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ABSTRACT
Nowadays, Web Services (WSs) play an increasingly impor-
tant role in Web data management solutions, since they
offer a practical solution for accessing and manipulating
data sources spanning administrative domains. Neverthe-
less, they are notoriously slow and transferring large data
volumes across WSs becomes the main bottleneck in such
WS-based applications. This paper deals with the problem
of minimizing at runtime, in a self-managing way, the data
transfer cost of a WS encapsulating a data source. To reduce
the transfer cost, the data volume is typically divided into
blocks. In this case, response time exhibits a quadratic-like,
non-linear behavior with regards to the block size; as such,
minimizing the transfer cost entails finding the optimum
block size. This situation is encountered in several systems,
such as WS Management Systems (WSMSs) for DBMS-like
data management over wide area service-based networks,
and WSs for accessing and integrating traditional DBMSs.
The main challenges in this problem include (i) the unavail-
ability of an analytical model; (ii) the presence of noise,
which incurs local minima; (iii) the volatility of the environ-
ment, which results into a moving optimum operating point;
and (iv) the requirements for fast convergence to the opti-
mal size of the request from the side of the client rather than
of the server, and for low overshooting. This paper presents
two novel solutions for detecting the optimum block size dur-
ing data transmission, thus yielding lower response times.
The solutions are inspired by the broader areas of runtime
optimization and switching extremum control. They incor-
porate heuristics to avoid local optimal points, and address
all the afore-mentioned challenges. The effectiveness and
efficiency of the solutions is verified through empirical eval-
uation in real cases.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distrib-
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1. INTRODUCTION
The proliferation of Web Service-based Grids and the in-

creasingly growing volume of data that is processed by and
shared among such web data management applications gives
rise to the need for the development of more robust tech-
niques for the manipulation of large data volumes in au-
tonomous, unpredictable environments that adopt service-
oriented architectures. Thus far, the emphasis has been
on architectures for the execution of SQL-like queries that
span multiple Web Services (e.g., [16, 3, 19]), wide area
query optimization (e.g., [22, 14]) and the associated re-
source scheduling decisions (e.g., [13]). However, an im-
portant factor is the optimization of the data transfer cost
for WSs that encapsulate data sources. Widely adopted
standards for WS communication, such as the XML-based
SOAP, facilitate remote communication but are rather inef-
ficient for transferring large volumes of data, and as such,
web data management solutions based on WSs suffer from
high data transmission costs, which lead to poor perfor-
mance. To reduce this type of cost, a typical approach is to
split large data volume into several blocks. The block-based
data transmission cost is largely dependent both on the size
of the request (i.e., the size of the data block transferred
between services) [22, 4], and on the network bandwidth.
More specifically, the performance of a remote server serv-
ing a series of calls with a fixed total size, in terms of the
task response time, is characterized by a noisy (due to the
volatile network conditions), concave graph with regards to
the size of the data chunks or blocks. Such a graph has a
different optimal point for different queries and/or different
connections, or even different stages of the same query. The
problem that this paper deals with is to detect at runtime
this optimal point in a self-optimizing way.

Consider for example the case in which a database is
globally exposed as a WS through OGSA-DAI wrappers
[5]. Clients can retrieve data from this database by sub-
mitting requests containing SQL queries to the associated



WS. When the result set is relatively large (larger than 1-
3MB in the current release of OGSA-DAI), then it must be
returned in chunks that can be specified by the recipient to
avoid out-of-memory errors and speed up transmission. As
reported also in [4], the response time first decreases when
the block size is increased and after a point it starts in-
creasing. This point is different for each query-connection
combination. Similar behavior for other data management
WSs is reported also in [22]. Note that concave graphs can
describe other aspects of the behavior of Web Services and
Web Servers, in general. An example is the response time of
an Apache Web Server with regards to the number of max-
imum clients allowed to be connected simultaneously to it
[17].

In this paper we choose OGSA-DAI as our case study.
The objective is to minimize at runtime the total response
time of a query by (continuously) tuning the size of the data
blocks that are requested by the client from an OGSA-DAI
WS. We follow a control theoretical approach and so, the
self-optimizing entity, which resides at the client, is referred
to as the controller and the WS as the controlled entity.
A main challenge in this case study is that the entity to
be configured is exposed as an unknown black box to the
controller. A consequence of this fact is that any solutions
developed must operate well in the absence of a parame-
terized model that describes the behavior of the service.
Another consequence is that any scope of using heuristics
based on more detailed monitoring and internal state infor-
mation of the server (e.g., as in [17]) is eliminated. In other
words, the only information about the controlled entity is
restricted to the measured output, which is the response
time of the request of the caller. However, the main benefit
is that the measured output is the metric that mostly in-
terests the user, since it includes the transmission cost over
the network, and, as such, describes the performance from
the user’s point of view precisely. This comes at the ex-
pense of additional noise and jitter in the measured output,
which are inherent in measurements of communication costs
across unstable, volatile connections. The noise results in
local peaks and non-monotonic behavior on both sides of
the optimal point (i.e., the block size for which the time
for the complete data transmission is minimized), render-
ing naive hill climbing techniques non-appealing. Finally,
the convergence of any algorithm must be fast; otherwise
serious performance degradation is not avoided.

The contribution of this paper is to present solutions to
the afore-mentioned problem that meet the requirements
mentioned above. More specifically, the main contribution
of this work is two-fold.

• Firstly, to present fast and robust optimization algo-
rithms that belong to the area of runtime optimization
and switching extremum control and that are capable
of converging to the optimal block size quickly despite
the presence of local optimum regions, noise, and bad
choices for the starting point.

• Secondly, to apply these algorithms to the OGSA-DAI
case, and conduct experiments to evaluate them. The
evaluation results prove that the algorithms are ro-
bust, effective and are characterized by high conver-
gence speed. More specifically, there are significant
benefits in the response time in the generic case, where
the optimal region of block size is not a priori known;
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Figure 1: Response times for a local query for dif-
ferent block sizes.

moreover, the algorithms can yield improved perfor-
mance even in the more limited scenario where this
region can be approximated.

The remainder of this paper is structured as follows. The
next section presents the OGSA- DAI approach and some
measurements that motivated the research described hereby.
The solution to the optimization problem is presented in
Section 3. Section 4 deals with the evaluation. Section 5
discusses related work, and Section 6 concludes the paper.

2. THE OGSA-DAI APPROACH
OGSA-DAI services aim at exposing different data re-

sources, such as relational and XML DBMSs, and raw files,
in the form of WSs, which are called Data Services (DSs)
[5]. A single Data Service can provide access to multiple
data resources, and this interaction is enabled through the
so-called Data Service Resources (DSRs), which implement
the core OGSA-DAI functionality. A client or another WS
can direct “perform” documents at an OGSA-DAI DS. The
protocol used is SOAP over HTTP and the perform docu-
ment is in XML. Subsequently, a DSR accepts, parses and
validates this document, executes the data-related activities
specified within it, and constructs the response documents.

The activities described in the perform document define
also the data delivery mechanism. Several modes are sup-
ported; here we investigate only the pull one. In this mode,
the client sends requests to the service, which, as a response,
returns all the results either in one big chunk, or in smaller
blocks. In OGSA-DAI the block size is in tuples. The ad-
vantage of the former case is that the client sends just a
single request, whereas, in the latter case, the client sends a
series of requests until the complete result set is retrieved.
Nevertheless, the advantage of the latter case is that firstly,
it can handle large volumes of data that cannot fit entirely
into main memory, and secondly, it allows for pipelined post-
processing at the client’s side. As such, retrieving the result
set in a block-based pull mode is more widely applicable.

Figure 1 illustrates the response times for a query return-
ing to a local client 100000 tuples of 100 bytes each, when
the data block sizes are fixed for the whole duration of the
query. The values shown are the averages over 5 runs on
a machine with 512MB memory and 2.4GHz CPU speed.
They are measured at the client side and they correspond to
the cost of sending as many requests as required to retrieve
the complete result set and getting back the response from
the server. The WSRF1 2.2 flavor of OGSA-DAI is used. In

1http://www.oasis-open.org/committees/tc home.php?
wg abbrev=wsrf
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Figure 2: Response times for a remote query for
different block sizes.
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Figure 3: Response times for a remote query for
different block sizes (unstable connection).

this setting the optimum block size is around 6000 tuples.
For this size, the response times are approximately 4 times
lower than when the block sizes are a few hundred tuples.
The sharp increase in response time with block sizes larger
than 10K tuples is due to memory shortage.

Figure 2 shows the response times for the same query
in a different setting. The server now is on a machine
with 3.2GHz CPU speed and 1GB memory, and the client
is remote (the server is in the UK, whereas the client is
in Cyprus). We can observe that the optimum point has
moved to around 10K tuples and the optimum size of the
previous case now yields approximately 20% worse perfor-
mance. In another setting, where the client and the server
are connected through an unstable wireless connection, the
optimum point is modified to 8000 tuples approximately, as
shown in Figure 3.

All these figures reveal a common pattern: the perfor-
mance first decreases (in a non monotonic fashion) with in-
creased block sizes, and after a point it starts degrading. It
cannot be easily verified which exactly factors are responsi-
ble for these; in network applications of this kind the respon-
sibility is diffused. However sending fewer blocks means that
the total amount of requests transmitted is reduced and thus
can improve performance. On the other hand, larger chunks
of data require more resources, such as internal buffers, at
the server side, which may start becoming stretched result-
ing into lower response times. This is why the concave effect
exists also in local settings, as shown in Figure 1.

From the above figures, it has become obvious that in dif-
ferent settings in terms of different server-client pairs, the
optimum data block size changes. In addition, the noise is
high and as a result, on both sides of the optimal point there
may exist local optimal points, which must be overcome by
the self-optimizing mechanism. This is more evident in Fig-
ure 4, which shows 3 out of the 5 runs, the aggregate of
which is in Figure 3. Profiling of each pair of nodes cannot
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Figure 4: Response times of individual runs of a
remote query for different block sizes (unstable con-
nection).
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Figure 5: Response times for a remote query for dif-
ferent block sizes (unstable connection, double tuple
size).

including 1st block without 1st block
block
size

average stdev tuple
cost

averagestdev tuple
cost

4001 1330 455 0.33 1242 102 0.31
4500 1491 428 0.33 1404 167 0.31
5001 1314 508 0.26 1203 153 0.24
6000 1560 638 0.26 1400 146 0.23
7000 2135 706 0.3 1944 146 0.28
8000 2426 706 0.3 2220 165 0.28

Table 1: Summary of response times for a local
query for different block sizes.

including 1st block without 1st block
block
size

average stdev tuple
cost

averagestdev tuple
cost

4001 5198 1014 1.3 5146 996 1.29
4500 5386 856 1.2 5295 706 1.18
5001 6334 1750 1.27 6287 1782 1.26
6000 7337 1327 1.22 7260 1312 1.21
7000 8154 1724 1.16 8026 1696 1.15
8000 9636 1673 1.2 9459 1570 1.18

Table 2: Summary of response times for a remote
query for different block sizes.

be sufficient. This happens for two reasons. Firstly, the re-
sources are non-dedicated in general, which means that the
service response time and network bandwidth are subject
to frequent, unpredictable changes. Moreover, the optimal
point depends also on the length of the tuples in the result
set, which is query-dependent. For example, in Figure 5
the response times are presented for the same setting as in
Figure 3 with the only difference that the tuple length is



doubled. We can observe that the optimum block size has
been modified in this case as well. In Figure 5, two plots are
depicted, one that takes into account the XML processing
of the SOAP messages that are used to convey the results,
and one that presents the aggregate response time, as in all
figures up to this point. It is shown that the shift of the
optimum size, when compared against Figure 3, is not due
to a change in the XML processing cost, i.e., if another, non
XML-based protocol is employed instead of SOAP, the same
phenomenon will appear.

The impact of the volatility of network connections and
of noise are summarized is Tables 1 and 2, which corre-
spond to Figures 1 and 5, respectively. In the tables, it
can be seen that the standard deviation in the measure-
ments is high enough to mislead a simple optimizer, per-
forming hill-climbing for instance, as to whether increasing
the block size is profitable or not. Discarding the cost of the
first block which includes the submission of the query on
the service side, has little effect in remote cases. As such,
applying simple hill-climbing or rule-based techniques (e.g.
fuzzy control) is unsuitable in this case. Also, when 100K
tuples are transferred and the optimal size is around 6-8K
tuples, it means that the query will be finished in less than
20 cycles. As a result, a further requirement is for fast con-
vergence. This leaves little scope for system identification
and sampling that would allow for parameterization of an
analytical model, based on which the optimum point can
be estimated. Overshooting must also be low; otherwise ei-
ther out-of-memory errors might occur, or the performance
degradation due to a few cycles with a block size near the
point where the system runs out of memory cannot be out-
weighed by future optimized decisions due to the small num-
ber of overall cycles.

3. ONLINE ADJUSTMENT
The high level architecture assumed is that the controller

at the client analyzes the response time of the WS for previ-
ous block sizes, and based on this information, continuously
(i.e., at each step) adjusts the size for the next data block
to be requested. If y is the performance metric, such as re-
sponse time or equivalently, the per tuple cost in time units,
and x the size of the data block, it is usually assumed that,
at least in the neighborhood of the optimal point, there is
a quadratic function f(x) = a(x − xo)

2 + b, where a, b are
unknown constants, for which y = f(x) + e. e represents
the noise, and we further assume that e is responsible for
the local peaks on both sides of the optimal block size. The
optimal point is the value of x for which the first partial
derivative of f(x) is 0 (i.e., 5f(x) = 0), which is obviously
xo.

In this paper, two main approaches are investigated. The
first is a typical numerical optimization method, while the
second comes from the field of extremum control. The for-
mer is inspired by the Newton’s method [20], which defines
that the value of x at the kth step, xk is given by the fol-
lowing formula

xk = xk−1 − 5f(xk−1)

52f(xk−1)
(1)

The first partial derivative allows the next block size to
move towards the optimum point, whereas the second par-
tial derivative is for faster convergence. However, the main
drawback is that the Newton’s method is known to be very

sensitive to noise, and in the case examined, the noise is non-
negligible; moreover, the behavior of the system may have
some quadratic characteristics, but this does not mean that
a quadratic function, the parameters of which are unknown
anyway, can describe it accurately. The unavailability of a
model leads to approximate estimate of the partial deriva-
tives using backward difference operators ∆u = uk − uk−1,

i.e 5f(k) ' ∆y
∆x

=
yk−yk−1
xk−xk−1

.

To mitigate the impact of the noise in the graphs, the mea-
sured output and the control input are firstly averaged over
a sequence of n measurements. This may reduce the speed
of response to changes. Hence, a proper choice of the aver-
aging horizon must be made to trade off speed of response
with noise removal. To facilitate the controller to be capable
of continuously probing the block size space, since the opti-
mum point may move during query execution, a dither signal
d(k) = df ·w(k) is added, where df is a constant factor and
w a pseudo-random variable that follows a Gaussian distri-
bution with mean 0 and standard deviation 1. As such, the
value of the block size at each step is estimated as follows:

xk = xk−1 −
∆yk−1

∆2yk−1

+ d(k), {x̄k, ȳk} =
1

n

k−n+1X

i=k

{xi, yi}

(2)
The second approach investigated is inspired by extremum

control [7], which can yield results and track a varying op-
timum operating point even in the absence of a detailed
analytic model. The role of an extremum controller is to
manipulate the input x to the performance function f(x),
as a function of this output. Extremum control is based
upon numerical optimization but goes beyond that since it
can be blended with well known control approaches, includ-
ing variable setpoint (optimum tracking) controllers, feed-
forward controllers, perturbation analysis, self tuning and
adaptive techniques, so that noise, model uncertainties and
time variations can be dealt with. Filtering and averaging
are also typically included in the aforementioned techniques.
There is a rich literature and many different methodologies
and applications [6, 23].

In this paper, due to the difficulties mentioned in the pre-
vious sections, we decided to experiment initially with a sim-
ple and straightforward scheme, called switching extremum
control.

Two flavors are examined; both can be described by

xk = xk−1 − g · sign(∆yk−1∆xk−1) + d(k) (3)

The formula above can detect the side of the optimum
point where the current block size resides on. The sign(x)
function returns 1 if x is positive, and −1 otherwise. The
rationale of the formula is that the next block size must
be greater than the previous one, if, in the last step, an
increase has led to performance improvement, or a decrease
has led to performance degradation. Otherwise, the block
size must become smaller. In the first flavor, g = b1 is a
constant (positive) tuning parameter. Without applying a
dither signal, the step size is always the same, and since
‖∆x‖ = b1, b1 defines the rate at which x is modified. In
the second flavor

g = b2‖
∆yk−1

yk−1

∆xk−1‖, b2 > 0 (4)

where b2 is constant. In this case, the step (gain) is adaptive
and is proportional to the product of the performance change



ID #tuples retrieved avg tuple length
Q1 150000 27 bytes
Q2 150000 65 bytes
Q3 200000 57 bytes
Q4 450000 4 bytes
Q5 1000000 2 bytes

Table 3: The characteristics of the example queries.
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Figure 6: Response times for queries Q1-Q5 for fixed
block sizes.

and the change in the block size. In both approaches, max-
imum and minimum limits can be imposed to avoid over-
shooting with detrimental effects.

4. PROTOTYPE IMPLEMENTATION AND
EVALUATION

To test the actual performance of the techniques described,
a thin client is built that can submit SQL queries to an
OGSA-DAI Data Service and request results to be delivered
in blocks, the size each of which is determined by a con-
troller encapsulated in the client. The data comes from the
TPC-H database (scale 1) stored in a MySQL DBMS. Five
queries are used throughout as shown in Table 3. Note that
the actual tuple length communicated across the network
is significantly increased by the XML tags, as reported in
[10]. Since we are interested in the data transmission cost
and not in the cost to evaluate the queries within the WS,
all queries are simple scan queries without joins, so that the
computational load in the server is minimal and, as a result
the time to produce a block is negligible and does not affect
the measurements.

The experimental setup is as follows, unless explicitly men-
tioned. The server is in Manchester, UK and there is a sin-
gle client in Greece. The server’s CPU speed is 3.2GHz and
the memory 1GB. Each query configuration ran 10 times,
and the different configurations were executed in a round
robin fashion, i.e., there is no concurrency and the WS was
not serving third party requests during the period of ex-
periments. The complete set of experiments presented here
lasted for 10 days approximately around the clock, and as
such, it reflects the condition of the network during signifi-
cantly different workloads. Consequently, the measurements
presented are characterized by a relatively high standard de-
viation that is not due to a bad approach to experimentation
but to the volatility of the environment; running more ex-
periments using non-dedicated resources at arbitrary time
periods, as in these experiments, would not tackle this phe-
nomenon. To smooth the standard deviation the lowest and
the highest value of each set of the 10 runs is removed, and
the average of the rest is presented.

The response times of the 5 example queries are presented

name policy b1 b2 df

NTN-noD NTN 400 - 0
NTN-D NTN 400 - 100
SEC-const-D SEC 400 - 100
SEC-5-noD SEC 400 5 0
SEC-10-noD SEC 400 10 0
SEC-15-noD SEC 400 15 0
SEC-20-noD SEC 400 20 0
SEC-25-noD SEC 400 25 0
SEC-5-D SEC 400 5 100
SEC-10-D SEC 400 10 100
SEC-15-D SEC 400 15 100
SEC-20-D SEC 400 20 100
SEC-25-D SEC 400 25 100

Table 4: The adaptive policies evaluated.

name Q1 Q2 Q3 Q4 Q5 avg
NTN-
noD

1 1.1029 1.0269 1.0429 1.0912 1.0528

NTN-D 1.0047 1.0567 1.0053 1.0654 1.1127 1.0489
SEC-
const-D

1.0215 1.1289 1.2465 1.0463 1.1785 1.1243

SEC-5-
noD

1.0147 1.0613 1.036 1.0142 1.1549 1.0562

SEC-10-
noD

1.03 1.0452 1.03 1.0322 1.1852 1.0645

SEC-15-
noD

1.0366 1 1.0405 1.064 1.129 1.05

SEC-20-
noD

1.0059 1.0724 1.0015 1.0182 1.0645 1.0325

SEC-25-
noD

1.012 1.0486 1 1.0395 1 1.02

SEC-5-D 1.0249 1.1047 1.1277 1.0766 1.2189 1.1106
SEC-10-
D

1.0214 1.0147 1.0893 1.0674 1.1614 1.0708

SEC-15-
D

1.0102 1.0239 1.0987 1.0405 1.1528 1.0652

SEC-20-
D

1.0103 1.0616 1.1413 1.1018 1.1288 1.0888

SEC-25-
D

1.0042 1.0659 1.1748 1 1.1177 1.0725

Table 5: Comparison of adaptive policies.

in Figure 6. The fixed block sizes used to produce this pro-
filing figure are 1K, 5K, 6K, 7K, 8K, 9K and 10K tuples.
At first sight, when the initial decision on the block size
is clearly suboptimal, i.e. around 1000 tuples, an adaptive
method can yield significant performance benefits2; to the
contrary it seems that there is little scope for optimization
otherwise, since the near-optimum region is relatively wide.
However, as will be discussed next, even in these cases where
the initial decision is not clearly suboptimal adaptive policies
can yield more robust and consistent performance improve-
ments that, in some cases, are around 10%.

4.1 Comparison of Adaptive Techniques
Table 4 presents the adaptive policies evaluated. In the

Newton (NTN) and the switching extremum control (SEC)
with adaptive gain, b1 is used in the first runs when no ade-

2The main adopter of OGSA-DAI, OGSA-DQP [3] suffers
from such a suboptimal decision in its current release.



quate information has been gathered to estimate the deriv-
ative. The starting point in all configurations is 5000 tuples
and the averaging window n is set to 3. Minimum and max-
imum value constraints are imposed, set to 1000 and 10000,
respectively.

The comparison of the techniques is shown in Table 5,
which presents the normalized response times for each of
the adaptivity configurations of Table 4. The lowest re-
sponse time is given the value 1 in the table. As such, the
cell values correspond to the performance degradation when
compared against the most effective of the policies investi-
gated. Several useful observations can be drawn from this
table.

• Firstly, taking into account the small differences be-
tween the response times for different block sizes shown
in Figure 6, the differences between the performance
of the different adaptivity policies are not negligible.

• Secondly, there is no policy that outperforms the oth-
ers consistently.

• Thirdly, as expected, the Newton-based techniques can-
not perform as well as the best switching extremum
control policies; the former are known to be more sen-
sitive to noise.

• An additional observation is that, somewhat counter-
intuitively, the effects of dithering signal and adaptive
gain based on the performance change seem to annul
each other, and consequently, the best approaches to
SEC with adaptive gain seem to be those that have
zero dithering factor. On average, SEC-25-noD yields
1.02 times worse response times than the best policy
(which is unknown from before), whereas the best SEC
policy with both adaptive gain and dither signal yields
1.0652 times worse performance. An explanation could
be that the moving optimum point and the volatility of
the environment are adequate for continuously search-
ing the block size space and thus to overcome local op-
timum points, whereas dithering results to increased
instability. Also, in most cases, the dither signal does
not change the mean value of block size but causes
a fluctuation on both sides of it with an amplitude
which depends on df . When the dynamic adjustment
operates near the starting point area, negative dither
signals cause more significant performance degradation
than the performance improvement in the case of pos-
itive signals because of the shape of the response time
graphs. As such, applying a dither signal seems more
appropriate for cases in which the slope on both sides
of the global and local optimum points is steeper.

• Finally, the first flavor of the SEC policy with constant
step, SEC-constant-D, is not efficient. Perhaps, the
performance would improve with different values for b1

but then we would result in moving the problem from
fine-tuning the block size to fine tuning the adaptivity
parameters.

4.2 Performance Improvements
So far we have discussed how the adaptivity techniques

compare to each other. In the following paragraphs the com-
parison with the fixed block size cases will be discussed, with

block
size

Q1 Q2 Q3 Q4 Q5 avg

1000 1.25 1.281 1.4 1.45 1.43 1.361
5000 1.0718 1.0052 1.0752 1.0729 1.075 1.06
6000 1.0422 1.0286 1.0626 1.0198 1.024 1.0354
7000 1 1.018 1.0205 1.0104 1.0235 1.0145
8000 1.0013 1 1.0077 1.0698 1.0143 1.0186
9000 1.0134 1.005 1 1 1.0302 1.0097
10000 1.0241 1.0151 1.0084 1.0084 1 1.0112
dyna-
mic

0.989 0.9945 0.9436 0.9764 0.8922 0.9591

Table 6: Comparison of dynamic adjustment of
block size against fixed size policies.

a summary provided by Table 6. In this table, the values
are normalized with the optimum point of Figure 6 set to 1.
The last row depicts the relative performance of the most
effective policy for each query, as shown in Table 5. The
overhead is included in this time and, from the table, it can
be inferred that it is negligible. We can observe that:

• For this experiment set, the improvement may exceed
40% (if the fixed sized blocks were 1000 tuples). Sim-
ilar or much larger improvements may be noticed in
other settings (e.g., Section 4.4), in the generic case
where the near-optimum area of block sizes is unknown
from before. In the following, the more limited case
where this area can be approximated is discussed.

• Dynamically adjusting the block size outperforms fixed
size configurations by more than 4% on average, even
if these are known, e.g., through profiling, and set to
their optimum before execution. Also dynamic tech-
niques can track the optimal point; in fixed configu-
rations, the optimum from a finite set that has been
profiled is chosen; however it might be the case that
the global optimal is not in this set.

• On average, the best size for fixed size configuration
in our experiments is 9000 tuples. This yields more
than 5% performance degradation when compared to
dynamic adjustment, which is translated in several
minutes in real time units (given that all queries and
especially Q5 are rather expensive and long running as
shown in Figure 6).

• The starting point of the adaptivity policies is 5000
tuples. If this size was used for fixed size configurations
instead of 9000, the performance improvement would
be more than 10%.

• In the table, the performance of the best adaptivity
policy is taken into account, for each query. If in-
stead, SEC-25-noD is used for all queries, the aver-
age performance improvement is around 3%, 8% and
38% compared to fixed blocks of 9000, 5000 and 1000
tuples, respectively, which is still significant. NTN-
D yields 0.5%, 5.5% and 36% lower response times,
respectively. NTN-noD, which requires not a single
configuration parameter, behaves the same as a 9000
tuples fixed block size.
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Figure 7: The block sizes at different adjustment
cycles (a) for Q4, Q5 when SEC is employed with
b2 = 25 and (b) for Q1, Q5 when SEC-const-D is
employed.

query dynamic fixed at 1000 tuples
avg stdev avg stdev

Q1 1.152 3.77% 2.581 0.42%
Q2 1.191 3.58% 2.557 0.18%
Q3 1.192 3.19% 2.404 1.08%
Q4 1.154 6.52% 2.178 0.41%
Q5 1.02 5.15% 2.06 0.77%

Table 7: Comparison of the performance of dynamic
adjustment of block size when the initial block size
is clearly suboptimal.
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Figure 8: The block sizes at different adjustment
cycles when SEC-15-D is employed and the starting
point is 1000 tuples.

4.3 Speed of Convergence and Stability
The convergence speed of the second flavor of the switch-

ing extremum control (SEC) techniques is fast, and this is
depicted in Figure 7(a). On average, the adjustment con-
verges to its final region at 5 adaptivity cycles, i.e., five block
transmissions. When there is no dither signal, the block size
remains stable thereafter. The drawback is that if either
∆yk−1 or ∆xk−1 remains unchanged for two consecutive av-
eraging windows, then a chain effect takes place where all
future block sizes cannot be modified. This is not desirable
when the optimum point changes significantly during query
runtime. It is avoided with dithering, where there is a con-
tinuous search of the space, which sometimes has negative
effects as discussed earlier, but in some cases enables higher
accuracy as in Q4 (see Figure 7(a)). The fast convergence
property does not hold for the first flavor of SEC, as shown
in Figure 7(b). SEC-const-D seem to require more cycles to
converge than the complete length of the query execution.

4.4 Dynamic adjustment with clearly
suboptimal starting point

In the experiments presented above, the initial starting

point for the adaptive techniques has been relatively close to
the optimum. To further prove the robustness and efficiency
of the adaptivity approaches, the five queries are executed
again (in a LAN setting this time) and the initial starting
point is set to 1000 tuples. In this setting, the performance
degradation of such a suboptimal decision is more severe
than in a WAN environment (more than 100%). A single
configuration of the SEC techniques is picked, namely SEC-
15-D, which is outperformed by SEC approaches with adap-
tive gain and no dithering but, according to the previous
experiments, is the most effective from the SEC approaches
that apply dithering. Table 7 summarizes the results in nor-
malized time units. 1 corresponds to the lower response time
after performing profiling with several fixed sized configura-
tions. When there is no adjustment, the response times are
more than 200% the optimum, whereas SEC-15-D yields on
average only 14% worse response times. The intra-query be-
havior for Q1 and Q5 is shown in Figure 8; the rest of the
queries exhibit similar behavior. An observation is that the
adaptivity techniques very quickly move out of the clearly
suboptimal region of 5000 tuples or less. Overshooting is
avoided due to the maximum hard constraint imposed.

5. RELATED WORK
There is a recent booming in applying control theory in

computing systems, software engineering and software ser-
vices [15], [2]. This is due to the trend of going beyond ad
hoc and heuristic techniques towards an autonomic comput-
ing paradigm [9]. Exploitation of the rich arsenal of tech-
niques, methods, ideas and foundations of control theory,
developed for many decades since the second world war, has
already led to improved designs in many areas and problems
[1, 12, 18]. Furthermore, to meet QoS, optimization ap-
proaches have been also developed in many works, where dy-
namic tuning of several configuration parameters that are re-
lated to the performance of computing systems is suggested.
More specifically, online minimization of the response time
of an Apache web server by dynamic tuning of the num-
ber of maximum clients allowed to be connected simulta-
neously is described in [17], where hill climbing and fuzzy
control techniques are employed. For a database server, on-
line adjustment of multiple configuration parameters using
online random and direct search techniques is proposed in
[8] to guarantee good performance. For application servers,
optimal configurations have also been sought in [21] using
off-line experimentation and statistical analysis. From the
control theory point of view, extremum control has been em-
ployed from the early stages of control theory development.
Although applied in many engineering systems, to the au-
thors’ knowledge this work is the first application to the Web
Service Management Systems (WSMS) problems described
in our context. For non-engineering problems, in a totally
different context, an extremum control approach has only
recently appeared in [11] for the problem of error correction
in packet-switched networks.

6. CONCLUSIONS
This paper presents algorithms for the online adjustment

of block size for enhanced transmission of large data vol-
umes in Web Service Grids following a control theoretical
approach. These algorithms yield lower response times for
retrieving large data volumes from WSs, which is the main



bottleneck in service-oriented web data management appli-
cations. More specifically, they can produce significant ben-
efits in the response time in the generic case, where the
optimal region of block size is not a priori known; in this
case the response time can be reduced to the half or less.
Moreover, the algorithms can yield improved performance
even in the more limited scenario where this region can be
approximated. The results of this work render the process
of calling services self-optimizing, and detailed WS profiling
and fine tuning obsolete. The algorithms analyze the behav-
ior of past values for the block size in order to determine the
future configurations. Detailed experiments demonstrate
the efficiency and the effectiveness of the presented solu-
tions and prove that, apart from reducing significantly the
response time, they are characterized by all four main de-
sired properties for self-managing systems, i.e., stability, ac-
curacy, speed of convergence, and overshoot avoidance [9].
The techniques presented are applicable to any similar opti-
mization problem where the entity to be configured remotely
exhibits a quadratic behavior; OGSA-DAI services are pre-
sented merely as a case study.

Apparently, other techniques inspired from different fields
of numerical optimization and extremum control may be ap-
plicable. At first sight, the aforementioned problematic is-
sues that are present in our case study leave little scope
for the use of model-based techniques, especially for short-
lived transfer tasks and highly variable conditions. How-
ever, under some further assumptions and restrictions, these
methods might be able to provide improved results. Hybrid
schemes, combining ideas from different methods, especially
suited to our needs, will also be investigated. It is a sub-
ject of future work to experiment with such new schemes in
more settings, including concurrent WS requests. Initial re-
sults when there are concurrent requests to a WS show that
the near optimal region is narrower and the performance
benefits even more significant.
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