
A Control Theoretical Approach to Self-optimizing
Block Transfer in Web Service Grids

ANASTASIOS GOUNARIS

School of Computer Science

University of Manchester, UK

and

CHRISTOS YFOULIS

Department of Automation

Alexander Technological Educational Institute of Thessaloniki, Greece

and

RIZOS SAKELLARIOU

School of Computer Science

University of Manchester, UK

and

MARIOS D. DIKAIAKOS

Department of Computer Science

University of Cyprus, Cyprus

Nowadays, Web Services (WSs) play an important role in the dissemination and distributed
processing of large amounts of data that become available on the Web. In many cases, it is
essential to retrieve and process such data in blocks, in order to benefit from pipelined parallelism
and reduced communication costs. This paper deals with the problem of minimizing at runtime,
in a self-managing way, the total response time of a call to a database exposed to a volatile
environment, like the Grid, as a WS. Typically, in this scenario, response time exhibits a concave,
non-linear behavior depending on the client-controlled size of the individual requests comprising
a fixed size task; in addition, no accurate profiling or internal state information is available,
and the optimum point is volatile. This situation is encountered in several systems, such as
WS Management Systems (WSMSs) for DBMS-like data management over wide area service-
based networks, and the widely spread OGSA-DAI WSs for accessing and integrating traditional
DBMSs. The main challenges in this problem, apart from the unavailability of a model, include
the presence of noise, which incurs local minima, the volatility of the environment, which results
into a moving optimum operating point, and the requirements for fast convergence to the optimal
size of the request from the side of the client rather than of the server, and for low overshooting.
Two solutions are presented in this work, which fall into the broader areas of runtime optimization
and switching extremum control. They incorporate heuristics to avoid local optimal points, and
address all the afore-mentioned challenges. The effectiveness of the solutions is verified via both
empirical evaluation in real cases and simulations, which show that significant performance benefits
can be provided rendering obsolete the need for detailed profiling of the WSs.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distrib-
uted Systems; H.4.0 [Information Systems Applications]: General

Additional Key Words and Phrases: autonomic computing, data grids, extremum control, control
theory, Web Services, OGSA-DAI

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–30.



2 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

1. INTRODUCTION

The proliferation of Web Service-based Grids and the increasingly growing volume
of data that is processed by and shared among such Grids gives rise to the need
for the development of more robust techniques for the manipulation of large data
volumes in autonomous, unpredictable environments that adopt service-oriented
architectures. Thus far, the emphasis has been on architectures for the execution of
SQL-like queries that span multiple Web Services (e.g., [Liu et al. 2003a; Alpdemir
et al. 2003; Narayanan et al. 2003]), wide area query optimization (e.g., [Srivastava
et al. 2006; Gounaris et al. 2005]) and the associated resource scheduling decisions
(e.g., [Gounaris et al. 2006]). However, an important factor is the optimization of
the cost of calls to WSs, which is largely dependent both on the size of the request
(i.e., the size of the data block transferred between services) [Srivastava et al. 2006;
Alpdemir et al. 2005], and on the network bandwidth. This is due to the fact that
the response time of a remote server serving a series of calls with a fixed total size
is characterized by a highly noisy, concave graph with regards to the size of the
data chunks or blocks returned by the server. This graph has a different optimal
point for different queries and/or different connections, or even different stages of
the same query.

Consider for example the case in which a database is globally exposed as a WS
through OGSA-DAI wrappers [Antonioletti et al. 2005]. Clients can retrieve data
from this database by submitting requests containing SQL queries to the associated
WS. When the result set is relatively large (larger than 1-3MB in the current
release), then it must be returned in chunks to avoid out-of-memory errors and
speed up transmission. Block-based data transmission is also the first choice when
the data must be processed at the client side while it is being received in a pipelined
fashion. As explained in Section 2, and reported in [Alpdemir et al. 2005], the
response time first decreases when the block size is increased and after a point
it starts increasing. Similar behavior for other data management WSs is reported
also in [Srivastava et al. 2006]. Note that concave graphs can describe other aspects
of the behavior of Web Services and Web Servers, in general. An example is the
response time of an Apache Web Server with regards to the number of maximum
clients allowed to be connected simultaneously to it [Liu et al. 2003b].

In this paper we examine the OGSA-DAI case. The objective is to minimize
at runtime the total response time of a query by (continuously) tuning the size
of the data blocks that are requested by the client from an OGSA-DAI WS in a
self-managing way. We follow a control theoretical approach to this problem. In
principle, autonomic computing can benefit a lot from control theory techniques,
which are well-established in engineering fields and typically accompanied by the-
oretical investigations of properties such as stability, accuracy, and settling time
[Diao et al. 2005]. Autonomic systems encapsulate components that monitor their
environment to collect feedback, analyze the feedback collected, plan responses and
enforce such responses by changing the configuration of the self-managing system.
Control systems operate in a similar way, despite any differences in the terminology.
In control systems, the main part is the controller, which receives system measure-
ments as its input, and outputs a system configuration that impacts on the system
performance, termed as control input.
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 3

A distinctive feature of our work is that the controller resides on the client rather
than on the server. A main challenge in this case-study is that the entity to be con-
figured is exposed as an unknown black box to the controller. A main consequence
of this fact is that any solutions developed must operate well in the absence of a
parameterized model that describes the behavior of the service. Another conse-
quence is that any scope of using heuristics based on more detailed monitoring and
internal state information of the server (e.g., as in [Liu et al. 2003b]) is eliminated.
In other words, the only information about the controlled entity is restricted to the
measured output, which is the response time of the request of the caller. However,
the main benefit is that the measured output is the metric that mostly interests
the user, since it includes the transmission cost over the network, and, as such,
describes the performance from the user’s point of view precisely. This comes at
the expense of additional noise and jitter in the measured output, which are inher-
ent in measurements of communication costs across unstable, volatile connections.
The noise results in local peaks and non-monotonic behavior on both sides of the
optimal point, rendering naive hill climbing techniques non-appealing. Finally, the
convergence of any algorithm must be fast with low overshooting (i.e., not reaching
extreme values in the transient phase while converging) and devoid of oscillations to
the extent possible; otherwise serious performance degradation and out-of-memory
errors are not avoided, respectively.

The main contribution of this work is three-fold.

—Firstly, to present fast and robust optimization algorithms that belong to the
area of runtime optimization and switching extremum control [Draper and Y.Li
1954; Blackman 1962] and that are capable of converging to the optimal point
quickly despite the presence of local optimum regions, noise, and bad choices for
the starting point.

—Secondly, to apply the afore mentioned algorithms to the OGSA-DAI case, and
conduct experiments to evaluate them. The evaluation results prove that the
algorithms are robust, effective and are characterized by high convergence speed.
More specifically, there are significant benefits in the response time in the generic
case, where the optimal region of block size is not a priori known; moreover, the
algorithms can yield improved performance even in the more limited scenario
where this region can be approximated.

—Thirdly, to complement the empirical evaluation with thorough simulation exper-
iments, which, in several cases, make different assumptions with respect to the
environmental conditions. Simulations help us to study in depth the behavior of
the algorithms presented, eliminating the interference from unidentified factors
that are inherent in wide area systems. These simulations shed light on several
strengths and weaknesses of the algorithms that empirical evaluation cannot re-
veal, and thus make it easier for developers to adjust the same solutions to other
problems.

The results of this work render the process of calling services self-managing. As
such, the need for detailed WS profiling and fine tuning becomes obsolete. The
technique presented is applicable to any similar optimization problem with similar
characteristics with those elaborated in Section 2; OGSA-DAI services are presented
merely as a case study.

ACM Journal Name, Vol. V, No. N, Month 20YY.



4 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

Note that complementary efforts to minimize the data transfer cost are described
in [Seshasayee et al. 2004] and [Kosar and Livny 2004]. The former suggests im-
provements to the basic communication mechanism for WSs, whereas the latter
investigates solutions based upon runtime selection of the transfer protocol. In ad-
dition, in order to avoid poor performance, it is possible to use WSs only for control
while the actual data transfer is done via other file transfer mechanisms (e.g., based
on SSH).

The remainder of the paper is structured as follows. Section 2 presents the OGSA-
DAI approach in brief and measurements that motivated the research described
hereby. The solution to the optimization problem is presented in Section 3. Section
4 deals with the evaluation. Related work is discussed in Section 5, and Section 6
concludes the paper1.

2. THE OGSA-DAI APPROACH

OGSA-DAI services aim at exposing different data resources, such as relational
and XML DBMSs, and raw files, in the form of WSs, which are called Data Ser-
vices (DSs) [Antonioletti et al. 2005]. A single Data Service can provide access
to multiple data resources, and this interaction is enabled through the so-called
Data Service Resources (DSRs), which implement the core OGSA-DAI function-
ality. A client or another WS can direct “perform” documents at an OGSA-DAI
DS. The protocol used is SOAP over HTTP and the perform document is in XML.
Subsequently, a DSR accepts, parses and validates this document, executes the
data-related activities specified within it, and constructs the response documents.

The activities described in the perform document define also the data delivery
mechanism. Several modes are supported; here we investigate only the pull one. In
this mode, the client sends requests to the service, which, as a response, returns all
the results either in one big chunk, or in smaller blocks. In OGSA-DAI the block
size is in tuples. The advantage of the former case is that the client sends just
a single request, whereas, in the latter case, the client sends a series of requests
until the complete result set is retrieved. Nevertheless, the advantage of the latter
case is that firstly, it can handle large volumes of data that cannot fit entirely into
main memory, and secondly, it allows for pipelined post-processing at the client’s
side. As such, retrieving the result set in a block-based pull mode is more widely
applicable.

Suppose a query returning to a local client 100000 tuples of 100 bytes each, and
that the client can configure the block size for the whole duration of the query
results transmission. Figure 1 illustrates the response times for this query for
different block sizes. The values shown are the averages over 5 runs on a machine
with 512MB memory and 2.4GHz CPU speed. They are measured at the client side
and they correspond to the cost of sending as many requests as required to retrieve
the complete result set and getting back the response from the server. The WSRF2

2.2 flavor of OGSA-DAI is used; the simple WS flavor could have been used with
no difference, since both employ the same asynchronous data transfer mechanism

1A short version of this work with more limited empirical evaluation and no simulations has
appeared in [Gounaris et al. 2007].
2http://www.oasis-open.org/committees/tc home.php?wg abbrev=wsrf

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 5

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

20000

40000

60000

80000

100000

120000

0 2000 4000 6000 8000 10000

blocksize (#tuples)

re
sp

on
se

 t
im

e 
(m

se
cs

)

 

Fig. 1. Response times for a local query returning 100K tuples for different block sizes (tuple-
length=100 bytes/tuple).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples) 

re
sp

on
se

 t
im

e 
(m

se
cs

)

 

Fig. 2. Response times for a remote query returning 100K tuples for different block sizes (tuple-
length=100 bytes/tuple).

using the SOAP over HTTP protocol. In this setting the optimum block size is
around 6000 tuples. For this size, the response times are approximately 4 times
lower than when the block sizes are a few hundred tuples. The sharp increase in
response time with block sizes larger than 10K tuples is due to memory shortage.

Figure 2 shows the response times for the same query in a different setting. The
server now is on a machine with 3.2GHz CPU speed and 1GB memory, and the
client is remote (the server is in the UK, whereas the client is in Cyprus). No other
application are running at the server side. We can observe that the optimum point
has moved to around 10K tuples and the optimum size of the previous case now
yields approximately 20% worse performance. In another setting, where the client

ACM Journal Name, Vol. V, No. N, Month 20YY.



6 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
sp

on
se

 ti
m

e
 (m

se
cs

)

 

Fig. 3. Response times for a remote query returning 100K tuples for different block sizes (unstable
connection, tuple-length=100 bytes/tuple).

including 1st block without 1st block
block size average stdev tuple

cost
average stdev tuple

cost

4001 1330 455 0.33 1242 102 0.31

4500 1491 428 0.33 1404 167 0.31

5001 1314 508 0.26 1203 153 0.24

6000 1560 638 0.26 1400 146 0.23

7000 2135 706 0.3 1944 146 0.28

8000 2426 706 0.3 2220 165 0.28

Table I. Summary of response times for a local query for different block sizes.

and the server are connected through an unstable wireless connection, the optimum
point is modified to 8000 tuples approximately, as shown in Figure 3.

All these figures reveal a common pattern: the performance first improves (in
a non-monotonic fashion) with increased block sizes, and after a point it starts
degrading. It cannot be easily verified which exactly factors are responsible for
these; in network applications of this kind the responsibility is diffused. However
sending fewer blocks means that the total amount of requests transmitted is reduced
and thus can improve performance. On the other hand, larger chunks of data
require more resources, such as internal buffers, at the server side, which may start
becoming stretched resulting into lower response times. This is why the concave
effect exists also in local settings, as shown in Figure 1.

From the above figures, it has become obvious that in different settings in terms of
different server-client pairs, the optimum data block size changes. In addition, the
noise is high and as a result, on both sides of the optimal point there may exist local
optimal points, which must be overcome by the self-optimizing mechanism. This is
more evident in Figure 4, which shows 3 out of the 5 runs, the aggregate of which
is in Figure 3. Profiling of each pair of nodes cannot be sufficient. This is because
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
sp

on
se

 t
im

e 
(m

se
cs

)

run1

run2

run3

 

Fig. 4. Response times of individual runs of a remote query returning 100K tuples for different
block sizes (unstable connection, tuple-length=100 bytes/tuple).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

40000

80000

120000

160000

200000

0 2000 4000 6000 8000 10000 12000

block size (#tuples)

re
sp

on
se

 t
im

e 
(m

se
cs

)

Including XML
processing

Excluding XML
proc.

 

Fig. 5. Response times for a remote query returning 100K tuples for different block sizes (unstable
connection, double tuple size: tuple-length=200 bytes/tuple).

of two reasons. Firstly, the resources are non-dedicated in general, which means
that the service response time and network bandwidth are subject to frequent,
unpredictable changes. Moreover, the optimal point depends also on the length
of the tuples in the result set, which is query-dependent. For example, in Figure
5 the response times are presented for the same setting as in Figure 3 with the
only difference that the tuple length is doubled. We can observe that the optimum
block size has changed in this case as well. In Figure 5, two plots are depicted, one
that takes into account the XML processing of the SOAP messages that are used
to convey the results, and one that presents the aggregate response time, as in all

ACM Journal Name, Vol. V, No. N, Month 20YY.



8 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

including 1st block without 1st block
block size average stdev tuple

cost
average stdev tuple

cost

4001 5198 1014 1.3 5146 996 1.29

4500 5386 856 1.2 5295 706 1.18

5001 6334 1750 1.27 6287 1782 1.26

6000 7337 1327 1.22 7260 1312 1.21

7000 8154 1724 1.16 8026 1696 1.15

8000 9636 1673 1.2 9459 1570 1.18

Table II. Summary of response times for a remote query for different block sizes.

figures thus far. It is shown that the shift of the optimum size, when compared
against Figure 3, is not due to a change in the XML processing cost, i.e., if another,
non XML-based protocol is employed instead of SOAP, the same phenomenon will
appear.

The impact of the volatility of network connections and of noise are summarized
is Tables I and II, which correspond to Figures 1 and 5, respectively. In the tables,
it can be seen that the standard deviation in the measurements is high enough to
mislead a simple optimizer, performing hill-climbing for instance, as to whether
increasing the block size is profitable or not. Discarding the cost of the first block
which includes the submission of the query on the service side, has little effect in
remote cases. As such, applying simple hill-climbing or rule-based techniques (e.g.,
fuzzy control) is unsuitable in this case. Also, when 100K tuples are transferred
and the optimal size is around 6-8K tuples, it means that the query will be finished
in less than 20 cycles. As a result, a further requirement is for fast convergence.
This leaves little scope for system identification and sampling that would allow for
parameterization of an analytical model, based on which the optimum point can be
estimated. Overshooting must also be low; otherwise either out-of-memory errors
might occur, or the performance degradation due to a few cycles with a block size
near the point where the system runs out of memory cannot be outweighed by
future optimized decisions since the number of overall cycles is small.

3. ONLINE ADJUSTMENT

If y is the performance metric to be optimized, such as response time or equivalently,
the per tuple cost in time units, and x the size of the data block, we assume that
there exists a function f for which

y = f(x) + e

where e represents the noise. We further assume that e is responsible for the local
peaks on both sides of the optimal block size.

To explain the concave shape, it can be also assumed that, at least in the neigh-
borhood of the optimal point, there is a quadratic function

f(x) = a(x− x∗)2 + b,

where a, b and x∗ are unknown constants.
The optimal point is the value of x for which the derivative of f(x) is zero, i.e.,

5f(x) = 0. Obviously, this value is x∗.

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 9

 
 
 
 
 
 
 
 
 
 

 
 

 
y = f(x) 

 
 

Controller 

 

yk xk 

Fig. 6. A self-tuning system based on extremum control.

In this paper, two main approaches are investigated, none of which relies on
the precise knowledge of a, b and x∗. The first is a typical numerical optimization
method, while the second comes from the field of extremum control. In both ap-
proaches, in one adaptivity cycle or step, the time needed to transmit a data block
(of a known size) is collected as feedback and a new value for the block size is
calculated by the controller (see Figure 6).

3.1 Runtime optimization

The runtime optimization method is inspired by Newton’s technique [Persinni 1988],
which estimates, at each step, the next value of the block size, based on its previous
values and the derivatives of x and y. More specifically, it defines that the value of
x at the kth step, xk is given by the following formula

xk = xk−1 − 5f(xk−1)
52f(xk−1)

(1)

The second partial derivative (52) in the denominator of the fraction allows for
quick convergence. A nice characteristic of this method is that, if noise is eliminated
and y = f(x) indeed, then the algorithm converges in one step, since

5f(xk−1) = 2a(xk−1 − xo)

and

52f(xk−1) = 2a

However, the main drawback is that Newton’s method is known to be very sen-
sitive to noise, whereas, in the case examined in this report, the noise is not only
existent but also non-negligible; moreover, the behavior of the system may have
some quadratic characteristics, but this does not mean that a quadratic function,
the parameters of which are unknown anyway, can describe it accurately. The un-
availability of a model leads to an approximate estimate of the partial derivatives
using backward difference operators ∆u = uk − uk−1, i.e

5f(k) ' ∆y

∆x
=

yk − yk−1

xk − xk−1

ACM Journal Name, Vol. V, No. N, Month 20YY.



10 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

It was mentioned previously that the main challenges in the problem investigated
in this paper include, apart from the unavailability of a model, the presence of noise
and the volatility of the optimum block size, even at an intra-run level. To mitigate
the impact of the noise in the graphs, the measured output and the control input
are firstly averaged over a sequence of n measurements. This may reduce the speed
of response to changes. Hence, a proper choice of the averaging horizon must be
made to trade-off speed of response with noise removal. This is further discussed
in the following sections. To facilitate the controller to be capable of continuously
probing the block size space, since the optimum point may move during query
execution, a dither signal d(k) = df · w(k) is added, where df is a constant factor
and w a pseudo-random variable that follows a Gaussian distribution with mean 0
and standard deviation 1. As such, instead of using Eq. (1) as it is, the value of
the block size at each step is calculated by the controller as follows:

xk = xk−1 −
∆yk−1

∆2yk−1

+ d(k) (2)

where the average measurements x̄k and ȳk are given by

x̄k =
1
n

k−n+1∑

i=k

xi and ȳk =
1
n

k−n+1∑

i=k

yi, respectively.

3.2 Extremum control

The second approach investigated hereby is inspired by extremum control, which
can yield results and track a varying optimum operating point even in the absence
of a detailed analytic model. The role of an extremum controller is to manipulate
the input x to the performance function f(x), as a function of this output, as
shown in Figure 6. Extremum control is based upon numerical optimization but
goes beyond that since it can be blended with well known control approaches,
including variable setpoint (optimum tracking) controllers, feedforward controllers,
perturbation analysis, self tuning and adaptive techniques, so that noise, model
uncertainties and time variations can be dealt with. Filtering and averaging are also
typically included in the aforementioned techniques. There is a rich literature and
many different methodologies and applications [Ariyur and Krstic 2003; Wellstead
and M.B.Zarrop 1995; Larsson 2001].

In this paper, due to the difficulties mentioned in the previous sections, we decided
to experiment initially with a simple and straightforward scheme, called switching
extremum control.

Two flavors are examined; both can be described by

xk = xk−1 − g · sign(∆yk−1∆xk−1) + d(k) (3)

where g is the gain, and the function sign(.) returns 1 for positive arguments and
−1 for negative ones.

The formula above can detect the side of the optimum point where the current
block size resides on. The rationale is that the next block size must be greater
than the previous one, if, in the last step, an increase has led to performance
improvement, or a decrease has led to performance degradation. Otherwise, the
block size must become smaller. In the first flavor, g = b1 is a constant (positive)
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 11

ID #tuples retrieved avg raw tuple size

Q1 150000 27 bytes

Q2 150000 65 bytes

Q3 200000 57 bytes

Q4 450000 4 bytes

Q5 1000000 2 bytes

Table III. The characteristics of the example queries.

tuning parameter. Without applying a dither signal, the step size is always the
same, and since the absolute value of x, ‖∆x‖, is equal to b1, b1 defines the rate at
which x is modified.

In the second flavor

g = b2‖
∆yk−1

yk−1

∆xk−1‖, b2 > 0 (4)

where b2 is constant. In this case, the step size (gain) is adaptive and is proportional
to the product of the performance change and the change in the block size. As in
the first approach, it is important to limit the effect of noise around the optimum
point, since very small changes in the block size in Equation (4) may induce a high
noise to signal ratio. To this end, averaging is applied in this case as well. On the
other hand, the convergence or the tracking ability of our iterative algorithm should
not be harmed. Moreover, high overshooting and sustained oscillations are highly
undesirable. These issues are investigated and discussed in the sequel. In both
approaches, maximum and minimum limits can be imposed to avoid overshooting
with detrimental effects.

4. EVALUATION

4.1 Prototype Implementation and Results

To test the actual performance of the techniques described, a thin client is built
that can submit SQL queries to an OGSA-DAI DS. The client requests results
to be delivered in blocks using SOAP/HTTP. The block size is determined by
the client and can change during the delivery of the same result set. The data
come from the TPC-H database3 (scale 1) stored in a MySQL DBMS. Five queries
are used throughout as shown in Table III. Note that the actual tuple length
communicated across the network is significantly increased by the XML tags, as
reported in [Dobrzelecki et al. 2006]. All queries are simple scan queries without
joins, so that the computational load in the server is minimal and, as a result, the
time to produce a block is negligible and does not affect the measurements.

The experimental setup is as follows, unless explicitly mentioned. The server is in
Manchester, UK and the client is in Greece. The client is connected to the Internet
through a wireless connection. The server’s CPU speed is 3.2GHz and the memory
1GB. Each query configuration ran 10 times, and the different configurations were
executed in a round robin fashion, i.e., there is no concurrency. The complete
set of experiments presented here lasted for 10 days approximately around the

3http://www.tpc.org/tpch/

ACM Journal Name, Vol. V, No. N, Month 20YY.



12 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000

block size (#tuples)

re
sp

on
se

 t
im

e 
(s

ec
s)

Q1

Q2

Q3

Q4

Q5

 

Fig. 7. Response times for queries Q1-Q5 for fixed block sizes.

clock, and as such, it reflects the condition of the network during significantly
different workloads. Consequently, the measurements presented are characterized
by a relatively high standard deviation due to the volatility of the environment. To
smooth the standard deviation the lowest and the highest value of each set of the
10 runs is removed, and the average of the rest is presented.

The response times of the 5 example queries are presented in Figure 7. The fixed
block sizes used to produce this profiling figure are 1K, 5K, 6K, 7K, 8K, 9K and 10K
tuples. When the initial decision on the block size is clearly suboptimal, i.e., around
1000 tuples, an adaptive method can yield significant performance benefits; to the
contrary, at first sight, it seems that there is little scope for optimization otherwise,
since the near-optimum region is relatively wide. However, as will be discussed next,
even in these cases where the initial decision is not clearly suboptimal, adaptive
policies can yield more robust and consistent performance improvements that, in
some cases, are around 10%.

On average, the optimum point for Q1 on the grounds of the profiling information
is at 7000 tuples, with a 8000 tuples block size being very close to it, as shown in the
figures. In reality, the actual optimum point is hard to be detected as it is moving
between the 10 runs: the optimum is 5000 tuples once, 7000 four times, 8000 three
times and 9000 twice. In the remainder of the text, the average optimum based
on the profiling will be referred to as the optimum point. Note that Q1 seems to
be costlier than Q2 although it transfers lower volumes of data across the network;
this is explained by the different utilization of the server and the bandwidth of the
connection during the runs of the two queries.

4.1.1 Comparison of Adaptive Techniques. Table IV presents the adaptive poli-
cies evaluated. In the Newton (NTN) and the switching extremum control (SEC)
with adaptive gain, b1 is used in the first runs when no adequate information has
been gathered to estimate the derivative. The starting point in all configurations is
5000 tuples, and the averaging window n of both x̄ and ȳ is set to 3. Minimum and
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 13

name policy b1 b2 df

NTN-noD NTN 400 - 0

NTN-D NTN 400 - 100

SEC-const-D SEC 400 - 100

SEC-5-noD SEC 400 5 0

SEC-10-noD SEC 400 10 0

SEC-15-noD SEC 400 15 0

SEC-20-noD SEC 400 20 0

SEC-25-noD SEC 400 25 0

SEC-5-D SEC 400 5 100

SEC-10-D SEC 400 10 100

SEC-15-D SEC 400 15 100

SEC-20-D SEC 400 20 100

SEC-25-D SEC 400 25 100

Table IV. The adaptive policies evaluated.

name Q1 Q2 Q3 Q4 Q5 avg

NTN-noD 1 1.1029 1.0269 1.0429 1.0912 1.0528

NTN-D 1.0047 1.0567 1.0053 1.0654 1.1127 1.0489

SEC-const-D 1.0215 1.1289 1.2465 1.0463 1.1785 1.1243

SEC-5-noD 1.0147 1.0613 1.036 1.0142 1.1549 1.0562

SEC-10-noD 1.03 1.0452 1.03 1.0322 1.1852 1.0645

SEC-15-noD 1.0366 1 1.0405 1.064 1.129 1.05

SEC-20-noD 1.0059 1.0724 1.0015 1.0182 1.0645 1.0325

SEC-25-noD 1.012 1.0486 1 1.0395 1 1.02

SEC-5-D 1.0249 1.1047 1.1277 1.0766 1.2189 1.1106

SEC-10-D 1.0214 1.0147 1.0893 1.0674 1.1614 1.0708

SEC-15-D 1.0102 1.0239 1.0987 1.0405 1.1528 1.0652

SEC-20-D 1.0103 1.0616 1.1413 1.1018 1.1288 1.0888

SEC-25-D 1.0042 1.0659 1.1748 1 1.1177 1.0725

Table V. Comparison of adaptive policies.

maximum value constraints on the block size are imposed, set to 1000 and 10000,
respectively.

The comparison of the techniques is shown in Table V, which presents the nor-
malized response times for each of the adaptivity configurations of Table IV. The
lowest response time for each query is given the value 1 in the table. As such, the
cell values correspond to the performance degradation when compared against the
most effective of the policies investigated. Several useful observations can be drawn
from this table.

—Firstly, taking into account the small differences between the response times for
different block sizes shown in Figure 7, the differences between the performance
of the different adaptivity policies are not negligible.

—Secondly, there is no policy that outperforms the others consistently.
—Thirdly, as expected, the Newton-based techniques cannot perform as well as

the best switching extremum control policies; the former are known to be more
sensitive to noise.

ACM Journal Name, Vol. V, No. N, Month 20YY.



14 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

block size Q1 Q2 Q3 Q4 Q5 avg

1000 1.25 1.281 1.4 1.45 1.43 1.361

5000 1.0718 1.0052 1.0752 1.0729 1.075 1.06

6000 1.0422 1.0286 1.0626 1.0198 1.024 1.0354

7000 1 1.018 1.0205 1.0104 1.0235 1.0145

8000 1.0013 1 1.0077 1.0698 1.0143 1.0186

9000 1.0134 1.005 1 1 1.0302 1.0097

10000 1.0241 1.0151 1.0084 1.0084 1 1.0112

dynamic 0.989 0.9945 0.9436 0.9764 0.8922 0.9591

Table VI. Comparison of dynamic adjustment of block size against fixed size policies.

—An additional observation is that, somewhat counter-intuitively, the effects of
the dithering signal and adaptive gain based on the performance change seem to
annul each other, and consequently, the best approaches to SEC with adaptive
gain seem to be those that have zero dithering factor. On average, SEC-25-
noD yields 2% worse response times than the best policy (which is not known
a priori), whereas the best SEC policy with both adaptive gain and dither sig-
nal yields 6.52% worse performance. An explanation could be that the moving
optimum point and the volatility of the environment are adequate for continu-
ously searching the block size space and thus to overcome local optimum points,
whereas dithering results in increased instability. Also, in most cases, the dither
signal does not change the mean value of block size but causes a fluctuation on
both sides of it with an amplitude which depends on df . When the dynamic
adjustment operates near the starting point area, negative dither signals cause
more significant performance degradation than the performance improvement in
the case of positive signals because of the shape of the response time graphs.
As such, applying a dither signal seems more appropriate for cases in which the
slope on both sides of the global and local optimum points is steeper.

—Finally, the first flavor of the SEC policy with constant step, SEC-constant-D, is
not efficient. Perhaps, the performance would improve with different values for
b1 but this would shift the problem from fine-tuning the block size to fine-tuning
the adaptivity parameters.

4.1.2 Performance Improvements. Thus far we have discussed how the adaptiv-
ity techniques compare to each other. In the following paragraphs the comparison
with the fixed block size cases will be discussed, with a summary provided by Table
VI. In this table, the values are normalized with the optimum point of Figure 7 set
to 1. The last row depicts the relative performance of the most effective policy for
each query, as shown in Table V. We can observe that:

—For this experiment set, the improvement may exceed 40% (if the fixed sized
blocks were 1000 tuples). Similar or much larger improvements may be noticed
in other settings (e.g., Section 4.1.4), in the generic case where the near-optimum
area of block sizes is unknown from before. In the following, the more limited
case where this area can be approximated is discussed.

—Dynamically adjusting the block size outperforms fixed size configurations by
more than 4% on average, even if these are known, e.g., through profiling, and

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 15

set to their optimum before execution. Also dynamic techniques can track the
optimal point; in fixed configurations, the optimum from a finite set that has
been profiled is chosen; however it might be the case that the global optimal is
not in this set.

—On average, the best size for fixed size configuration in our experiments is 9000
tuples. This yields more than 5% performance degradation when compared to
dynamic adjustment, which may be translated into several minutes in real time
units (given that all queries and especially Q5 are rather expensive and long
running as shown in Figure 7).

—The starting block size of the adaptivity policies is 5000 tuples. If this size was
used for fixed size configurations instead of 9000, the performance improvement
would be more than 10%.

—In the table, the performance of the best adaptivity policy is taken into account,
for each query. If instead, SEC-25-noD is used for all queries, the average perfor-
mance improvement is around 3%, 8% and 38% compared to fixed blocks of 9000,
5000 and 1000 tuples, respectively, which is still significant. NTN-D yields 0.5%,
5.5% and 36% lower response times, respectively. NTN-noD, which requires not
a single configuration parameter, behaves the same as a 9000 tuples fixed block
size.

The performance benefits may be further increased by modifying the averaging
window. We reran Q1 for two adaptivity policies, namely NTN-noD and SEC-
25-D, and changed the averaging window from 3 to 5. In both cases, a further
decrease of response time by 2.3% was observed. Also, as discussed earlier, SEC
policies with adaptive step and dither signal do not perform as efficiently as SEC
policies with adaptive step but without dither signal. When rerunning Q1 for
SEC-25-D and dithering factor 200 and 400 instead of 100, we noticed negligible
performance improvement in the first case, and performance degradation in the
latter. Consequently, it can be inferred with high confidence that the value of df

does not play a big role in approaches with dithering signal.

4.1.3 Speed of Convergence and Stability. The convergence speed of the second
flavor of the switching extremum control (SEC) techniques is fast, and this is de-
picted in Figure 8. On average, the adjustment converges to its final region at 5
adaptivity cycles, i.e., five block transmissions. When there is no dither signal, the
block size remains stable thereafter. The drawback is that if either ∆yk−1 or ∆xk−1

remains unchanged for two consecutive averaging windows, then a chain effect takes
place where all future block sizes cannot be modified. This is not desirable when
the optimum point changes significantly during query runtime. It is avoided with
dithering, where there is a continuous search of the space, which sometimes has
negative effects as discussed earlier, but in some cases enables higher accuracy as
in Q4 (see Figure 8). The fast convergence property does not hold for the first
flavor of SEC, as shown in Figure 9. SEC-const-D seems to require more cycles to
converge than the complete length of the query execution.

The fluctuation effect of dither signal is more evident in approaches based on
Newton’s technique and it may lead to instability. Figures 10 and 11 refer to
the average decisions of NTN techniques during query execution for Q1 and Q5.

ACM Journal Name, Vol. V, No. N, Month 20YY.



16 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC-25

4500

5500

6500

7500

8500

9500

0 50 100

cycles

bl
oc

k 
si

ze
 (

#t
up

le
s)

Q5, no dither
Q5, dither
Q4, no dither

Q4, dither

 

Fig. 8. The block sizes at different adjustment cycles for Q4, Q5 when SEC is employed with
b2 = 25.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC-const-D

4900

5400

5900

6400

6900

7400

7900

8400

8900

0 20 40 60 80 100 120

cycles

bl
oc

k 
si

ze
 (

#t
up

le
s)

Q1

Q5

 

Fig. 9. The block sizes at different adjustment cycles for Q1, Q5 when SEC-const-D is employed.

Without dithering, such approaches may not be as accurate as SEC ones, but they
are characterized by the same convergence speed. However, their estimates may
fluctuate, as in the last cycles of Figure 11. The amplitude of the fluctuations,
which are due to both the presence of a dither signal and the sudden changes in
NTN, can be mitigated by increasing the averaging window.

4.1.4 Dynamic adjustment with clearly suboptimal starting point. In the exper-
iments presented above, the initial starting point for the adaptive techniques has
been relatively close to the optimum. To further prove the robustness and efficiency
of the adaptivity approaches, the five queries are executed again (in a LAN setting
this time) and the initial starting point is set to 1000 tuples. In this setting, the per-
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 17

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NTN

4900

5000

5100

5200

5300

5400

5500

5600

5700

0 5 10 15 20 25 30

cycles

bl
oc

k 
si

ze
 (

#t
up

le
s)

no dither

dither

 

Fig. 10. The block sizes at different adjustment cycles for Q1 when NTN is employed.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NTN

4900

5000

5100

5200

5300

5400

5500

5600

5700

0 50 100 150 200

cycles

bl
oc

k 
si

ze
 (

#t
up

le
s)

no dither

dither

 

Fig. 11. The block sizes at different adjustment cycles for Q5 when NTN is employed.

query dynamic fixed at 1000 tuples
avg stdev avg stdev

Q1 1.152 3.77% 2.581 0.42%

Q2 1.191 3.58% 2.557 0.18%

Q3 1.192 3.19% 2.404 1.08%

Q4 1.154 6.52% 2.178 0.41%

Q5 1.02 5.15% 2.06 0.77%

Table VII. Comparison of the performance of dynamic adjustment of block size when the initial
block size is clearly suboptimal

formance degradation of such a suboptimal decision is more severe than in a WAN
ACM Journal Name, Vol. V, No. N, Month 20YY.



18 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC-15-D

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120

cycles

bl
oc

k 
si

ze
 (

#t
up

le
s)

Q1

Q5

 

Fig. 12. The block sizes at different adjustment cycles when SEC-15-D is employed and the
starting point is 1000 tuples.

environment (more than 100%). A single configuration of the SEC techniques is
picked, namely SEC-15-D, which is outperformed by SEC approaches with adap-
tive gain and no dithering but, according to the previous experiments, is the most
effective from the SEC approaches that apply dithering. Table VII summarizes the
results in normalized time units. The value of 1 corresponds to the lower response
time after performing profiling with several fixed sized configurations. When there
is no adjustment, the response times are more than 200% the optimum, whereas
SEC-15-D yields on average only 14% worse response times. The intra-query be-
havior for Q1 and Q5 is shown in Figure 12; the rest of the queries exhibit similar
behavior. An observation is that the adaptivity techniques very quickly move out
of the clearly suboptimal region of 5000 tuples or less. Overshooting is avoided due
to the maximum hard constraint imposed.

4.2 Simulation Results

The simulation setup is intended to provide a complementary study and experi-
mentation with the algorithms proposed so that a more representative picture of
the results can be obtained and more reliable conclusions can be drawn. Empirical
evaluation in real cases cannot always reveal some aspects of the algorithms’s char-
acteristics, since extensive experimentation with many different parameter settings
and algorithms requires a significant amount of time. Using simulation further
remarks can be made and other issues can be more clearly investigated.

On the basis of the profiles obtained by real evaluation experiments, as presented
in Figure 7 and Table VI, we developed a simulation engine based on MATLABTM .
We implemented all adaptive policies proposed in Table IV and also experimented
with many different parameter settings. Our experimentation revealed a number
of additional issues, which allow a more detailed and fairer comparison of the algo-
rithms, and further reveal their features, advantages and disadvantages.

An important aspect of a faithful simulation in our case study is the ability to
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 19

emulate the unique characteristics present. Although the response times exhibit
an approximately concave shape on average, we have seen that the impact of a
number of unknown and unpredictable factors – variable network conditions, server
utilization level, transients after block size changes – induce jitter and hence noisy
measurements and also frequent movements of the optimal point. These factors give
rise to local peaks and non-monotonic behavior. These issues have to be somehow
emulated.

To this end, we incorporated into the simulation engine extra features for mod-
ifying the profiles. Jitter, transients and movements of the optimum point can be
injected into the initial profiles in order to test how they affect the performance and
whether they can be dealt with the proposed policies. Jitter and transients may be
emulated in the form of additional random noise uniformly distributed around the
static profile averaged values over all runs. Small movements of the optimal point
can easily occur due to the random noise added in the profiles, which is assumed
to be more or less representative of small deviations in the measured values at-
tributed to the volatility of the environment, and are expected even under normal
conditions.

We also wanted to cover the case of sudden changes of a more critical nature
that can be attributed to sudden non-trivial congestion occurrences, server failure
or significant server performance degradation. Such critical events can result in
significant changes in the profile shape and level of values, e.g., an increase of
the measured values for all block sizes, or a movement of the optimal value to
significantly lower or higher block size values. The simulation engine developed is
in the position to emulate these events so that the performance of the adaptive
policies and their robustness can be studied. Deviations corresponding to 10-15%,
on average, of the static profile values for Q1 and Q3 are injected, and 3-5% for
Q2,Q4,Q5, which are proportional to their standard deviations (not shown in Figure
7).

Nevertheless, even when the aforementioned issues are taken into account, it
should be noted that a simulation environment is certainly very different from its
real world counterpart, and it is natural to expect deviations in some aspects of
the results. It is impossible to simulate precisely the exact nature and dynamics of
the real systems. Moreover, in the simulation we are able to replicate runs so that
some characteristics are kept the same and fair comparison of different policies can
be made. This is not true in general in the real world, where different runs may
possess different (and perhaps not observable) characteristics. Nonetheless, further
useful observations can be made and important conclusions can be drawn.

4.2.1 Simulation 1 - Tuning and comparison results. Prior to the evaluation
of the adaptive policies using simulation, the influence of the parameters involved
must be studied and an appropriate tuning of their values must be conducted. This
is typical in the implementation of any algorithm, and involves a gain calibration
procedure, i.e., selection of a “good” or “optimal” value so that the performance
objectives are met. This procedure presupposes good knowledge of the algorithm’s
environment. In our case we assume that there is profiling information available, on
the basis of real data acquired by prior experimentation. However, the volatility of
the environment requires the usage of algorithms which are robust in that sense, i.e.,

ACM Journal Name, Vol. V, No. N, Month 20YY.



20 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1000

2000

3000

4000

5000

6000

7000

0 20 40 60 80 100

cycles

bl
oc

k 
si

ze

SEC-const-D

SEC-25-noD

 

Fig. 13. Comparison of the performance with the initial parameter values and a starting point of
1000 tuples.

they are not based on proper or continuous tuning of their parameters to perform
well.

While the Newnton-based algorithms do not require any tuning, the constant gain
and adaptive gain policies are based on choosing the b1, b2 parameters. Moreover,
if a dithering signal is employed, a value for df must be chosen as well.

Our initial runs with the values b1 = 400, b2 = 5, 10, 15, 20, 25, df = 100, as they
appear in Table IV, revealed some similar results to the ones described previously
in Section 4.1, as well as some different observations. The performance of most
policies is heavily influenced by the choice of the starting block size. When this is
selected as BS = 5000 tuples, in a position lying in the wide near-optimal region
of our profiles, similar results to Section 4.1 are obtained. On the contrary, when
a clearly non-optimal initial value BS = 1000 tuples is used, significantly different
results are obtained. More specifically, the Newton-based and the adaptive gain
policies show the same transient behavior but a poor steady-state performance,
and they are stuck far from the near-optimal region. On the contrary, the constant
gain policies are robust in reaching the optimum, but with a retarded and more
oscillatory transient (and steady-state) response. These aspects are depicted in
Figure 13.

We continued with further experiments for appropriate tuning of the parameters
involved. The tuning procedure and the results found are described below. In the
following runs, the Query 1 profiled data are selected.

—The performance of the constant gain policies when tuning the gain b1 to take the
values 400, 800, 1200 is depicted in Figure 14. The robustness to jitter and local
peaks is good; the performance and the speed of convergence improve as the gain
is increased, at the expense of larger amplitude of oscillations at steady state.
The gain value can be selected so that a tradeoff between speed of convergence
and overshooting is achieved. However, this technique is robust enough to yield
good performance even for low and not properly tuned constant gain values.

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 21

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0 10 20 30 40

cycles

bl
oc

k 
si

ze

SEC-const-D 400

SEC-const-D 800

SEC-const-D 1200

 

Fig. 14. The performance of constant gain policies with b1 = 400, 800, 1200 for a starting point of
1000 tuples.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

2000

4000

6000

8000

10000

12000

0 20 40 60 80 100

cycles

bl
oc

k 
si

ze

SEC-25-D 

SEC-100-D 

SEC-150-D 

SEC-250-D 

 

Fig. 15. The performance of adaptive gain policies with b2 = 25, 100, 150, 250 for a starting point
of 1000 tuples.

—The influence of the gain b2 to the performance of the adaptive gain policies is
shown in Figure 15. We observe significant changes in its response when the gain
is increased from 25 to 250. However, the results are not consistent and robust,
they are sensitive to jitter and local peaks (see Figure 16 where the results of
two different runs are shown), and when convergence close to the real optimal is
achieved, the high gain may induce high overshooting. We experimented with a
simple tuning procedure. First, the gain b2 is increased up to a value in which
tracking of the optimum in steady-state is possible in most cases. Second, the
oscillations and hard-limit impacts are suppressed by imposing a rate limiter,
i.e., an upper bound value B s.t. ∆y = yk − yk−1 ≤ B. With b2 = 250 and
B = 5000, 2000, 1000 we obtain the improved responses shown in Figure 17,

ACM Journal Name, Vol. V, No. N, Month 20YY.



22 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

2000

4000

6000

8000

10000

12000

0 20 40 60

cycles

bl
oc

k 
si

ze

SEC-250-noD 
2000 - run 1

SEC-250-noD 
2000 - run 2

 

Fig. 16. The performance of the SEC-250-noD policy with B = 2000 and a starting point of 1000
tuples - two different runs are shown.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

2000

4000

6000

8000

10000

12000

0 10 20

cycles

bl
oc

k 
si

ze
s

SEC-250-D 
5000
SEC-250-D 
2000
SEC-250-D 
1000

 

Fig. 17. The performance of the SEC-250-D policy with B = 5000, 2000, 1000, a starting point of
1000 tuples and dither df = 10.

where the influence of the rate limiter bound may also be seen.

—The Newton-based policies cannot be influenced by the choice of a gain and
further experimentation suggested that they are inappropriate in dealing with
our profiles and their discontinuous and noisy characteristics. Hence, they are
not studied in the sequel.

—The role of dither and its magnitude has also been studied. For the constant gain
policies the effect of dither and its magnitude is not significant. Those policies do
not require the use of dither to remain excited (in order to continuously search
the block size space thus avoiding stagnancy). However, the dither df = 100 used

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 23

so far usually helps. For the adaptive gain policies it has been observed that in
the absence of dither the combined effect of averaging and convergence leads to
stagnancy. A large amount of dither is misleading and induces oscillations, while
a small amount of dither can be useful. We decided to use a much smaller amount
of dither compared to the initial experiments to ensure excitation and tracking
ability. In fact, the results in Figures 14,15,17 are obtained with df = 10.

—Changing the averaging horizon from n = 3 to n = 5 seems to result in a small
improvement for the constant gain policies. We observed oscillation suppression
without robustness reduction. Unfortunately, larger averaging horizons result
in performance degradation for adaptive gain policies, mainly because of their
fragile robustness to the volatility of the environment.

—Constant and adaptive gain policies exhibit similar performance for different val-
ues of the tuning parameters. Nevertheless, adaptive gain policies are worse
than constant gain ones in terms of consistency and robustness, which can be
quantified as 4-5 times larger standard deviations. As shown in Figure 16, the
large deviations of the adaptive gain policies are translated in the frequent oc-
currence of runs that fail to overcome the profile obstacles and remain far from
the near-optimal region, thus yielding fairly degraded performance.

4.2.2 Simulation 2 - Tracking ability. To test the tracking ability of our adaptive
policies to changes in the optimal point we decided to inject synthetic changes into
the simulation. We use Query 1 with an increased number of tuples (from 150000
to 450000). The changes introduced are as follows :

—At step (cycle) k=100 the near-optimal region of the profile (excluding the non-
optimal initial region of 1000-5000 tuples which remains constant) for Query 1 is
shifted to the right by 1000 tuples, i.e., the optimal point moves from 7000-8000
tuples to 8000-9000 tuples.

—At step k=150 the profile is scaled by 1.25, i.e., the optimal point remains at
8000-9000 tuples, and all response times are multiplied by 1.25.

—At step k=200 the profile is shifted to the right by 2000 tuples, i.e., the optimal
point moves to 10000 tuples.

—At step k=250 the profile is scaled by 0.75, i.e., all response times are multiplied
by 0.75.

—At step k=300 the profile is shifted (cyclically) to the right by 2000 tuples, i.e.,
the optimal point moves to 6000-7000 tuples.

—Finally, at step k=400 the profile is shifted to the right by 2000 tuples, i.e., the
optimal point moves to 8000-9000 tuples.

Figure 18 reveals the good and bad characteristics of the adaptive gain schemes.
Low overshooting and fast response are on the positive side. On the negative side,
some runs may be characterized by poor and slow tracking and poor robustness
properties. As before, they cannot track changes consistently and they often fail
to detect changes made. Dither can only partially help, but it does not resolve the
problem.

Figure 19 shows that the constant gain schemes are capable of tracking well
the changes made. Larger values for the gain b1 allow quicker response but also
oscillations of larger amplitude.

ACM Journal Name, Vol. V, No. N, Month 20YY.



24 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC-250-D 2000

0

2000

4000

6000

8000

10000

12000

cycles

bl
oc

k 
si

ze

 Run 1

 Run 2

 

Fig. 18. The performance of the SEC-250-D policy with B = 2000, df = 10 - tracking ability with
two runs.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC-const-D 400

0

2000

4000

6000

8000

10000

12000

0 100 200 300 400 500

cycles

bl
oc

k 
si

ze
 

 

Fig. 19. The performance of the SEC-const-D policy with b1 = 400, df = 10 - tracking ability.

4.2.3 Simulation 3 - Modified profiles. To get a better understanding of the in-
fluence of several factors to the performance of our algorithms we continued our
experimentation with modified profiles. In the previous simulations we used sta-
tic profiles based upon the average values obtained over all runs for each query,
corrupted by additional noise. In this simulation we employ the following modifi-
cations:

(1) First, instead of using average value profiles, we experiment with profiles cor-
responding to individual runs, with or without additional noise.

(2) Second, smooth versions of the initial non-smooth profiles are produced, by
fitting a quadratic model to the data.

ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 25

It is noticeable that we did not observe any difference by replacing the average
values profiles with the individual runs profiles, with or without additional noise.
As a matter of fact, it is not difficult to see that, besides their different numerical
values and optimal point location, they share the same characteristics, i.e., disconti-
nuities, local peaks (non-concavities), volatility, etc. All observations regarding the
advantages and disadvantages of each of the two sides (constant and adaptive gain
policies) made previously continue to hold and this provides further justification
for the analysis and the remarks made in the previous sections.

On the contrary, when experimenting with smooth versions of any of the dis-
continuous profiles (either corresponding to individual runs or average values) we
observed different characteristics. In this case, the adaptive gain policies outper-
form the constant gain policies, since the oscillations in steady state quickly die out
and the transient performance is faster. Repeated simulations have also assured us
that the adaptive gain policies have good robustness properties. This is of course
attributed to the absence of discontinuities in the profiles.

4.2.4 Discussion. Parameter tuning in an attempt to yield improved results for
specific applications is common in algorithmic development. When the environment
is predictable, time invariant and can be modelled precisely it is a fair thing to do.
For our case study and the aforementioned challenges, we would rather prefer a
general purpose adaptive technique characterized mainly by robustness and general
applicability, while being able to yield acceptable results without requiring fine and
cumbersome tuning.

The simulation results presented before suggest that constant gain policies possess
to a high degree these desirable characteristics regardless of the initial block size;
they can perform well even without proper tuning (when required, tuning can be
done with a single parameter in a straightforward manner), although their transient
behavior and steady state stability deviate from the optimal. Their robustness to
non-smooth profiles is good and they are characterized by good tracking ability to
significant profile changes.

On the other hand, when the initial block size is out of the near-optimal re-
gion, adaptive gain policies have nice transient and stability properties but they
are quite sensitive to noise and non-smooth profile shapes. They require finer and
more time-consuming tuning of more than one parameters to perform acceptably,
and still they cannot reach good robustness properties or reliable tracking ability.
This is attributed to the non-smoothness of the profiles which, in the absence of
a model capturing clear shape trends, or even the absence of such definite trends,
results in poor approximations of the real derivatives by finite differences leading
to stagnancy and failure of the corresponding algorithms. However, further sim-
ulations with smooth profiles showed that in this case they are characterized by
superior performance, good robustness properties and tracking ability.

Although the simulation results in Section 4.2 have been demonstrated using data
from Query 1, all relevant observations and remarks have been validated for the
rest of the queries, as well. Before concluding this section, a further note deserves
special mention, i.e., how the simulations results compare with the results of the
empirical evaluation. It is true that some of the problematic issues identified in the
simulation runs have not been observed in real experiments, and conversely policies

ACM Journal Name, Vol. V, No. N, Month 20YY.



26 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

and heuristics identified as less appropriate in empirical evaluation have been found
robust and attractive in the simulations. Our remarks are summarized as follows:

—Empirical evaluation identifies the adaptive gain policies as more efficient than
constant gain policies, which have been found more reliable in terms of robustness
(in the sense that they are not based on proper or continuous tuning of their
parameters to perform well) and tracking ability by simulation experimentation.
When the initial block size is within the near optimal region, or close to it, the
empirical and simulation results are in agreement, essentially. If this is not the
case, although empirical evaluation shows that adaptive gain policies are robust as
well (Section 4.1.4), this observation cannot be verified by simulations. Possible
explanations are given below.

—The simulations have been performed with volatile and discontinuous averaged
data profiles corrupted by noise, whereas real profiles are expected to be slightly
smoother. This proved to be the main reason for the incompetence of schemes
relying on derivative calculations, i.e., Newton policies or the poor robustness and
tracking properties of the adaptive gain policies in some cases, as well. Careful
tuning of the adaptive gains cannot resolve this problem.

—In real cases, as those dealt with in Section 4.1, the degraded performance of
the constant gain schemes should be attributed to the constantly changing en-
vironment they create. As implied also by the data in Tables I and II, frequent
and significant block size changes give rise to transients –perhaps by exciting un-
known and unobservable system dynamics, governed by internal server behavior–
which are difficult to simulate and cannot be easily handled by an optimization
algorithm, unless we ensure that they have died out, e.g., by slow sampling. This
is not the case in our implementation, and we expect all policies to suffer from
this phenomenon. During the transient phase of their response all policies gen-
erate large steps, and this phenomenon does not prevent them from reaching the
near-optimal region quickly. Unfortunately, the phenomenon’s influence plays a
crucial role during the steady state phase, i.e., around the optimal point. The
adaptive gain policies are influenced only to a small extent since they converge
quickly and maintain an almost constant value since their gains become very
small, whereas the constant gain policies can be heavily influenced because they
still attain the same large gains and therefore sustained oscillations of a large
amplitude. Similarly, the use of a large dither signal can further excite these
dynamics and transients.

—In either experimentation efforts we have experimented with different parameter
values, and responses with similar characteristics have been specified for most
policies. The fact that for a reasonably good performance (that is, convergence
ability to the optimum point), gains of different order of magnitude have been
found should not be considered as problematic, since by simple scaling the results
can be reasonably matched.

It becomes obvious that the fruitful combination of empirical evaluation and
simulation results is particularly enlightening, as regards the applicability and ef-
ficiency of the proposed techniques to the problem under question in this paper.
Furthermore, it paves the way for potential future improvements; the key issues
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 27

that need to be tackled have been identified.

5. DISCUSSION OF RELATED WORK AND POINTERS TO FUTURE RESEARCH

There is a recent booming in applying control theory in computing systems, software
engineering and software services [Hellerstein et al. 2005], [Abdelzaher et al. 2003].
This is due to the trend of going beyond ad-hoc and heuristic techniques towards an
autonomic computing paradigm [Diao et al. 2005]. Exploitation of the rich arsenal
of techniques, methods, ideas and foundations of control theory, developed for many
decades since the second world war, has already led to improved designs in many
areas and problems [Abdelzaher et al. 2002; Gandhi et al. 2002; Lu et al. 2005].

Furthermore, for preserving QoS, optimization approaches have been also devel-
oped in many works, where dynamic tuning of several configuration parameters that
are related to the performance of computing systems is suggested. More specifi-
cally, online minimization of the response time of an Apache web server by dynamic
tuning of the number of maximum clients allowed to be connected simultaneously
is described in [Liu et al. 2003b], where hill climbing and fuzzy control techniques
are employed. For a database server, online adjustment of multiple configura-
tion parameters using online random and direct search techniques is proposed in
[Diao et al. 2003] to guarantee good performance. For application servers, optimal
configurations have also been sought in [Raghavachari et al. 2003] using off-line
experimentation and statistical analysis.

Other recent works where optimization problems are dealt with are the efforts de-
scribed in [Stanojevic et al. 2006; Stanojevic and Shorten 2007]. The problem there
is the optimal choice of the buffer size in the Internet routers, so that minimum
queueing delays and maximum utilization (or any desired trade-off) is achieved.
Adaptive online tuning of the buffer size is suggested and iterative MIMD (multi-
plicative increase-multiplicative decrease) algorithms are proposed. Such schemes,
including the AIAD (additive increase-additive decrease) and AIMD choices are
used in networking and congestion control problems, and are inherently linear.
They are not suitable to our case study, since they do not converge but rather
search continuously for the optimum. They are usually slowly responsive due to
their small step sizes. Larger steps can speed up the transient behavior at the
expense of undesirable large oscillations during the steady-state. This behavior is
problematic in our case study, as our experimentation with constant gain switching
extremum control schemes has shown.

From the control theory point of view, extremum control has been employed
from the early stages of control theory development [Draper and Y.Li 1954; Black-
man 1962], but is still a subject under development [Ariyur and Krstic 2003;
Killingsworth and Krstic 2006; Choi et al. 2002; Krstic and Wang 2000]. A review
of related techniques can be found in [Larsson 2001]. There are two basic families,
gradient and parametric extremum control methods. Gradient methods usually
appear in two flavors, switching and perturbation extremum control techniques.
Gradient methods are based upon model-free gradient approximate computations
whereas parametric methods rely on parametric models and online parameter iden-
tification. The former are lighter and more related to hill climbing and gradient
descent optimization schemes, while the latter employ self-tuning and adaptive

ACM Journal Name, Vol. V, No. N, Month 20YY.



28 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

control ideas and are more complicated and computationally demanding.
Although applied in many engineering systems, to the author’s knowledge this

work is the first application to the WSMS problems described in our context. For
non-engineering problems, in a totally different context, an extremum control ap-
proach has only recently appeared in [O. Flardh and Johansson 2005] for the prob-
lem of error correction in packet-switched networks. Feedback and feedforward
control techniques based upon prediction are employed. In the absence of any
additional information, switching extremum control is suggested, facilitated with
filtering and averaging to deal with the noisy and frequently changing measurement
data.

It is obvious that many other techniques from the fields of numerical optimiza-
tion and extremum control could be used. More specifically, as a subject for future
work, we should perhaps focus on our profiles’s shapes and observe that, despite
the volatility, local peaks, jitter etc. there is overall a very clear picture, which can
be represented by a smooth quadratic (or sometimes monotonically decreasing)
concave curve. The experiments in Simulation 3 suggest one possibility for further
improvements. If we manage to fit our data to develop smooth profiles (e.g., by
constructing models with parameter identification) without sacrificing good robust-
ness and generalization properties, the adaptive gain policies could reach improved
performance. This has to be done in a computationally tractable manner, while
allowing early detection and fast response to changes. Furthermore, hybrid schemes
combining adaptive with constant gain policies could also lead to improved results.
In this case, simple mechanisms for accurate and reliable detection of the different
response phases have to be developed. It is a subject of future work to experiment
with new schemes and test their applicability in special cases, including concurrent
requests.

6. CONCLUSIONS

This paper describes algorithms for the online adjustment of block size for enhanced
transmission of large data volumes in Web Service Grids following a control theoret-
ical approach. The algorithms analyze the behavior of past values for the block size
in order to determine the future configurations. The algorithms fall into two broad
areas: runtime optimization inspired by hill-climbing techniques, and switching
extremum control. As expected the former category is outperformed by the lat-
ter, which is more suitable for systems exhibiting noisy, non-monotonical behavior.
For the latter category, we distinguish between techniques employing constant gain
and those employing adaptive gains. The trade-offs between these two types can
be summarized as follows. Adaptive gain policies seem to be the most suitable
choice when the near optimal region can be approximated. However, in this case
the performance benefits may not exceed a 10% decrease in response times. Larger
improvements, over 100% decrease in performance degradation caused by subop-
timal choice of block sizes, can be provided when this region is a priori unknown.
In this case, adaptive gain policies have nice transient and stability properties but
they are still quite sensitive to noise and non-smooth profile shapes. On the other
hand, constant gain policies can perform well even without fine tuning, but their
transient behavior and steady state stability may deviate from the optimum point.
ACM Journal Name, Vol. V, No. N, Month 20YY.



A Control Theoretical Approach to Self-optimizing Block Transfer in Web Service Grids · 29

In summary, the results of this work render the process of calling services self-
optimizing, and detailed WS profiling and fine tuning obsolete. Detailed exper-
iments in a real environment, complemented by simulations that can investigate
additional configurations, demonstrate the efficiency and the effectiveness of the
presented solutions and prove that these are capable of reducing significantly the
response time (especially in the case where the optimum region of block sizes can
not be a priori approximated) and can be characterized by all four main desired
properties for self-managing systems, i.e., stability, accuracy, speed of convergence,
and overshoot avoidance [Diao et al. 2005]. The techniques presented are applica-
ble to any similar optimization problem where the entity to be configured remotely
exhibits a non-monotonic, concave behavior; OGSA-DAI services are presented
merely as a case study.

ACKNOWLEDGMENTS

This work has been supported by the EU-funded CoreGrid Network of Excellence
project through grant FP6-004265. Dr. Yfoulis has been supported by the ATEI
grant 6/24/4-7-2007 titled “Adaptive QoS control and optimization of computing
systems”. This work has been conducted while A. Gounaris was holding a visiting
lecturer position with the University of Cyprus.

REFERENCES

Abdelzaher, T. F., Shin, K. G., and Bhatti, N. T. 2002. Performance guarantees for web server
end-systems: A control-theoretical approach. IEEE Trans. Parallel Distrib. Systems 13, 1, 80–
96.

Abdelzaher, T. F., Stankovic, A., Lu, C., Zhang, R., and Lu, Y. 2003. Feedback performance
control in software services. IEEE Control Systems Magazine 23, 3.

Alpdemir, M. N., Mukherjee, A., Paton, N. W., Watson, P., Fernandes, A. A. A., Gounaris,
A., and Smith, J. 2003. Service-based distributed querying on the grid. In Proc. of 1st
International Conference on Service Oriented Computing - ICSOC. Springer, 467–482.

Alpdemir, N., Gounaris, A., Mukherjee, A., Fitzgerald, D., Paton, N. W., Watson, P.,
Sakellariou, R., Fernandes, A. A., and Smith, J. 2005. Experience on Performance Evalu-
ation with OGSA-DQP. In Proceedings of the UK e-Science All Hands Meeting.

Antonioletti, M. et al. 2005. The design and implementation of grid database services in
OGSA-DAI. Concurrency - Practice and Experience 17, 2-4, 357–376.

Ariyur, K. and Krstic, M. 2003. Real-Time Optimization by Extremum-Seeking Control. John
Wiley & Sons.

Blackman, P. 1962. Extremum-seeking regulators : an exposition of adaptive control. Pergamon
Press.

Choi, J., Krstic, M., Ariyur, K., and Lee, J. 2002. Extremum seeking control for discrete-time
systems. IEEE Transactions on Automatic Control 47, 2, 318–323.

Diao, Y., Eskesen, F., Forehlich, S., Hellerstein, J., Spainhower, L., and Surendra, M.
2003. Generic online optimization of multiple configuration parameters with application to a
database server. DSOM , 3–15. LNCS 2867.

Diao, Y., Hellerstein, J. L., Parekh, S. S., Griffith, R., Kaiser, G. E., and Phung, D. B.
2005. Self-managing systems: A control theory foundation. In Proc of IEEE International
Conference and Workshop on the Engineering of Computer Based Systems ECBS 2005. 441–
448.

Dobrzelecki, B., Antonioletti, M., Schopf, J., Hume, A., Atkinson, M., Hong, N. C., Jack-
son, M., Karasavvas, K., Krause, A., Parsons, M., Sugden, T., and Theocharopoulos,
E. 2006. Profiling OGSA-DAI Performance for Common Use Patterns. In Proceedings of the
UK e-Science All Hands Meeting.

ACM Journal Name, Vol. V, No. N, Month 20YY.



30 · Gounaris, Yfoulis, Sakellariou, and Dikaiakos

Draper, C. and Y.Li. 1954. Principles of Optimizing Control Systems. ASME Publications.

Gandhi, N., Hellerstein, J., Tilbury, D., and Jayram, T. 2002. Using control theory to
achieve service level objectives in performance management. Real-Time Systems 23, 127–141.

Gounaris, A., Sakellariou, R., Paton, N. W., and Fernandes, A. A. A. 2006. A novel ap-
proach to resource scheduling for parallel query processing on computational grids. Distributed
and Parallel Databases 19, 2-3, 87–106.

Gounaris, A., Smith, J., Paton, N. W., Sakellariou, R., Fernandes, A. A. A., and Wat-
son, P. 2005. Adapting to changing resource performance in grid query processing. In Data
Management in Grids, First VLDB Workshop, DMG 2005. 30–44.

Gounaris, A., Yfoulis, C., Sakellariou, R., and Dikaiakos, M. D. 2007. Self-optimizing block
transfer in web service grids. In WIDM ’07: Proceedings of the 9th annual ACM international
workshop on Web information and data management. ACM, 49–56.

Hellerstein, J., Diao, Y., Parekh, S., and Tilbury, D. 2005. Control engineering for computing
systems. IEEE Control Systems Magazine 25, 6, 56–68.

Killingsworth, N. and Krstic, M. 2006. PID tuning using extremum seeking. IEEE Control
Systems Magazine, 70–79. February 2006.

Kosar, T. and Livny, M. 2004. Stork: Making data placement a first class citizen in the grid.
In 24th International Conference on Distributed Computing Systems (ICDCS 2004), 24-26
March 2004, Hachioji, Tokyo, Japan. IEEE Computer Society, 342–349.

Krstic, M. and Wang, H. 2000. Stability of extremum seeking feedback for general nonlinear
dynamic systems. Automatica 36, 595–601.

Larsson, S. 2001. Literature study on extremum control. Tech. rep., Chalmers University of
Technology.

Liu, D. T., Franklin, M. J., and Parekh, D. 2003a. Griddb: A database interface to the grid.
In Proceedings of ACM SIGMOD, A. Y. Halevy, Z. G. Ives, and A. Doan, Eds. ACM, 660.

Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J. L., and Parekh, S. S. 2003b. Online
response time optimization of apache web server. In IWQoS. 461–478.

Lu, C., Wang, X., and Koutsoukos, X. D. 2005. Feedback utilization control in distributed
real-time systems with end-to-end tasks. IEEE Trans. Parallel Distrib. Systems 16, 6, 550–561.

Narayanan, S., Catalyrek, U. V., Kurc, T. M., Zhang, X., and Saltz, J. H. 2003. Applying
database support for large scale data driven science in distributed environemnts. In Proc. of
the 4th Workshop on Grid Computing, GRID’03.

O. Flardh, K. J. and Johansson, M. 2005. A new feedback control mechanism for error cor-
rection in packet-switched networks. 488–493. IEEE Conference on Decision and Control.

Persinni, A. 1988. The Mathematics of Nonlinear Programming. Springer-Verlag.

Raghavachari, Y., Reimer, D., and Johnson, R. 2003. The deployer’s problem: Configuring
application servers for performance and reliability. 3–15. ICSE.

Seshasayee, B., Schwan, K., and Widener, P. 2004. Soap-binq: High-performance soap with
continuous quality management. In ICDCS. 158–165.

Srivastava, U., Munagala, K., Widom, J., and Motwani, R. 2006. Query optimization over
web services. In VLDB. 355–366.

Stanojevic, R., Kellet, C., and R.N.Shorten. 2006. Adaptive tuning of drop-tail buffers for
reducing queueing delays. IEEE Communications Letters 10, 7.

Stanojevic, R. and Shorten, R. 2007. How expensive is link utilization. Technical Report,
available at http://www.hamilton.ie./person/rade/QP.pdf.

Wellstead, P. and M.B.Zarrop. 1995. Self tuning systems: control and signal processing. John
Wiley & Sons.

Received June 2007; accepted February 2008.

ACM Journal Name, Vol. V, No. N, Month 20YY.


