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a b s t r a c t

In this paper, we introduce a probabilistic modeling approach for addressing the problem
of Web robot detection from Web-server access logs. More specifically, we construct a
Bayesian network that classifies automatically access log sessions as being crawler- or
human-induced, by combining various pieces of evidence proven to characterize crawler
and human behavior. Our approach uses an adaptive-threshold technique to extract Web
sessions from access logs. Then, we apply machine learning techniques to determine the
parameters of the probabilistic model. The resulting classification is based on the maxi-
mum posterior probability of all classes given the available evidence. We apply our method
to real Web-server logs and obtain results that demonstrate the robustness and effective-
ness of probabilistic reasoning for crawler detection.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Crawlers are programs that traverse the Web autono-
mously, starting from a ‘‘seed” list of Web-pages and recur-
sively visiting documents accessible from that list.
Crawlers are also referred to as robots, wanderers, spiders,
or harvesters; their primary purpose is to discover and re-
trieve content and knowledge from the Web on behalf of
various Web-based systems and services. For instance:
search-engine crawlers seek to harvest as much Web con-
tent as possible on a regular basis, in order to build and
maintain large search indexes [11,8]; shopping bots crawl
the Web to compare prices and products sold by different
e-commerce sites; focused crawlers seek and acquire Web-
pages belonging to pre-specified thematic areas [12]; pro-
file-driven crawlers support personalized and added-value
services on the Web [16]; email harvesters collect email ad-
dresses on behalf of email marketing companies or spam-
mers, and site-specific crawlers perform various Web-site
maintenance chores, such as mirroring Web-sites or dis-
covering their broken links.

The growing need for advanced information- and
knowledge-retrieval tools on the Web has led to a remark-
able increase in the number of crawlers actively engaged in
various types of Web harvesting and has turned crawlers
into an essential component of the Web infrastructure.
Consequently, there is a growing need to distinguish ro-
bots from humans when analyzing the HTTP request arriv-
als at Web-servers of interest, for a variety of reasons:

� Typically, the analysis of HTTP-interactions of a Web-
server provides a wealth of information about the func-
tionality, the usability, the design, and the popularity of
its hosted sites and content [23,35]. The basic premise
here is that HTTP-interaction patterns reflect the choices
that end-users (customers) make when navigating
inside a Web-site. Furthermore, reliable quantitative
information that captures end-user navigation choices
is the basis for pay-per-click advertising, one of the most
prevalent and successful Internet-business models [1].
According to press and business reports, the pay-per-
click advertising generates 50–98% of Google’s revenues
[13,40], and is adopted by other search-engine giants
like Yahoo! and AskJeeves and by popular blogging ser-
vices [24]. There is growing concern, however, that this
business model can be seriously harmed by click
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fraud[13,40,5], which involves, among other things, the
unwilling or malicious repetitive retrieval of advertise-
ment links by Web robots that do not emanate from
well-known or stable IP addresses and Internet domains.
Click fraud results in higher fees paid by the advertisers
for what are essentially worthless HTTP requests, and
has triggered concerns on the viability of the search-
engine business model, leading Google’s CFO to state
that ‘‘click fraud is the ‘biggest threat’ to the Internet
economy!” [40].

� The automatic identification of malicious Web robots
according to their behavior, rather than their (possibly
transient) IP addresses, can also be useful when trying
to cope with the referer spam problem, which affects
search-engine ranking results [6].

� There is also concern that crawler-induced traffic repre-
sents a sizeable part of the total HTTP traffic and that
crawler activity may result in a performance degrada-
tion of busy Web-servers and networking infrastruc-
tures, and in increased miss ratios in Web caches.
These concerns are supported by the few published
papers that investigated Web robot behavior, analyzing
the impact of known crawlers upon different Web-serv-
ers [7,14,15,28,42].

� Finally, there is a need to distinguish between crawler
and human traffic in cases where it is important to pro-
tect information of a temporary or sensitive nature, pub-
lished on intranet Webs, from crawlers that discover
inadvertently such information and publish it through
search-engine databases.

To address the concerns mentioned above, we need to
be able to isolate the behavior of robots from that of the
general population of (human) Web users. Distinguishing
Web robots from humans will help marketing companies
derive more accurate statistics about the impact of online
advertising and the interaction that real customers have
with e-business sites. Also, it will help Web administrators
in estimating the real side-effects of crawler activity on
Web-server performance. Finally, it can provide a basis
for developing intelligent admission control systems that
will protect Web-sites from aggressive or unwanted crawl-
ers. However, the openness, the lack of central control, the
sheer size, and the dynamic nature of the Internet, render
the identification of active crawlers and operational search
engines a very difficult challenge.

In this article, we introduce a probabilistic modeling ap-
proach for addressing the problem of automatic Web robot
detection from Web-server access logs. Our approach uses
machine learning techniques to determine the parameters
of the probabilistic model. We apply our method to real
Web-server logs and obtain results that demonstrate the
robustness and effectiveness of probabilistic reasoning
for crawler detection. The remainder of this paper is orga-
nized as follows: the background and related work is given
in Section 2. In Section 3 we present an overview of our ap-
proach and describe its pre-processing steps. The proposed
Bayesian network classifier is introduced in Section 4. An
extensive discussion of our experiments and experimental
results is given in Section 5, and we conclude in Section 6.

2. Background and related work

2.1. Robot-identification and characterization

Several efforts try to monitor and catalog the increasing
number of robots that crawl the Web in order to publicize
information about active crawlers, such as their domain
names and/or IP addresses [2–4]. Nevertheless, public
crawler-lists are neither exhaustive nor up-to-date, since
numerous robots initiate their operation or change their
identity without explicitly notifying any third-party
registries.

Therefore, a few studies that seek to characterize craw-
ler behavior rely on the access logs of individual Web-serv-
ers and focus on robots that either emanate from known IP
addresses belonging to the domains of established search
engines or declare their identity via special HTTP-protocol
headers (like From or User-agent). For example, in
[14,15], we analyzed access logs capturing the HTTP traffic
of 42–176 days of five different academic sites of three
countries (Cyprus, Greece, and Canada) and showed that
the accumulated activity of crawlers belonging to five
known search engines (google, altavista, inktomi, fast-
search, and citeseer) contributed to approximately 10% of
the total HTTP requests arriving at these sites. We also
showed that the visit patterns of crawlers have significant
differences from those of humans. Similarly, in [42], Ye, Lu,
and Li investigated the hourly distribution of request arriv-
als from five crawlers (google, inktomi, baidu, webfountain
and altavista), using a 180-day-long access log from the
Web servers of the China Education and Research Network
(CERNET), which captures over 1 billion HTTP requests.
Their study showed that crawler traffic contributed to only
1.6% of the overall HTTP traffic, which totaled 5,367.4 GB.
They noticed, however, that crawlers did not pay attention
to server workload and that crawler visits during peak
hours of server activity could affect both server perfor-
mance and crawler efficiency.

The studies presented above do not capture the overall
impact of robots, as they analyze the behavior of a hand-
ful of publicly-known crawlers, which represent only a
subset of the activity of all the active crawlers. Neverthe-
less, it is very hard to identify Web robots automatically
from the HTTP activity they induce upon individual Web
servers. This difficulty is due to the fact that different
crawlers may exhibit widely differing behaviors in their
navigation and HTTP traffic patterns. For instance, some
robots comply with simple rules of ‘‘polite behavior”
while visiting a Web-server (e.g., following the Robots
Exclusion Protocol or avoiding to swamp it with too many
HTTP requests), whereas other robots exhibit long click-
streams upon the same site and in a very short time-
range; many crawlers retrieve textual and HTML content
only, whereas others show preference to postscript and
pdf formats, and so on.

An effort to identify robots automatically through heu-
ristics was presented by Menascé, Almeida et al. in [28,7].
In these papers, the authors derived a set of heuristic crite-
ria from observations of human and crawler Web naviga-
tional patterns. Subsequently, they used these criteria as
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rules for isolating robot-induced traffic inside the access
logs of an online bookstore site. The authors did not pro-
vide any assessment on the success and the accuracy of
their proposed robot-identification heuristics. Their main
goal was to estimate the impact of robot-induced HTTP
traffic on the performance of Web infrastructures; their
conclusions showed that the identified robots consumed
a significant amount of Web-server resources.

In our characterization study [15], we also tried to iden-
tify common traits that distinguish robot behavior from
the characteristics of the general HTTP traffic. Neverthe-
less, from that study it became clear that these character-
istics exhibit a wide variability for different crawlers and
different sites. Therefore, we concluded that it is hard to
derive simple, deterministic, and generic heuristics for
the detection of robots from Web-server access logs: a
rule-based system for classifying sessions would imply a
long list of static rules, that are difficult to define and main-
tain, even by experts. Instead, a system that can learn from
examples to distinguish between crawlers and humans
would provide many benefits over a rule-based approach.
Moreover, a system that is able to cope with uncertainty,
such as the one presented in this study, provides even fur-
ther advantages since it can model uncertainty both in the
rules and the data, in the form of conditional probabilities.
The outcome of such a system that performs inference un-
der uncertainty, is a probability distribution over all possi-
ble classes, that indicates how reliable the classification is
given the data.

2.2. Our contribution

In this paper, we introduce a novel approach that ad-
dresses successfully the challenging problem of automatic
crawler detection using probabilistic reasoning [31]. In
particular, we construct a Bayesian network that classifies
automatically access log sessions as being crawler- or hu-
man-induced. To this end, we combine various pieces of
evidence, which, according to our earlier studies [15,14],
were shown to distinguish the navigation patterns of craw-
ler and human user-agents of the World-Wide Web. Our
approach uses machine learning to determine the parame-
ters of our probabilistic model. The resulting classification

is based on the maximum posterior probability of each
class (crawler or human), given the available evidence.

To the best of our knowledge, this is one of the few pub-
lished studies that propose a crawler detection system, and
the only one that uses a probabilistic approach. An alterna-
tive approach that is based on decision trees, was proposed
by Tan and Kumar in [38]. The authors applied their meth-
od with success on an academic access log collected over a
period of one month in year 2001. They base their detec-
tion on the navigational pattern of the users and use a
number of features to built a decision tree using the C4.5
algorithm.

As it will be evident from the following sections, the
application of a probabilistic approach such as Bayesian
Networks, is well suited for the particular domain, due to
the high degree of uncertainty inherent in the problem.
The Bayesian Network does not merely output a classifica-
tion label, but a probability distribution over all classes by
combining prior knowledge with observed data. This prob-
ability distribution allows decisions to be made about the
final classification based on how ‘‘confident” the classifica-
tion is, as demonstrated by the probability distribution. For
example, one need not accept weak classifications where
the resulting posterior probability is less than a pre-de-
fined minimum.

Bayesian networks have been shown to provide highly
accurate classification results in the presence of incom-
plete or inexact information from multiple sources in a
variety of application areas [36,37,33,27,20,10,22].

3. Overview

Our goal is to classify automatically an HTTP user-agent
either as a crawler or a human, based on characteristics of
that agent’s visit upon a Web-server of interest. Informa-
tion related to the HTTP traffic arriving at a Web-server
is usually kept in the Web-server’s access log. Typical ac-
cess logs comprise thousands of entries, with each entry
representing an HTTP request that arrives at the Web-ser-
ver from some user-agent, and the Web-server’s reply. Ac-
cess logs are encoded according to the NCSA Common Log
File Format or the NCSA Extended Common Log File Format
[25] (for a description see Table 1). Access log entries are

Table 1
NCSA common log file format fields.

Common Log File Format:
Remote hostname (IP address or hostname of the client)
Remote login name of the user (rfc931)
Username as with the user has authenticated himself
Date (dd/mmm/yyyy:HH:mm:ss <difference_from_Greenwich>)
Request line of the HTTP message
HTTP response code returned to the client
Bytes returned (body only)

Example (CLF Format):
194.42.7.30 - - [23/Jan/2002:21:21:33 +0200]”GET/images/main/ucy.jpg
0.5in HTTP/1.0” 200 83212

Example (ECLF Format):
194.42.7.30 - - [23/Jan/2002:21:21:33 +0200]”GET/images/main/ucy.jpg
0.5in HTTP/1.0” 200 83212 http://www.ucy.ac.cy/”Mozilla/2.0GoldB1 (Win95; I)”
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kept sorted according to the time that each request was
posted.

Because of the stateless nature of HTTP, incoming re-
quests are considered and logged as independent events.
Therefore, access logs do not contain any information that
could relate together requests issued during a single ‘‘visit”
of one user-agent to the Web-pages of a Web server.
Hence, in order to extract the characteristics of a user-
agent visit at a Web-server of interest, we need first to pro-
cess its access logs and infer that agent’s Web session. A
Web session is defined as the sequence of HTTP requests
that originate from the same user-agent and arrive at a
Web-server within a common time-frame of limited dura-
tion. The session starts with the first HTTP request issued
by the user-agent and finishes when the user completes
the navigation of the corresponding site. In essence, a
Web session represents the ‘‘click-stream” of a user navi-
gating inside the pages of a particular Web-server [35].

3.1. System overview

The goal of our system is to classify the user-agent of
each Web session as crawler or human. The classification
process comprises three main phases: (i) Access log analy-
sis and session identification; (ii) Learning, and (iii)
classification.

Our system uses training to learn the parameters of a
probabilistic model (Bayesian network) that performs the
actual classification. For the learning part, the system com-
bines evidence extracted from each Web session. An over-
view of the training workflow of our crawler detection
system is given in the top diagram of Fig. 1. For the training
of our classifier, we use Web sessions extracted from a se-
lected access log. Subsequently, we perform a semi-auto-
matic labeling of these sessions as crawler- or human-
induced. Then, we compute the values of certain features
from the labeled sessions in order to derive our training

data. The training data are used to learn the required Bayes-
ian network parameters and to quantify the Bayesian net-
work using the learned parameters. Classification is based
on the maximum posterior probability given the extracted
evidence. The classification stage extracts the features of
each Web session and uses them as evidence to be inserted
into the Bayesian network classifier. The classifier outputs
the probability of each session being a crawler. The classifi-
cation stage is summarized in the bottom diagram of Fig. 1.

In the following section we present the heuristic that
we use to identify sessions inside Web-server access logs,
whereas the other two phases are examined in detail in
Section 4.

3.2. Session identification with adaptive thresholds

Session identification is the task of dividing an access log
into sessions. Typically, session identification is performed
by first grouping all HTTP requests that originate from the
same IP address and user-agent, and then using a timeout
approach to break this grouping into different sub-groups
[35], such that the time-lapse between two consecutive
sub-groups is longer than a pre-defined threshold. A draw-
back of this method is that it is hard to determine a proper
threshold-value, as different user-agents exhibit different
navigation behaviors. Usually, a 30-min period is adopted
as the threshold in Web-mining studies [35].

Nevertheless, in our experiments we noticed that using
the 30-minute threshold as the only criterion for breaking
the click-stream into sessions was not sufficient. We ob-
served the sessions extracted when using the 30-minute
value and noticed that, for longer sessions (in terms of
number of requests), click-streams belonging to a semanti-
cally continuous navigation activity were split into sepa-
rate sessions.

To cope with this issue, we introduce a procedure which
adapts the threshold value dynamically, according to the
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Fig. 1. Overview of the training and classification stages.
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number of session requests so far. In particular, for sessions
with less than rmax requests so far, we set the threshold va-
lue to t1. When the number of requests reaches rmax, we in-
crease the threshold value to t2 > t1. In other words, we
allow a bigger time-lapse between consecutive requests
for larger sessions. By trying various threshold values and
studying the resulted sessions, we determined that setting
rmax to 100, t1 to 30 min and t2 to 60 min gave the best
results.

Undoubtedly, there is inherent uncertainty in this ap-
proach and in any method used to identify Web sessions
based on originating IP addresses. For instance, requests
posted from the same IP address during the same time per-
iod do not come necessarily from the same user-agent
[35]: sometimes, different user-agents may use the same
IP address to access the Web (for instance, when using
the same proxy server); in those cases, their activity is reg-
istered as coming from the same IP address, even though it
represents different users. Also, session identification
based on the heuristic timeout method carries a certain de-
gree of uncertainty regarding the end of a user-agent’s nav-
igation inside a Web-site of interest. Uncertainty in the
data and the actual detection problem itself are the reasons
that we believe a probabilistic approach is an ideal applica-
tion to this problem.

4. A Bayesian network classifier

4.1. Feature selection

We base our selection of features on our earlier charac-
terization study of crawler behavior [15,14]. These features
(attributes) are extracted for each session and provide the
distinguishable characteristics between Web robots and
humans. They are as follows:

� Maximum sustained click rate: A click is a request for an
HTML file. This feature corresponds to the maximum
number of HTML requests achieved within a certain
time-window inside a session. The intuition behind this
is that there is an upper bound on the maximum num-
ber of clicks that a human can issue within some specific
time-frame t, which is dictated by human factors. To
capture this feature, we first set the time-frame value
of t and then use a sliding window of time t over a given
session in order to measure the maximum sustained
click rate in that session. For example, if we set t to
12 s and find that the maximum number of clicks within
some 12-s time-window inside that session is 36, we
conclude that the maximum sustained click rate is 3
clicks per second. This indicates a robot-like rather than
a human-like behavior. The sliding window approach
starts from the first HTML request of a session and keeps
a record of the maximum number of clicks within each
window, sliding the window by one HTML request until
we reach the last one of the given session. The maxi-
mum of all the clicks per window gives the value of this
attribute/feature.

� Duration of session: This is the number of seconds that
have elapsed between the first and the last request.

Crawler-induced sessions tend to have a much longer
duration than human sessions. Human browsing behav-
ior is more focused and goal-oriented than a Web robot’s.
Moreover, there is a certain limit to the amount of time
that a human can spend navigating inside a Web-site.

� Percentage of image requests: This feature denotes the
percentage of requests to image files (e.g. jpg, gif). Our
earlier study showed that crawler requests for image
resources are negligible [15]. In contrast, human-
induced sessions contain a high percentage of image
requests since the majority of these image files are
embedded in the Web-pages they are trying to access.

� Percentage of pdf/ps requests: This denotes the percent-
age requests seeking postscript(ps) and pdf files. In con-
trast to image requests, some crawlers, tend to have a
higher percentage of pdf/ps requests than humans [15].

� Percentage of 4xx error responses: Crawlers have a higher
proportion of 4xx error codes in their requests. This can
be explained by the fact that human users are able to
recognize, memorize and avoid erroneous links, unavail-
able resources and servers [15].

� Robots.txt file request: This feature denotes whether a
request to the robots.txt file was made during a session.
Web administrators, through the Robots Exclusion Pro-
tocol, use a special-format file called robots.txt to indi-
cate to visiting robots which parts of their sites should
not be visited by the robot. For example, when a robot
visits a Web-site, say http://www.foo.com, it should first
check for http://www.foo.com/robots.txt. It is unlikely,
that any human would check for this file, since there is
no link from the Web-site to this file, nor are (most)
users aware of its existence. From our studies, we also
noticed that the majority of crawlers do not request
the robots.txt file and so it is the presence of a
robots.txt request in a session that will have the
greater impact on it being classified as crawler. There-
fore, a strong feature for determining the identity of a
session as crawler-induced is the access to the
robots.txt.

These features form the nodes (variables) of our Bayes-
ian network. The Bayesian network framework enables us
to combine all these pieces of evidence and derive a prob-
ability for each hypothesis (crawler vs. human) that re-
flects the total evidence gathered.

4.2. Labeling training data

In this section we present how the training data sample
was created. The training dataset consists of a number of
sessions, each one with its associated label (crawler or hu-
man). Our dataset contains thousands of sessions and is
therefore prohibitively large to be labeled manually. There-
fore, we developed a semi-automatic method for assigning
labels to sessions, using heuristics. All sessions are initially
assumed to be human. Then, we use the following heuris-
tics to label some of the sessions as crawlers:

(1) IP addresses of known crawlers: We used the IP
addresses of HTTP requests recorded in our logs to
perform reverse DNS lookups and convert IP
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addresses to hostnames. With this mapping we assign
IP addresses to crawlers with a well-known set of
hostnames. Our log analyzer then prepares a table
with all the IP addresses that belong to known crawl-
ers. Each IP address of a training session is compared
against this table of IP addresses of known crawlers. If
the IP matches, we label the session as a Web robot.

(2) Robots.txt file: As explained earlier, any session that
includes an HTTP request for the robots.txt file is
most likely a robot; consequently, we label such ses-
sions as robot-induced.

(3) Session duration: If the duration of the session, i.e.
the time between the first and the last request, is
more than a threshold number of hours, then we
assume that this is a crawler-induced session. From
our experiments, we found that 3 hours is a good
choice of a threshold.

(4) HTML-to-image request ratio: As already mentioned
before, the results of our earlier study [15,14],
showed that humans tend to have a higher number
of image requests than crawlers, due to embedded
images in HTML files. On the other hand, crawlers
have a high number of HTML requests with negligi-
ble image requests, since these are usually omitted
from downloading by the web robot. This heuristic
aims to capture this knowledge about the behavior
of crawlers by labeling as crawler, any session with
more than 10 HTML files per image file. In other
words, if the ratio HTML-to-image in a session is lar-
ger than 10, it is more likely that this is a crawler
session, and we thus label it as such.

It should be noted that we only use the first of the heu-
ristics above to determine conclusively the label of the ses-
sion as crawler. The other heuristics are used to give a
recommended labeling of the session as crawler. These lat-
ter sessions are then manually inspected by a human ex-
pert to confirm or deny the suggested crawler labeling.
By this semi-automatic method we aimed at minimizing
the noise introduced in our training set.

Since we are investigating the behavior as evident from
the click-stream of a user-agent, it is fair to assume that
any session with less than 5 requests in total, is too short
to enable labeling. Even by manual inspection, a session
with such a few number of requests is almost impossible
to classify. We are therefore ignoring sessions that are
too small (i.e. with less than 5 requests) from both the
labeling and the testing stage.

4.3. Network structure

Bayesian Networks [32,31,30] are directed acyclic
graphs in which the nodes represent multi-valued vari-
ables, comprising a collection of mutually exclusive and
exhaustive hypotheses. The arcs signify direct dependencies
between the linked variables and the direction of the arcs
is from causes to effects. 1 The strengths of these dependen-

cies are quantified by conditional probabilities. More specif-
ically, each node Xi has a conditional probability distribution
PðXijParentsðXiÞÞ that quantifies the effect of the parents on
the node, where ParentsðXiÞ denotes the parent variables of
Xi. This conditional probability distribution, which defines
the conditional probability table of the variable, describes
the probability distribution of the variable for each configu-
ration of its parents.2 The graph encodes that each node is
conditionally independent of its non-descendants, given its
parents [31].

Naive Bayes is a special case of a Bayesian network,
where a single cause (the class) directly influences a num-
ber of effects (the features) and the cause variable has no
parents. This network is shown in Fig. 2. Again, the inde-
pendence assumption encoded by this model is that each
feature is conditionally independent given the class value.

Considering Fig. 2, assume that F1, F2,..,Fn are n features
and fi represents the value of feature Fi. Assume also that C
is the class variable and let c represent a possible value (la-
bel) of C. Using Bayes rule, the posterior probability of each
class label c 2 C, i.e. the probability of the class label given
the features observed, is given by the formula:

Pðcjf1; . . . ; fnÞ ¼
PðcÞPðf1; f2; . . . ; fnjcÞ

Pðf1; f2; . . . ; fnÞ
: ð1Þ

Considering the independence assumption stated above,
i.e. that each feature is conditionally independent given
the class value, the formula reduces to:

Pðcjf1; . . . ; fnÞ ¼
PðcÞ

Qn

i¼1
PðfijcÞ

Pðf1; f2; . . . ; fnÞ
: ð2Þ

Finally, the class variable C is assigned the label that gives
the maximum posterior probability given the features ob-
served. More specifically:

class ¼ argmaxc2CPðcÞ
Yn

i¼1

PðfijcÞ: ð3Þ

Notice that the denominator in Eq. (2) is a constant and can
be ignored in the last step.

The proposed Bayesian Network for crawler detection
has the structure shown in Fig. 2. Before we explain the
reasoning behind this structure, we first give an interpreta-
tion of each of the nodes. Each child node corresponds to
one of the features we presented earlier in Section 4.1.
The root node represents the class variable.

F FF Fn321

C

Fig. 2. A Bayesian network used as a classifier.

1 If there is an arc from node X to node Y, then X influences (or causes) Y.
In such a case X is the parent of Y. 2 In this paper we consider Bayesian networks with discrete variables.
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All nodes used in the network have been abbreviated as
follows:

� Class: The classification of the session. This variable
takes two values: robot or human. This is the root node
of the network of Fig. 2.

� Clicks: Maximum sustained number of clicks within a
certain time-frame. This variable takes values in the
range ½0; ::;maxClicks� where maxClicks is determined
by our training data.

� Duration: The number of seconds between the first and
the last request. It takes values in the range
½0; ::;maxDuration� where maxDuration is determined
by our training data.

� Images: Percentage of requests to image files (e.g. jpg,
gif). This takes values in the range ½0; ::;100�.

� PDF/PS: Percentage requests to postscript(ps) and pdf
files. This takes values in the range ½0; ::;100�.

� Code 4xx: Percentage of 4xx error responses. This takes
values in the range ½0; ::;100�.

� Robots.txt: This a variable has only two values: 1 or 0.
The value 1 means that the session included a request
to the robot:txt file, otherwise the value is 0.

The network structure indicates that the class in which
the session belongs (i.e. crawler or human), ‘‘causes” its
features (attributes) and thus the direction of the arrow
from class to feature. This model encodes that the ‘‘effect”
variables are conditionally independent given the cause.
More specifically, in our case, each feature is conditionally
independent given Class. For example, if we know the state
of Class, say to be a crawler, then a change in probability of
Images will have no effect on the PDF/PS hypothesis (or any
other child node hypothesis). Otherwise, if the state of
Class is not known, then the two features are dependent.
Any change in the probability of, say, Images, will cause
an update in the Class hypothesis which will then cause a
change in the probability of PDF/PS (and all other child
nodes of Class). For more details on causality and learning
causal structures see [32,30].

Regarding the ‘‘weight” that each piece of evidence
bears on the classification (i.e. the fact that a certain fea-
ture may be more significant than another in determining
the classification of a session), is implicitly encoded in the
conditional probability distributions that relate a child (the
feature in this case) with the parent (the class).

Having defined the structure of the network, we now
have to: (i) Discretize all continuous variables; (ii) Define
the conditional probability tables that quantify the arcs
of the network. In the next two sections we show how
we use machine learning to achieve the above tasks.

4.4. Learning network parameters

The learning phase of the system uses the training data
that have been created as described in Section 4.2. The
training data set consists of a number of sessions, each
one with its associated label (crawler or human). For each
of these sessions, we obtain the values of each of the fea-
tures, described in Section 4.3 above, and which are repre-
sented as nodes in the Bayesian network. We use the

training data for variable quantization, based on the entro-
py, as well as for learning the conditional probability ta-
bles, as described in the next two sections.

4.4.1. Variable quantization
In this implementation, the Bayesian Network is devel-

oped for discrete variables, as classification performance
tends to be better when continuous variables are discret-
ized than when they are assumed to follow Gaussian distri-
butions [17]. We therefore need to quantize variables into
meaningful states (meaningful in terms of our goal, i.e. to
detect crawlers). One well-known measure which charac-
terizes the purity of the class membership of different var-
iable states is information content or entropy [29]. The
procedure used here was as follows:

We observe the values of the variables for a set of Craw-
ler and Human session examples. For a given quantization
into k interval labels, the entropy is given by:

E ¼
Xk

i¼1

�PCilog2PCi � PHilog2PHi; ð4Þ

where PCi is the probability of crawler sessions with label i
and PHi is the probability of human sessions with label i.
The entropy is then weighted by the fraction of examples
that belong in each interval. An exhaustive search proce-
dure was used over the number and ranges of the quanti-
zation values to determine the number and ranges of the
quantization steps which minimized this entropy function.
The number and range of interval labels which result in the
minimum total weighted entropy are chosen to quantize
the variable.

This minimum entropy principle was applied on all the
continuous variables (nodes), i.e. on five out of the six fea-
tures presented in Section 4.3: Clicks, Duration, Images,
PDF=PS and Code 4xx.

4.4.2. Conditional probabilities
Having constructed the network nodes, we need to de-

fine the conditional probabilities which quantify the arcs of
the network. More specifically, we need to define the a pri-
ori probability for the root node, PðClassÞ as well as the con-
ditional probability distributions for all non-root nodes:
PðClicksjClassÞ, PðDurationjClassÞ, PðImagesjClassÞ,
PðPDF=PSjClassÞ, PðCode 4xxjClassÞ, with variables abbrevi-
ated as in Section 4.3. Each of these tables gives the condi-
tional probability of a child node to be in each of its states,
given all possible parent state combinations.

We derived these probabilities from statistical data. For
example, the conditional probability of Duration being in
class (state) 1 given Class ¼ Crawler, is determined from
data, by counting the number of Crawler examples with a
duration within class 1, and so on.

4.5. Classification

Once the network structure is defined and the network
is quantified with the learned conditional probability ta-
bles, we proceed with the classification phase of our craw-
ler detection system.

For each session to be classified, we extract the set of six
features that characterize the behavior of clients and that
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form the variables of our Bayesian Network. An example
feature vector, based on the feature description given in
4.1, could be (17, 135.5, 67, 2, 0, 0) which can be described
as follows: the session in question had reached a peak of 17
clicks (in a pre-set 12-s window), had a session length of
135.5 s, 67% of its requests were to image files, 2% of its re-
quests were to pdf/ps files, there were 0requests with re-
sponse code greater than 400 and, finally, that the
robots.txt file was not requested (indicated by the last bin-
ary value being set to 0). As described above, the network
contains only discrete variables whereas the first five of the
six features are continuous-valued. Each of these feature
values is therefore mapped on to a discrete state according
to the ranges derived by the quantization step of Section
4.4.1.

Following this step, each session is now characterized
by six features represented as values of discrete vari-
ables corresponding to the Bayesian network. In order to
classify a session, each variable in the network is
instantiated by the corresponding feature value. The
Bayesian network then performs inference and derives
the belief in the Class variable, i.e. the posterior probabil-
ity of the Class to take on each of its values given the evi-
dence (features) observed. In other words we derive:
PðClass ¼ crawlerjevidenceÞ and PðClass ¼ humanjevidence).
The maximum of the two probabilities is the final classifi-
cation given to the session.

5. Experimental results

In this section we present the experiments performed in
order to apply our methodology and evaluate the perfor-
mance of our crawler detection system.

For the purposes of evaluating the performance of our
system, we obtained access logs from two servers of two
academic institutions: the University of Toronto and the
University of Cyprus (a detailed description of these log
files can be found in [15]). Table 2 shows the datasets used
for training and testing the system. The access logs were
processed by our log analyzer to extract the sessions. We
will be referring to these datasets throughout this section.

5.1. Training in the presence of class imbalance

The dataset used for training is shown in Table 2 as S1.
Sessions were labeled using our approach described in Sec-
tion 4.2. The learning stage proved to be a challenging task.
The problem encountered with this stage is one of class
imbalance [34,19,41,21,26]. The data sets present a class
imbalance when there are many more examples of one

class than of the other. It is usually the case that this latter
class, i.e. the unusual class, is the one that people are inter-
ested in detecting. Some domains where the imbalanced
dataset problem is present are fraud detection, network
intrusion detection, cancerous cells detection etc. Because
the unusual class is rare among the general population,
the class distributions are very skewed [34]. The amount
of imbalance varies depending on the domain: it is less
than 10% for intrusion detection but less than 1% for can-
cerous cells detection. Our domain of crawler detection
also falls in the category of domains that exhibit the imbal-
anced data set problem. In our earlier study [15] we have
concluded that crawler activity in access logs amount to
approximately 10% of the total number of requests.

The problem that arises from training with imbalanced
data set is that classifiers tend to be biased toward the
majority class, i.e. the class with the largest number of
examples. In the case of the Naive Bayes classifiers, the
prior probability in the majority class overshadows the dif-
ferences that exist in the conditional probability entries
that quantify the relationship between feature and class
variables.

Resampling the training set is an approach that is often
used to solve the imbalanced data set problem at the learn-
ing stage. Resampling modifies the prior probabilities of
the majority and minority class by changing the records
on each of the two classes. In our study we show results
with and without resampling on the training data set S1
shown in Table 2. For resampling, we adopted two ap-
proaches in our experiments: random oversampling and
random undersampling. In the former method, the minor-
ity cases, i.e. crawler sessions, are randomly chosen for
duplication until the ratio of majority to minority reaches
a desirable level. In the latter method of random under-
sampling, the majority cases, i.e. human sessions, are ran-
domly eliminated until the ratio is at the desirable level.
We performed 5 experiments:

(1) Training Data set 1: No resampling. In this experi-
ment, the sessions in the training data are not
altered and have the prior probability as determined
by the sessions extracted from the access log.

(2) Training Data set 2: Oversampling to 15%. Crawler
sessions are randomly chosen from the original set
for duplication, until they amount to 15% of the total
number of sessions in the training set.

(3) Training Data set 3: Oversampling to 50%. Crawler
sessions are randomly duplicated until they amount
to 50% of the total number of sessions in the training
set, i.e. until the two cases are equally represented.

Table 2
The data sets used for training and testing the system.

Data set name Source (server) Session length No. of sessions Time span Use

S1 U. Toronto-CS/UCY-CS P5 11,094 2 months Training
S2 UCY-CS P5 784 1 month Testing
S3 UCY-CS P5 1804 1 month Testing
S4 UCY-CS P8 1524 1 month Testing
S5 U. Toronto-CS/UCY-CS P5 174 9 months Testing
S6 gEclipse P5 315 1 month Testing
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(4) Training Data set 4: Undersampling to 85%. Human
sessions are eliminated randomly until they amount
to 85% of the total number of sessions in the training
set.

(5) Training Data set 5: Undersampling to 50%. Human
sessions are randomly eliminated until they amount
to 50% of the total number of sessions in the training
set, i.e. until the two cases are equally represented.

Table 3 shows the number of Crawler and Human ses-
sions in each of the above training data sets, obtained via
resampling data set S1 shown in Table 2. The last column
shows the prior probability distributions of variable Class,
considering the distribution of sessions actually used for
training.

We constructed five Bayesian network classifiers3 (Na-
ive Bayes classifiers), one for each experiment. The networks
had the same structure but differed in their parameters, i.e.
prior probabilities, conditional probability tables and quan-
tization ranges. Each time a new training data set was intro-
duced, new network parameters were derived using training
on the new set. Throughout the remaining of the paper we
will refer to the 5 classifiers as C1 through C5, with each
classifier obtained using learning of the respective data set
from Table 3.

5.2. Testing and evaluation

To test our classifier, we chose an access log different
from the one used during training. More specifically, the
classifiers were all tested on data set S2 shown in Table 2
obtained from the University of Cyprus server. This access
log was processed by our log analyzer to extract the vari-
ous sessions. It should be noted that we did not do any
resampling on the test data. The natural imbalance in this
data set was, therefore, left untouched. A human expert did
an entirely manual classification of each session in the
testing set in order to provide us with the ground truth
by which we were to evaluate our classifier’s performance.
It turned out that the testing set contained 685 actual hu-
man sessions and 99 actual crawler sessions, as labeled by
the independent human expert. As with training, sessions
with less than 5 requests were excluded from testing. We
assume that 5 is the minimum number of requests that a
human expert would need in order to classify the session
with confidence and provide the ground truth. We tested

the performance of all five Bayesian networks (one for each
data set), on the same testing dataset.

5.2.1. Recall and precision
The class imbalance problem discussed above also raises

issues in the evaluation of the classifier’s performance. A
simple evaluation based on accuracy, i.e. the percentage
of correct classifications, can be misleading. To illustrate
this, assume a dataset with 100 cases out of which 90 cases
belong to the majority class and 10 cases belong to the
minority class. Then a classifier that classifies every case
as a majority class will have 90% accuracy, even though it
failed to detect every single target of the minority class.

Therefore, to test the effectiveness of our classifiers, we
adopted metrics that are commonly applied to imbalanced
datasets: recall, precision, and the F1-measure [39], which
summarizes both recall and precision by taking their har-
monic mean. F1 summarizes the two metrics into a single
value, in a way that both metrics are given equal impor-
tance. The F1-measure penalizes a classifier that gives high
recall but sacrifices precision and vice versa. For example, a
classifier that classifies all examples as positive has perfect
recall but very poor precision. Recall and precision should
therefore be close to each other, otherwise the F1-measure
yields a value closer to the smaller of the two. The defini-
tion of these metrics follows:

RecallðRÞ ¼ True positive
True positiveþ False negative

PrecisionðPÞ ¼ True positive
True positiveþ False positive

F1 ¼
2RP

Rþ P
: ð5Þ

Positive classification, in our study is the classification of a
session as Crawler (the target class). The above formulae
therefore translate to:

Recall ¼ No: of Crawler sessions correctly classified
No: of actual crawler sessions

Precision ¼ No: of Crawler sessions correctly classified
No: of predicted Crawler sessions

:

ð6Þ

The values of recall, precision and F1-measure obtained by
classifiers C1; . . . ;C5 are given in Table 4 and plotted in
Fig. 3.

As it can be seen from Table 4, our crawler detection
system yields promising results with both recall and preci-
sion being above 79% in all experiments performed. The
lowest F1-measure is obtained by C1 when we train the

Table 3
Training data sets used for five experiments, with and without resampling on data set S1 from Table 2. It includes the number of crawler and human sessions
used for training in each case.

Data set no. No. distinct
humans

No. distinct
crawlers

No. humans used in
training

No. crawlers used in
training

Prior probabilities: (human,
crawler)

1 10,106 988 10,106 988 (0.91, 0.09)
2 10,106 988 10,106 1784 (0.85, 0.15)
3 10,106 988 10,106 10,106 (0.5, 0.5)
4 10,106 988 5599 988 (0.85, 0.15)
5 10,106 988 988 988 (0.5, 0.5)

3 The networks were implemented using the ErgoTM tool [18].
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system with the dataset without resampling. The prior
probability of a session to be Human in that dataset was
91% and the classifier was therefore biased towards hu-
mans. It missed only 7 out of the 685 Human sessions
but sacrificed recall, by missing 20 out of the 99 actual
Crawler sessions. By resampling so that the Crawler class
amounts to 85% of the sessions (either via oversampling
as in C2 or by undesampling as in C4) we have slightly im-
proved results compared to C1. Both C2 and C4 have the
same precision and recall. The best results are obtained
by C3, which was trained using oversampling of Crawlers
so that they reach the number of Human examples in the
original set. The recall, i.e. the percentage of crawlers cor-
rectly classified increases dramatically to 95%, with 94 ses-
sions correctly classified as Crawlers out of 99 actual
crawlers. This causes a decrease in precision, which is nev-
ertheless not so dramatic. The same recall as C3 is achieved
by C5 which was trained by undersampling Humans so that
both classes are again, equally represented. However, this
caused a significant decrease in precision to 79%, i.e. we
have an increase in the number of false positives, i.e. Hu-
mans incorrectly classified as Crawlers.

The significant decrease in precision of C5, is not sur-
prising since, with random undersampling there is no con-
trol over which examples are eliminated from the original
set. Therefore significant information about the decision
boundary between the two classes may be lost. In the case
of C5, Humans were randomly undersampled to reach the
number of Crawler sessions in the original set. This meant
eliminating 9118 out of the 10,106 Humans, a significant

portion of the original set. The risk with random oversam-
pling is to do over-fitting due to placing exact duplicates of
minority examples from the original set and thus making
the classifier biased by ‘‘remembering” examples that were
seen many times. There are other alternatives to random
resampling which may reduce the risks outlined above.
An investigation and a comparison of the various resam-
pling techniques is beyond the scope of the current paper.

5.2.2. ROC Curve
The ROC (Receiver Operating Characteristic) graph

[34,9], can also be used to show graphically the trade-off
between true positive rate (TPR) and false posi-

tive rate (FPR) of a classifier. TPR is the fraction of posi-
tive examples predicted correctly (i.e. same as recall
defined above) whereas FPR is the fraction of negative
examples predicted as positive. Formally they are defined
as:

TPR ¼ True positive
True positiveþ False negative

FPR ¼ False positive
True negativeþ False positive

:

In the ROC curve the FPR is plotted along the x-axis and the
TPR is plotted along the y-axis. The result of the classifica-
tion is a class probability distribution given the evidence. A
point on the ROC curve represents the FPR and TPR associ-
ated with the classification based on a given discrimination
threshold. The threshold refers to the cut-off value above
which a record is classified as positive. By varying the
threshold we produce different points on the ROC curve
(i.e. different (FPR,TPR) pairs). By connecting consecutive
points with tracing straight lines we produce the ROC
curve. A good classification model should be located as
close as possible to the upper left corner of the graph, i.e.
point (0,1), which means close to a 0 value for FPR and va-
lue 1 for TPR. This means that the ideal model should have
no negative examples predicted as positive, and all positive
examples predicted correctly. Equivalently, point (0,0)
arises when the threshold is set such that the model pre-
dicts every instance to be negative, and point (1,1) when
the model predicts every instance to be a positive class.
The more steeply the curve moves up and then across,
the better the model. A model that makes random guesses
is located along the diagonal line y ¼ x. Another way to
look at this is to see the area under the curve (AUC). A per-
fect model has AUC equal to 1 whereas a model that ran-
dom guesses has AUC equal to 0.5. The ROC curves for
each of the classifiers C1; . . . ;C5 are shown in Fig. 4.

5.2.3. Majority vote
An important conclusion that was drawn by observing

the system classification of sessions, is that the sessions
that shared the same IP addresses were also, in their vast
majority, assigned the same classification label by the sys-
tem. More specifically, we introduced a majority vote over
all groups of sessions that shared the same IP address. This
majority vote metric was derived by forming groups of all
sessions that shared the same originating IP address and
finding, for each of these groups, the percentage of sessions

Table 4
Evaluation metrics of each Bayesian network classifier tested on dataset S2
given in Table 2. Classifiers differ in their parameters, which were obtained
via training using datasets given in Table 3.

Classifier Recall Precision F1-measure

C1 0.80 0.92 0.855
C2 0.81 0.93 0.866
C3 0.95 0.86 0.903
C4 0.81 0.93 0.866
C5 0.95 0.79 0.863
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Fig. 3. An evaluation of the crawler detection classifiers.
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that agreed in their classification. This percentage was then
weighted by the size of the group and divided by the sum
of all sessions that shared IP addresses. The majority vote,
for our binary classification problem, ranges between
[0.5,1] and is given by:

majority vote ¼
Pk

i¼1fiNiPk
i¼1Ni

; ð7Þ

where fi is the percentage of classification agreements in
group i, Ni is the number of sessions in group i, k is the
number of groups of sessions that have common IP ad-
dresses and the denominator is the sum of all sessions in
each group. As it can be seen from the above metric, higher
percentage agreement in large groups is more significant
than agreement in smaller groups. For example, 20 ses-
sions that share the same originating IP and have an
100% agreement in their classifications, is more significant
than a 100% agreement of 3 sessions. Considering the ex-
treme scenarios, if we have perfect agreement, i.e. fi is 1
for all i, the majority vote is 1. On the other hand, a com-
plete disagreement in which the sessions in each group
are split in half, will yield a majority vote of 0.5.

By applying this metric to classification results obtained
by our best classifier C3, we have a majority vote of 0.957.
This indicates a very high agreement in classification of
sessions with the same originating IP address.

The impact of this is significant as one could use this
system not only to classify sessions but also to determine
IP addresses that belong to crawlers and that were previ-
ously unknown. In our system we used the list of known
crawler IP addresses for labeling sessions as crawlers in
the training data only. In our classification, this informa-
tion was not used as evidence and therefore all sessions
were subject to classification, regardless of whether their
IP belonged to a known crawler. However, we could extend
our model so that the classification of the IP address (i.e.
known crawler IP or not) can contribute to the class prob-

ability distribution of the session and hence, to the final
session classification. The IP classification can easily be
incorporated in the network as a parent node of the Class
node, to create a general Bayesian network structure (not
a Naive Bayes). In this extended network, the IP class will
directly influence the session class.

5.2.4. Testing C3 on additional data
We further tested the chosen classifier C3 on additional

unseen test data. More specifically, we tested the classifier
on datasets S3 and S4 given in Table 2. It should be noted
that these two datasets were obtained from the same ac-
cess log but they differ in the minimum number of re-
quests per session: S3 was derived by keeping only
sessions with at least 5 requests, whereas S4 was derived
by keeping only sessions with at least 8 requests. The ses-
sions were identified as before and then labeled based on
our labeling algorithm outlined in 4.2. We obtained a total
of 1804 and 1524 sessions for dataset S3 and S4, respec-
tively. The results are shown in Table 5. As it can be seen,
our classifier maintains its high recall and precision of 95%
and 83%, respectively, in classifying sessions with at least 5
requests. These are increased to 96% and 89% when consid-
ering only sessions with more than 7 requests. The most
considerable difference comes in precision, where the
number of False Positives decrease significantly by raising
the number of minimum session requests from 5 to 8. This
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Fig. 4. ROC curves for all five classifiers (left) and for the best classifier (right).

Table 5
Evaluation of classifier C3 on datasets S3 and S4 given in Table 2. Both
datasets come from the same access log, by varying the minimum number
of requests per session.

Dataset
name

No. of
requests per
session

No. of
actual
humans

No. of
actual
crawlers

Precision Recall

S3 P5 1589 215 0.95 0.83
S4 P8 1323 201 0.96 0.89
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indicates that a substantial number of the sessions that
were wrongly classified as Crawlers, had between 5 and 7
requests.

5.2.5. Testing on known crawlers
In this section, we test further the accuracy of the best

classifier, C3, presented in Section 5.2, on different test
data sets consisting only of crawler sessions. These are
datasets S5 and S6 given in Table 2. The ground truth, i.e.
the actual classifications of the sessions in these data sets,
were not extracted manually. Instead the sessions were gi-
ven the crawler target classification due to the fact they
had an originating IP address of a known crawler.

Starting with dataset S5, this was created by extracting
all these test sessions from 4 different access log files, com-
ing from 2 different servers residing in 2 countries. The
data were not encountered during training, and they were
taken in various dates. There were a total of 315 crawler
sessions based on the known IP addresses. Results are
shown in Table 6. Our system classified correctly 288 ses-
sions. Out of the 27 mis-classified sessions, 18 sessions had
a total of 5 requests and 3 sessions had a total of 6 re-
quests. Examples of these mis-classifications are shown
below:

Case 1:

[09/Nov/2001:14:38:41]"GET/courses/EPL222/

exams/99f.ps HTTP/1.0" 200 772096

[09/Nov/2001:14:40:59]"GET/courses/EPL222/

Slides-2/Chap8.ppt HTTP/1.0" 200 800256

[09/Nov/2001:14:41:12]"GET/courses/EPL651/

Resources/papers/bb1.ps HTTP/1.0" 304 -

[09/Nov/2001:14:52:58]"GET/�epl131/c_semes-
ter/lectures/lec2/tsld005.htm HTTP/1.0" 200

1269

[09/Nov/2001:14:57:54]"GET/courses/EPL132/

notes/notes3.pdf HTTP/1.0" 304 -

[09/Nov/2001:14:57:54]"GET/courses/EPL132/

notes/notes3.pdf HTTP/1.0" 304 -

Case 2:

[08/Nov/2001:07:33:10]"GET/� epl233/JavaTu-

torial/info/downl.html HTTP/1.0" 200 7103

[08/Nov/2001:07:43:13]"GET/� jorge/

SAC95.ps.gz HTTP/1.0" 304 -

[08/Nov/2001:07:51:00]"GET/mdd/courses/

EPL625/sqd_cache/tsld013.htm HTTP/1.0" 304 -

[08/Nov/2001:07:53:19]"GET/� epl131/fall00/

lectures/lec5/sld011.htm HTTP/1.0" 200 2355

[08/Nov/2001:07:53:41]"GET/mdd/courses/

EPL625/sqd_cache/tsld005.htm HTTP/1.0" 304 -

These mis-classifications produced a probability of 0.51
of the session being a human, and were thus assigned the
wrong class compared with the target. Due to the small
number of requests in these, and most of the mis-classified
sessions, it is difficult even for a human expert to classify
these sessions. They were given a target classification of
crawler based solely on the known originating IP address.
However, it is interesting to note that the system only mar-
ginally classified them as human (probability 0.51). Out of
the 27 mis-classifications 24 were classified in the opposite
class with weak probabilities in the range of 0.51–0.65. The
maximum probability assigned to the wrong class was 0.78
and it was assigned to the three sessions shown below:

Case 3:

[09/Nov/2001:14:06:09]"GET/EPL224/docs/

chap6_hspeed_LAN.ppt HTTP/1.0" 304 -

[09/Nov/2001:14:06:20]"GET/EPL224/docs/

chap6_hspeed_LAN.ppt HTTP/1.0" 200 206848

[09/Nov/2001:14:26:03]"GET/EPL653/papers/

ccontrol/nw.ppt HTTP/1.0" 304 -

[09/Nov/2001:14:26:11]"GET/EPL653/papers/

ccontrol/nw.ppt HTTP/1.0" 200 112128

[09/Nov/2001:14:34:09]"GET/EPL651/Res/

papers/lossprofile.ps HTTP/1.0" 200 129107

Case 4:

[08/Nov/2001:23:08:28]"GET/� es/Gproj/Pre-

sentation/CYkpcoQ2g.doc HTTP/1.0" 304 -

[08/Nov/2001:23:08:30]"GET/� es/Gproj/Pre-

sentation/CYkpcoQ2g.doc HTTP/1.0" 200 52736

[08/Nov/2001:23:08:49]"GET/� mas/epl601/

notes/comm.pdf HTTP/1.0" 200 163599

[08/Nov/2001:23:32:01]"GET/� pan/EPL011-IS/

Data/Proskisi.doc HTTP/1.0" 304 -

[08/Nov/2001:23:32:03]"GET/� pan/EPL011-IS/

Data/Proskisi.doc HTTP/1.0" 200 27136

Case 5:

[08/Nov/2001:21:23:48]"GET/cgi-bin/netfo-

rum/epl221/a/7–7 HTTP/1.0" 200 1942

[08/Nov/2001:21:26:18]"GET/courses/EPL425/

notes/slides4intro.pdf HTTP/1.0" 304 -

[08/Nov/2001:21:44:41]"GET/courses/EPL224/

exams/final98.doc HTTP/1.0" 200 113664

[08/Nov/2001:21:49:04]"GET/courses/EPL224/

exams/final00.doc HTTP/1.0" 304 -

[08/Nov/2001:21:49:07]"GET/courses/EPL224/

exams/final00.doc HTTP/1.0" 200 93184

The mis-classified sessions shown above, even though
they have a small number of requests as did Cases 1 and
2, they were more ‘‘confident” in their wrong classification
(probability 0.78 as opposed to 0.51). The reason is that
they contain requests for files such as :doc or :ppt and
not for html.

Dataset S6 is a very recent log file from the site of an
open-source software project, covering period August

Table 6
Classification accuracy using sessions with originating IP address of known
crawlers.

Dataset
name

No. of actual
crawlers

No. of predicted
crawlers

Accuracy

S5 315 288 0.914
S6 174 148 0.851
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2007 until end of May 2008. With this log we wanted to
test our classifier with the recent trends and observe
whether our network, which was trained with an older
set of data, was still effective in detecting crawlers. As it
can be seen from 6, the accuracy (i.e. the percentage of
crawler sessions classified correctly) when testing with
the recent log, S6, is 85% compared to the 91.4% obtained
using the older data set S5. We consider the new results
to be equally promising considering that the training of
the system used older sets of data, of the same period as
S5. The training reflects the current trends in crawler tech-
niques and the fact that the classifier is still quite accurate
shows that the main trends as exhibited by the features we
used in our network, have not changed dramatically the
last 6 years. However, after investigating the mis-classified
sessions further, we found one recent trend that was not
present in our older data, and that is the dynamic genera-
tion of web content. All mis-classified sessions of dataset
S6 contained PHP requests, which were considered for
determining the maximum sustained click rate in testing
with the recent data but were not included in the training
of the network. The system was not taught with examples
of this type of sessions and therefore its parameters on the
click rate feature could use some further tuning to reflect
this current trend. Regardless, its impact on the overall
accuracy was not so dramatic. Our system remains rele-
vant and effective for detecting crawlers.

6. Conclusions and future work

In this paper we presented the use of a probabilistic
model, namely a Bayesian network, for detecting crawlers
inside Web-server access logs. This Bayesian approach is
well suited for the particular domain due to the high de-
gree of uncertainty inherent in the problem. Our system
uses machine learning to determine the parameters of
the Bayesian network that classifies the user-agent of each
Web session as crawler or human. The system combines
evidence extracted from each Web session to determine
the class it belongs to. The Bayesian network does not
merely output a classification label, but a probability dis-
tribution over all classes by combining prior knowledge
with observed data.

During our training and testing stages we also ad-
dressed the class imbalance problem that arises when
the class distributions in data sets are highly skewed. We
have used resampling to counter this problem and devel-
oped five classifiers by training on five different datasets.

The high accuracy with which our system detects craw-
ler sessions, proves the effectiveness of our proposed
methodology. Our recall and precision were consistently
above 95% and 83% reaching as high as 96% and 89%,
respectively if we ignore sessions with less than 8 total re-
quests. Moreover, our proposed ‘‘majority vote” metric
shows a high agreement in classification which indicates
that our system can be extended to determine IP addresses
that belong to crawlers, which were previously unknown.

The results provide a promising direction for future
work. We are currently investigating the introduction of
additional heuristics for session identification, which is

an important pre-processing step of our proposed system.
We also plan to investigate the effectiveness of other fea-
tures of Web sessions, such as the navigational semantics
of user-agent requests.
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