or indexed. After execution, the jobs upload their outputs o

Since a large percentage of duplicate software resour&é@rage elements and register the output files to an LFC. The
exists in Grid sites, Minersoft useslaplicate reduction policy logical file names and the directories containing them in the
to preprocess théile indexand identify the exact duplicate LFC are properly named so that they implicitly state thetspli
files. Its ultimate goal is to further improve the performané number and the site that they came from or going to.
indexing. Specifically, a file may belong to more than one Grig. Constructing Software Graph
sites. Files with the same name, path and size are consider
to pe duplicates. A.cco.rdmg FO our policy, g_dupllcate file '§ ftware Graph described earlier. The Software Graphs are
assigned to the Grid site which has the minimum number grF. . A . .

uilt locally in each Grid site. For each site, this module

assigned files that should be indexed. The key idea behiad t L forms structural dependency minina. kevword scranpin
policy is to distribute the duplicate software resourcesiid b b y g: X°y APIng

sites so as to prevent their overloading. In this context, fgeyword flow and semantic association mining tasks (de-

each Grid site, the following steps take place: Scribed in previous section). These tasks result in enrgchi

. : .) _ the full-text inverted indexesf Grid sites.
1) Thefile indexis sorted in ascending order with respect

to the count of sites that a file exists. E. Searching Software Resources
2) The files which do not have duplicates are directly The goal of searching is to provide quality search results
assigned to the corresponding Grid site. efficiently. Thequery processomodule receives the results

G\‘Phe main task ofgraph constructoris to construct the

Grid Site [#ofFiles | Size (MB) | #of CPUs |

FG-03AUTH 765955 | 153560 s o File rate: the number of files that Minersoft
e a1 T % crawls/indexes per second on a Grid site.
ARG PHYSCL e a2 o « Size rate: the size of files in bytes that Minersoft
B e 22z | 106514 18 crawls/indexes per second on a Grid site.
LR TS In our experiments, each crawler and indexer job was
([Total [12353377 619505 [1307 | configured to run with five threads. We also ran experiments
TABLE | with different numbers of threads (from 1, 5, 9 to 13) and
TESTBED. concluded that 5 threads per crawler/indexer job provide a

good trade-off between crawling/indexing performance and
Grid site workload. Smaller or larger numbers of threads
per crawler/indexer job usually result to significantly by
and ranks them with respect to the users’ queries. To thign times, due to poor CPU utilization or I/O contention,
end, a ranking algorithm is used to improve the accuragyspectively.
and relevance of the replies, especially when keywordiba&‘@rawnng Evaluation: Figure 2 depicts theer-job average
searching produces very large numbers of “relevant” sa#wayn-time and per-job average CPU-timdor crawling the
packages. Minersoft uses the Lucene relevance rankind[1].Grid sites. The per-job CPU time takes into account the
particular, Lucene provides a scoring algorithm that ide&l tqt3] time that all the job's threads spend in the CPU. The
additional data to find best matches to users queries. Th@-time values are significantly larger than the CPU times
default scoring algorithm is fairly complex and considerg e to the system calls and Input/Output that each crawler
such factors as the frequency of a particular query term WiH@rforms while processing its file split. /0 is much more
individual software files and the frequency of the term in theypensive in the case of sites with shared file systems. ¬h
total population of software files. Finally, the users iar opservation is that the run-time and CPU-time of crawlesjob
with thequery-processomodule in order to receive the results\,ary significantly across different Grid sites. This imbaia is
due to several factors, including the hardware heterogyeogi
V. EXPERIMENTAL EVALUATION the infrastructure, the dynamic workload conditions ofreda

Testbed: Our experiments were conducted on EGEE, one of€S: and the dependence of the crawler processing on site-
the largest Grid production services currently in operatiod€Pendent aspects. For example, the crawler performs expen

Table | presents the Grid sites that have been crawled afitf ~deep” processing of binary and library files to deduce

indexed by Minersoft. their type and extract dependencies. This is not required fo

In this paper, we elaborate on the performance evaluation]tc‘f'}f(t (1;|I_es. Cﬁns_eq(ljjently, [the percentage of rt:manesﬂn@sad_
the crawling and indexing tasks of Minersoft. Our objeciive '0UNd In each site determines to some extent the correspgndi

to show that Minersoft works sufficiently on a real, largelsc crawling computation. Overall, the crawling of a site caketa

Grid testbed. Regarding the information retrieval perspec a few hqurs; for instance, the total crawl_lng time for CY-01-
we validated Minersoft by harvesting a site of the EGEE”VI_O'\I is about 4 hours. Table I d?p'CtS th.e throughput
infrastructure (CY-01-KIMON). For the experiments, we dlseaCh'eved by the Minersoft crav_vler on different sites, espeel

a collection of queries, expressed as a single keyword lseald €rms of the number of files and the number of bytes
or multiple-keyword compound search. Results showed tH%{PceSS_Ed‘ .

the Minersoft algorithm achieves both high search effiglenc The files found by the crawlers to be irrelevant to soft-

(the response time is less than 1 sec) and accuracy (hW§A€ search are pruned from subsequent processing. Figure 3

recall and precision values), and outperforms existingestaPresents the percentage of files that have been dropped. We
of-the-art methods. We do not present any results regardffigSe"ve that a large percentage of content in Grid sites {50%

the evaluation of the Software Graph since it is out of thed 70) includes software resources. These files are categoriz
scope of this work. with respect to their type (Table 1V). From Table IV, we can

Examined metrics: To assess the crawling and indexing irce that most spftwr_;lre-related files in the G“d. mfrastnuz:t.
Minersoft, we investigate the performance of crawler ary® documentation files (man-pages, readme files, html files)
indexer jobs; recall that each job is responsible for a numtdd sourcege.g. Java, C++). Finally, each crawler stores

of files (called splits) that exist on a Grid site. In this cextt within the storage element of its site raetadata store file
we use the following metrics: capturing the file-id, name, type, path, size and structural

)) i _ dependencies of the identified software resources. The size
« Run time: the average time that a crawler/indexer joby eachmetadata store filés presented in Table |1,
spends on a Grid site, including processing and I/O; thigyeying Evaluation: Figure 2 depicts theer-job average

metric measures the average elapsed time that Minersoff, timeand theper-job CPU timefor indexing Grid sites. As

needs_to process (crawl or mde_x) a_spht. expected, we observe that indexing is more computationally
« CPU time: the average CPU time in seconds spent by

a_ crawler/indexer IOb while processing a Spllt on a Grid 1Sources are files written in any programming language. Babteiscripts
site. (e.g. python, perl, bash) are also considered as sources.

25000 - mAvg. CPU time (crawling)

BAvg. run time (crawling)
20000
HAvg. CPU time (indexing)

15000 BAvg. run time (indexing)

Time (sec)

10000 A

5000

ddi-098 e

HINY-E0OH Ky

IAT00Y Fobrmrery

AN Lo B
198-AHd-L0SI9AY Fimy
ossoen B
FOITIOOHILNI
“E0-AD
YSYI-Z0-OH
NOWI-10-AD

Grid Sites

Fig. 2. Average times for jobs.

a@lielevart Filss
alirelevart Filss Size (ME)

Percentage
B8 as88388

2

o

HLf7€0-OH
1AN80-od
HLHO4S0-OH §

ddrioog
TETITIOH |
MOBII0-AD &

IE AT LOE M
15
AHE 1051037
39ITIOTHIINI |
CEORAD

Grid Sites

Fig. 3. Percentage of irrelevant files.

Grid Sites Crawling Statistics Indexing Statistics
of splits Metadata # of splits Inverted

store file (including Index size

size (MB) duplicates) (MB)
HG-03-AUTH 9 41 6 (8) 1261,33
RO-08-UVT 1 31 1(1) 156,58
MK-01-UKIM-II 1 2,45 1(1) 121,75
AEGIS01-PHY-SCL 1 2,2 1(1) 163,55
HG-05-FORTH 5 20,5 5 (5) 586,05
BGO1-IPP 13 38 6 (6) 850,9
CY-03-INTERCOLLEGE 1 15 1(1) 75,06
HG-02-IASA 12 51 6 (11) 1511,75
CY-01-KIMON 2 73 2 (2 128,9

TABLE 1l

CRAWLING & | NDEXING STATISTICS.

Grid Sites || File Rate (files/sec) | Size Rate (MB/sec)
Files/Run time MB/Run time
HG-03-AUTH 117,82 6,80
RO-08-UVT 231,82 19,99
MK-01-UKIM-II 275,24 5,52
AEGIS01-PHY-SCL 339,66 11,62
HG-05-FORTH 172,65 9,43
BGO1-IPP 79,15 2,06
CY-03-INTERCOLLEGE 225,43 6,50
HG-02-IASA 27,74 1,60
CY-01-KIMON 34,93 2,02
TABLE Il

CRAWLING RATES.

[_Grid Site [Binaries | Sources [Libraies | Docs [lrrelevant |
HG-03-AUTH 32.276 958.811 96.698 1.252.504 319.265
RO-08-UVT 8.134 56.784 4.199 68.332 146.977
MK-01-UKIM-II 15.083 62.856 8.010 57.806 39.121
AEGIS01-PHY-SCL 6.064 31.734 7.669 66.814 38.593
HG-05-FORTH 28.351 495,982 65.507 729.980 114.705
BGO1-IPP 28.684 738.354 83.332 2.580.035 201.807
CY-03-INTERCOLLEGE 26.971 8.925 3.644 24.945 27.298
HG-02-IASA 50.096 1.313.373 121.979 1.597.527 283.390
CY-01-KIMON 28.690 166.285 22.571 287.304 45.912
Total 224.349 3.833.104 413.609 6.665.247 1.217.068

TABLE IV

FILES CATEGORIES

Grid Sites || File Rate (files/sec) | Size Rate (MB/sec)
Files/Run time MB/Run time
HG-03-AUTH 38,65 1,75
RO-08-UVT 24,03 0,82
MK-01-UKIM-II 14,94 0,31
AEGIS01-PHY-SCL 59,04 1,98
HG-05-FORTH 10,75 0,40
BGO1-IPP 92,25 1,93
CY-03-INTERCOLLEGE 37,09 1,82
HG-02-IASA 65,07 2,92
CY-01-KIMON 66,50 3,36

TABLE V
INDEXING RATES.

file indexes in each Grid site. Note that less number of splits
are required for indexing than crawling since the irrelévan
files have been deleted. Finally, Table V depicts the thrpugh
of the indexer expressed in terms of the number of files and
the number of bytes processed per second in each Grid site.
The performance of indexing is affected by the hardware(dis
seek, CPU/memory performance), file types, and the workload
of each site.

To sum up, our experimentations concluded to the following
empirical observations:

o Minersoft successfully crawled 12.3 million valid files
(620 GB size) and sustained, in most sites, high crawling
and indexing rates.

« A large percentage of duplicate files exists in Grid sites.
Specifically, 33% of files belongs to more than one Grid
sites.

« The crawling and indexing is significantly affected by the
hardware (local disk, shared file system), file types and
the current workload of Grid sites.

« It is important to establish advanced software discovery
services in the Grid since, in most cases, more than 50%
of files that exist in the workernodes file systems of Grid
sites are software files.

VI. OPENISSUES
We are currently exploring a number of open issues that

intensive than crawling, since we need to conduct “deepequire further analysis:

parsing inside the content of all files.
Removing the duplicate files via tha@uplicate reduction

« Determining the size of splits: As we referred above, the
files of each Grid site are split into a humber of splits

policy leads to reducing either the number of splits or the where the size of the split is chosen to ensure that the
number of files within splits since we found that 33% of files crawling and indexing can be distributed evenly and effi-
belong to more than one Grid sites. For instance, HG-02-IASA ciently within the time constraints of the underlying site.

has 6 splits instead of 11 splits (including duplicate files) Considering that in a Grid infrastructure the execution

Consequently, the total indexing time is significantly reeid.

time and workload cannot be determined in advance using

Table Il presents the number of splits and the size of inderte historical data, the size of splits should be adapted to the

working environment. To meet this challenge, Bed Acknowledgement: This work was supported in part by the Euro-

job managershould have a global view of the system’pean Commission under the Seventh Framework Programmagtiro

workload so as to dynamically rearrange the size of splitise SEARCHIN project (Marie Curie Action, contract numbé?&-

as well as schedule them to Grid sites. 042467) and the Enabling Grids for E-sciencE project (amtr
« Determining the number of threads per crawler/indexaumber INFSO-RI-222667)

jobs: From our experiments it is obvious that the number

of threads per crawler/indexer job affects significantly

the performance of Minersoft. To improve the efficiency[ll Apache Lucene. hitp://lucene.apache.org (last aedebgbruary 2009).
] Enabling Grids for E-SciencE project. http://www.egee.org/ (last

of crawling and indexing, Minersoft should enhance™ ccessed February 2009).
self-adaptive mechanisms in order to assign a sufficieri$] teragrid. http://www.teragrid.org/ (last accessedifeary 2009).

number of threads to Grid resources (CPUs in Grid4 giGAl:/?(r)aSvi e%”gf'? g)_g'_-lng% otglaremont report on databaseareh.
sites). Grid monitoring systems provide information abouts) a. ames, C. Maltzahn, N. Bobb, E. L. Miller, S. A. Brandt, Neeman,

resource utilization (CPU utilization, memory utilizatio A. Hiatt, and D. Tuteja. Richer file system metadata usingsliand

disk utilization, etc.) and network connectivity in Grid aftributes. InMSST '05 pages 49-60, Washington, DC, USA, 2005.
. . . IEEE Computer Society.
sites. Thus, if the current status of a Grid site has changeg] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E.rkle

the Grid job managershould modify the number of Recovering traceability links between code and documientatl EEE
threads per crawler/indexer jobs in this site. Trans. Softw. Eng28(10):970-983, 2002.

. dupli f files: Fil h [t7] L. Bass, P. Clements, R. Kazman, and M. Klein. Evaluatimgsoftware
« Detecting duplicate software files: Files that are exact ' achitecture competence of organizations. WHCSA '08 pages 249—

duplicates of each other can be identified by either heuris- 252, 2008.

tic techniques or checksumming techniques. In order t! F- Brochu, U. Egede, J. Eimsheuser, and K. H. et al. Ganga:
a tool for computational-task management and easy acce$3ritb

prevent (.jUpIicate files., CraWI?r jobs need to periOdica”_y resources. Computer Physics Communications (submitte@D09.
communicate to coordinate with each other. However, this http://ganga.web.cern.ch/ganga/documents/index.php.

communication may result in overhead. Can we minimizé® J- Cho and H. Garcia-Molina. ~Parallel crawlers. WWW '02:
Proceedings of the 11th international conference on WorldeWVeb

this_communication overhgad while mai_ntaining the _ef- pages 124-135, New York, NY, USA, 2002. ACM.
fectiveness of the crawler job? Authors in [9] dealt withi10] M. D. Dikaiakos, R. Sakellariou, and Y. loannidisformation Services

this problem in the context of the Web. Another issue for Large-scale Grids: A Case for a Grid Search Engirghapter

. . e . . Engineering the Grid: status and perspectives, pages 8%1-A8nerican
is the identification of near-duplicate files. If we could SC%miﬁc pgublishers, 2006. persp pad

successfully identify these files, we could improve thgi] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. James ®Toole.

performance of indexing, since a percentage of files will Semantic fle systems. BOSP 91 pages 16-25, New York, NY, USA,
be delete_d- Manber _[17] has developed al_gorltth fOI2] 0. Hummel and C. Atkinson. Extreme harvesting: Testetidiscovery
near-duplicate detection to reduce storage in large-scale and reuse of software components. Rroceedings of the 2004 IEEE
file systems. International Conference on Information Reuse and Intégra IRI -
. . g . 2004, Las Vegas Hilton, Las Vegas, NV, Upages 66-72, 2004.

o Determining pollteness. MmerSOﬁ JQbS _ShOUId _n0t 0b[13] S. Khemakhem, K. Drira, and M. Jmaiel. Sec+: an enharsmaich
struct the normal operation of Grid sites. Minersoft engine for component-based software developmeBIGSOFT Softw.
should adhere to strict rate-limiting policies when aE- Eng. Notes 32(4):4, 2007.

. [14] J. Koren, A. Leung, Y. Zhang, C. Maltzahn, S. Ames, and\vHler.
cessing poorly provisioned (in terms of workload) Gri Searching and navigating petabyte-scale file systems lmaséatets. In

sites. To address this issue, Minersoft should implement a PDSW '07 pages 21-25, 2007.

flexible policy that would avoid running multiple crawler(15] G. Li. B. C. Ooi, J. Feng, J. Wang, and L. Zhou. Ease: aeoiffe 3-in-1
keyword search method for unstructured, semi-structunetds&ructured

REFERENCES

jobs to overloaded Grid sites. data. InSIGMOD 2008 pages 903-914, New York, NY, USA, 2008.
ACM.
VII. CONCLUSIONS- FUTURE WORK [16] Y. S. Maarek, D. M. Berry, and G. E. Kaiser. An informaticetrieval

. . . approach for automatically constructing software litgariEEE Trans.
In this paper, we present Minersoft - a Grid harvester S‘;?M_ Eng_l7(8):800_81§' 1991, 9

which enables keyword-based searches for software iedtali17] U. Manber. Finding similar files in a large file system. WATEC'94:

n Gri m ina infrastr res. The r I f Min f Proceedings of the USENIX Winter 1994 Technical Conferenoce
on G d computing "’?St UCtu. es € (?SU ts o erso USENIX Winter 1994 Technical Conferengmages 2—2, Berkeley, CA,
harvesting are encoded in a weighted, undirected, typgzhgra sa 1994. USENIX Association.

called the Software Graph. The Software Graph is used [18] A. Marcus and J. Maletic. Recovering documentatiosdarce-code

annotate automatically the software resources with kegiwor tlrggeig;”ty,\,:?ykszégéng latent semantic indexing. IBSE 2003 pages
rich metadata. Then, each Grid site indexes its Softwarpl©rajig) m. matsushita. Ranking significance of software comeuts based on

Using a real testbed, we present the performance issues of use relations/EEE Trans. Softw. Eng31(3):213-225, 2005.

crawling and indexing. Minersoft successfully crawled 3]_2_[20] F. Si_lvestri, D. Puppin, D. Laforenza, and S. Orlandoward a sea_rch
- L e architecture for software component€oncurrency and Computation:

million valid files (620 GB size) and sustained, in most sites pactice and Experiencel8(10):1317-1331, 2006.

high crawling. Except of Grids, Minersoft can also be useddi] T. A. Vanderlei, a. Frederico A. Dur A. C. Martins, V. Ca®ia, E. S.

; iotri Almeida, and S. R. de L. Meira. A cooperative classificatioechanism

as keyword based paradlgm for any Iarge scale distributed for search and retrieval software com?)onents.SAC ‘07 pages 866—

computing platform, such as Clouds, as well as, for stand- g71 New York, NY, USA, 2007. ACM.

alone computers. In future work we intend to enhance the

Map-Reduce paradigm in the Minersoft architecture.

