
Parallel Processing Letters
fc World Scientific Publishing Company

FAILURE MANAGEMENT IN GRIDS:

THE CASE OF THE EGEE INFRASTRUCTURE

KYRIAKOS NEOCLEOUS, MARIOS D. DIKAIAKOS

Department of Computer Science, University of Cyprus

1678 Nicosia, Cyprus

{kyriacos,mdd}@cs.ucy.ac.cy

and

PARASKEVI FRAGOPOULOU, EVANGELOS P. MARKATOS

Institute of Computer Science, Foundation of Research and Technology-Hellas

1385 Heraklion-Crete, Greece

{fragopou,markatos}@ics.forth.gr

Received March 2007
Revised September 2007

Communicated by S.G. Akl

ABSTRACT
The emergence of Grid infrastructures like EGEE has enabled the deployment of

large-scale computational experiments that address challenging scientific problems in var-
ious fields. However, to realize their full potential, Grid infrastructures need to achieve
a higher degree of dependability, i.e., they need to improve the ratio of Grid-job requests
that complete successfully in the presence of Grid-component failures. To achieve this,
however, we need to determine, analyze and classify the causes of job failures on Grids.
In this paper we study the reasons behind Grid job failures in the context of EGEE, the
largest Grid infrastructure currently in operation. We present points of failure in a Grid
that affect the execution of jobs, and describe error types and contributing factors. We
discuss various information sources that provide users and administrators with indica-
tions about failures, and assess their usefulness based on error information accuracy and
completeness. We describe two real-life case studies, describing failures that occurred on
a production site of EGEE and the troubleshooting process for each case. Finally, we
propose the architecture for a system that could provide failure management support to
administrators and end-users of large-scale Grid infrastructures like EGEE.

Keywords: Grid, failure, EGEE, failure management

—————————————————————————

1. Introduction

Recent experimental studies have shown that jobs submitted by users to large-
scale, multi-institutional Grid infrastructures often fail to complete successfully.
For example, data collected and analysed by the WISDOM project [14], which
submits tens of thousands of jobs to the EGEE infrastructure [1] in the context

Parallel Processing Letters

of a drug-design effort [12], indicate that only the 65% of submitted jobs executed
successfully. In the case of a Grid-job failure it is up to the end-user or the Grid
administrator to detect the failure, to identify its cause, to re-submit the job, and to
try to fix the problem(s) that caused the failure. Detecting and managing failures
is an important step toward the goal of a dependable Grid. This is an extremely
complex task, however, as it currently relies on ad-hoc monitoring and manual
intervention. Automating this task seems difficult due to intrinsic characteristics
of the Grid environment: Grids are not administered centrally and, therefore, it
is hard to access the remote sites in order to monitor failures; also, Grid systems
are complex and extremely large; thus, it is difficult to acquire and analyze failure
feedback.

In our work, we investigate the reasons behind Grid-job failures, in order to gain
an insight on how to build a more reliable Grid infrastructure. We concentrate on
the problem of Grid reliability by focusing on jobs that fail to complete successfully,
either providing no output or providing incorrect output. This study is conducted in
order to unmask the root causes of such failures within the Grid system. We use the
term Grid reliability as an indication of the extend to which Grid components behave
in the way expected by their peers (Grid clients and services). In general, a reliable
system is by no means an error-free system; failures would undoubtedly still occur.
A reliable system must anticipate and be able to handle failures in various ways, such
as by failure detection, masking, tolerance, and recovery. The handling of failures
is particularly complex in large distributed environments such as the Grid, since a
lot of components are involved and some may fail while others continue to function
properly. A reliable Grid system should fail in predictable ways; if a component
fails, the rest of the system must be able to adapt to the changed conditions (such
as the lack of a service that has crashed, or the erroneous/incoherent information
provided by a faulty service) and maintain an acceptable state; if that is impossible,
it should at least be able to recover from the failure and return to the last known
correct state.

In the next section, we provide an overview of the architecture, the job-execution
model, and the operations of the large-scale Grid infrastructure of EGEE [1]. EGEE
is currently the largest Grid infrastructure in operation, comprising 250 sites world-
wide with more than 36,000 CPUs, 5PB of storage, supporting over 80 Virtual
Organizations. In Section 3, we present possible points of failure in EGEE and
describe grid error types and contributing factors. In Section 4, we discuss various
services of the EGEE infrastructure that provide error information about failures of
Grid components, and assess their usefulness based on error information accuracy
and completeness. We also present two case studies, describing representative fail-
ures that occurred on the University of Cyprus production site of EGEE (CY01),
with an accompanied analysis and troubleshooting process for each case. In Section
5 we discuss the challenges and requirements for a Failure Management System
that could support Grid administrators and end users. We close by drawing some
conclusions and discussing future work.

2. Grid Computing and EGEE

Computing Grids are usually very large scale services that enable the sharing

Failure Management in Grids: The Case of the EGEE Infrastructure

W i d e � a r e a N e t w o r k
W o r k e rN o d eW o r k e rN o d eW o r k e rN o d eW o r k e rN o d e S t o r a g eN o d eC o m p u t i n gE l e m e n t S t o r a g eE l e m e n t

G r i d S i t e

I n f o r m a t i o nI n d e x
W o r k e rN o d eW o r k e rN o d eW o r k e rN o d e S t o r a g eN o d eC o m p u t i n gE l e m e n t S t o r a g eE l e m e n t

G r i d S i t e
W o r k e rN o d eW o r k e rN o d eC o m p u t i n gE l e m e n t G r i d S i t e

M o n i t o r .A g e n t M o n i t o r .A g e n t M o n i t o r .A g e n t
R e s o u r c eB r o k e rR e p l i c aC a t a l o gU s e rI n t e r f a c eu s e r

S o f t w a r e S o f t w a r e S o f t w a r e
Fig. 1. Grid architecture

of heterogeneous resources (hardware and software) over an open network such as
the Internet. A Grid is organised in Virtual Organisations (VOs) [20], collections
of computational and storage resources, application software, as well as individuals
(end-users) that usually have a common research area. Access to Grid resources
is provided to VO members through the Grid middleware, which exposes high-
level programming and communication functionalities to application programmers
and end-users, enforcing some level of resource virtualisation [24]. VO membership
and service brokerage is regulated by access and usage policies agreed among the
infrastructure operators, the resource providers, and the resourse consumers.

The European project Enabling Grids for E-sciencE (EGEE) currently supports
the largest grid infrastructure in the world, with more than 250 participating sites,
36,000 CPUs and 5PB disk storage. EGEE uses the LHC Computational Grid
(LCG) middleware [5], while the new generation gLite middleware [2] is already
being deployed at several sites. An overview of the EGEE architecture is presented
in Figure 1

Within EGEE there exist several Virtual Organisations (VOs). Users registered
within a specific VO obtain credentials for single Grid sign-on [15] that enables them
to have access to the entire set of resources within (belonging to) that particular
VO, despite the fact that such resources span different Grid sites across different
countries.

Users have access to a User Interface (UI) node for submitting jobs to the Grid,
for requesting job status and resources information, and for obtaining the output
from completed jobs. In brief, a Grid job is usually a set of input files (the input

Parallel Processing Letters

sandbox) and an executable that processes the given input on a set of Grid resources,
according to the user requirements set forth in the Job Description Language (JDL)
file that accompanies every Grid job submission. The Job Description Language
(JDL) is a user-oriented language for describing jobs [16] and the information ob-
tained from a JDL file is taken into account by the Grid Workload Management
System (WMS) [22] components in order to schedule and submit a job. A job can
have particular user-defined requirements for the resources it needs, such as compu-
tational capacity, physical memory capacity, the proximity (network latency-wise)
of certain files that will be used as input, and the availability of specific appli-
cation software. Grid jobs can be classified as CPU-intensive and data-intensive,
depending on the type of work performed.

Jobs are submitted from the UI to a Resource Broker (RB), a central (global)
Grid service. The RB is a component of the distributed Workload Management
System (WMS) of a Grid infrastructure [23] which performs matchmaking by iden-
tifying a set of resources that satisfy the job requirements. The matchmaking is
done based on data received by querying an Information Index, another central
service that complements the WMS by providing up-to-date information about the
state of Grid resources, usually spanning several sites.

If the matchmaking is successful, the job is sent from the RB to the matching
Computing Element (CE) for execution. A Computing Element is at site level and it
is comprised of the Grid Gate node and several Worker Nodes (WNs). The services
running on the Grid Gate node are primarily responsible for authenticating users,
accepting jobs, and performing resource management and job scheduling (the last
two services comprise the batch system). The Worker Nodes are usually powerful
machines in terms of processing power and memory capacity, and are responsible
for executing jobs arriving at the site, as dictated by the batch system on the Grid
Gate. If a job successfully completes execution, the result is then sent back to the
Resource Broker and the user is able to access it from there using the User Interface.
A UML diagram depicting the life cycle of a typical Grid job can be seen in Figure 2.

During job scheduling and execution, if any input files are necessary, they are
either sent by the user during submission (included in the input sandbox), or they
are already resident on a Storage Element (SE) and the user needs only to specify
their location. This brings us to the central Data Management services: the Replica
Catalog holds information about the location of various replicas of a file held at
the Storage Elements of various sites, and the File Transfer Service is responsible
for replicating files across different Storage Elements that are close to Computing
Elements, as needed by various jobs.

In general, the output sandbox contains the result of a job after it has run on
a CE, and contains a set of files that were specified by the user (e.g. a file that
contains what would be the output of the console if a job was running on the
user’s computer). The entire set of output files from a completed job can either be
transferred onto the RB (as part of the output sandbox) that the user will collect
using the User Interface. Alternatively, the output files can be saved onto a Storage
Element and registered with the Replica Catalog so the user can access them in the
future (most probably these will be very large files of intermediate results that will
serve as input to another job).

Failure Management in Grids: The Case of the EGEE InfrastructureU s e r I n t e r f a c e R e s o u r c e B r o k e r G r i d I n f o S e r v i c e R e p l i c a C a t a l o g C o m p u t i n g E l t S t o r a g e E l tJ o b S u b m i s s i o n I n p u t F i l e R e s o l u t i o nR e s o u r c e I n q u i r y J o b S u b m i tC h k J o b S t a t u s
C h k J o b S t a t u sG e t J o b O u t

G e t F i l e
S a v e O u t F i l eU p d a t e R C

Fig. 2. Life-cycle of a typical Grid job

For more efficient project management, EGEE is divided into different federa-
tions/regions, and into each such federation resides a Regional Operations Centre
(ROC) that is responsible for supporting and monitoring a set of EGEE-participating
Grid sites, the Resource Centres (RCs). Division into federations is typically dic-
tated by geographic proximity; as an example, the South East Europe (SEE) fed-
eration has a Regional Operations Centre based in Greece and several production
sites (Resource Centers or RCs) in Bulgaria, Cyprus, Greece, Israel, Romania, Ser-
bia, and Turkey. Apart from ROCs and RCs there is also the EGEE-wide Grid
Operations Centre (GOC), responsible for coordinating and monitoring the oper-
ation of the Grid infrastructure, and a total of four Core Infrastructure Centres
(CICs) which provide monitoring and operational troubleshooting services, acting
as second-level support to ROCs. It is also worth mentioning that usually there
is one Certification Authority (CA) for every participating country (any country
that contributes resources to the project). The CA is responsible for issuing X.509
certificates for grid users, hosts, and services. There are also optional Registration
Authorities (RAs) at each site so the CA can delegate some of its management
functions [15].

3. Failures in EGEE

In order to realize the full potential of a large-scale Grid infrastructure such as
EGEE, the infrastructure needs to be made dependable. As a measure of depend-
ability we use the ratio of successfully fulfilled job requests over the total number
of jobs submitted to the resource brokers of the infrastructure. Two large scale

Parallel Processing Letters

computational experiments (the FlexX and Autodock data challenges) conducted
by the WISDOM [14] project over EGEE in August 2005, showed that only the 65%
of submitted jobs executed successfully. Additionally, in a recent nine-month long
characterization study based on South-Eastern-Europe resource brokers, we found
that only 48% of the submitted jobs completed successfully [19]. Consequently, the
dependability of large-scale Grids needs to be improved substantially. Detecting
and managing failures is an important step toward this goal. Currently, this is an
extremely complex task that relies on ad-hoc monitoring and user intervention. The
main components of the Grid architecture where errors that lead to job failures may
occur, are presented below:

• The Resource Broker, the Grid node that is used to find an appropriate set
of resources (at a Grid site) to execute the job. This node holds the user’s
input sandbox when the job has been submitted, and also the output sandbox
after the job has terminated, until the user retrieves this output (or until the
sandbox expires, depending on how the system was configured). A failure at
this point can result in delays for users to retrieve job status information or
their job output, or even corruption or permanent loss of job output.

• A part of the Computing Element of the site selected for job execution. The
Computing Element consists of the Grid Gate node - often called CE, meaning
‘CE head’ - and the Worker Nodes, which are also CE nodes. Points of
failure here are the Grid Gate and the specific Worker Nodes that have been
allocated for the job. It is worth mentioning here that Grid Gate unrecoverable
failures are rare and we have not witnessed any on our site during the four-
year operation of EGEE, so far; on the occasions that the Grid Gate crashed
or had to be restarted due to heavy load or abnormal CPU or hard drive
temperatures, no job was lost as we noted upon restarting the machine (it
recovered all job information from the WNs and started new job manager

processes for each job). In contrast, WN failures are normally unrecoverable
and resubmission is needed.

• The Storage Element (SE) holding input files that are necessary for the job
is another point of failure, in the cases that the particular SE crashes, has no
network access, or its filesystem is corrupted. In such an event, if there are
no replicas (copies) of the necessary files on different SEs and the user has no
local copies to upload, we can talk about an unrecoverable failure; however
it is usually the case that if a file is only on one SE, it has probably been
generated by a job and the user can resubmit that job to generate it again.
Still, this wastes CPU and end-user time.

• The Information Index (II), which collects and publishes the status of Grid
resources. The information published by the II is used and updated by other
subsystems, like the WMS and the CE. Any failure of the Information Index
results to a collapse of the RB and to a serious malfunctioning of the overall
Grid infrastructure. Furthermore, a failure of the II to update its cached
information on time may result to suboptimal decisions taken by other Grid
components and eventually to the failure of jobs due to mismatches between
job requirements and allocated resource status.

• The underlying network: any failures in the network infrastructure (links,

Failure Management in Grids: The Case of the EGEE Infrastructure

services, etc) that interconnects Grid sites and services may result to discon-
nections between different Grid components and, thus, to failures of the Grid
infrastructure.

The factors that can cause a failure in the aforementioned components and a
Grid-job disruption are the following:

• Hardware faults: if the job is running on the specified machine at the time
of an unrecoverable hardware error, e.g. a hard drive burns (most common),
RAM or motherboard failures, power supply failure, etc.

• O/S misconfiguration: this relates mainly to operating system services that
are not properly configured. One common example is implementing firewall
changes on a site. This can lead to closing ports that are needed for site
inter-node communication, or blocking site hosts from communicating with
each other altogether. The Grid Gate may lose communication with a worker
node (WN) running a user job, or a WN may lose communication with the
site Storage Element (or with another site’s Storage Element) and be unable
to make necessary data transfers. A closely related issue is the inability to
run MPI [8] jobs when ‘inter-worker-node’ communication is blocked.

• Network access disruption/misconfiguration: a factor that can lead to
job failure (or more accurately in this case, leading to CPU time being wasted),
is a site losing Internet access. The firewall example mentioned above also
applies to network misconfiguration, if the changes are implemented on the
network ‘perimetric’ firewall. A user waiting for too long to retrieve the job
output may decide to resubmit the job, rendering the previous one useless
when the site recovers from network access failure, if we assume that the
previous job was still running while the network was down.

• Security breaches/attacks: Computing Element, Storage Element or Re-
source Broker takeover by an unauthorized user (commonly known as a ‘cracker’)
can result to malicious acts like corruption of job data, job termination, sand-
box deletion etc. Such attacks are usually related to security holes of the
operating system and Grid middleware, weak root passwords and inappropri-
ate firewall configuration. Denial of Service (DoS) attacks may also disrupt
job completion or temporarily prevent access to job output by cutting a site off
the Resource Broker that has delegated the job and is waiting for the output.
Note that discussing actual security incidents related to the EGEE infras-
tructure is not possible under most circumstances, since this could provide
potential attackers with useful information.

• Middleware misconfiguration: attempts to correct problems or perform
updates on a Grid site can lead to job failure or a more general service disrup-
tion. This relates to Grid site administrator errors, as well as to bugs in new
releases of the middleware that introduce unwanted configuration. According
to [17], a large number of service disruption occurrences is the direct result of
a regular performance or security software upgrade that leads to configuration
errors. Some examples of misconfiguration: setting too short a wallclock time
for a job queue and as a result jobs die before completion∗; publishing wrong

∗this implies altering the queue wallclock time while jobs are running

Parallel Processing Letters

resource data and matchmaking results in accepting a job while no compatible
resources exist to satisfy it, causing bandwidth loss and adding overhead to
the overall time needed for serving the user; killing the wrong job by issuing
a scheduler or resource manager command (as root on the Grid Gate node).

• Middleware bugs: Grid job failures can result from bugs in middleware
code; for instance, failures relating to the grid Workload Management System
(WMS), including the components residing on the Resource Broker and the
submitting User Interface nodes, observed in [12]. Further information can be
given on this particular type of failures once the appropriate experiments are
conducted on the EGEE grid infrastructure and the aborted jobs are analysed.

• User mistakes: such failures can result from (a) JDL file problems, for
example the user may include an inaccurate specification of job requirements
that will result in the job failing to start; (b) user software can cause errors
during job execution leading to the job being terminated abnormally; and (c)
problems with user certificate proxies attached to the job, most commonly
the absence of a valid proxy during submission, as well as the expiration of an
originally valid proxy while the job is running. All the cases mentioned here
are under user control and have nothing to do with the malfunctioning of other
components of the system, so corrective action can only be assumed on part
of the user, and not by any form of automatic job resubmission mechanisms.

4. Error information sources for EGEE

The following main sources can be used to retrieve information about errors on
the EGEE testbed:

(a) Site Availability Monitoring (SAM) report web site (formerly known as Site
Functional Tests (SFTs)).

(b) Grid Statistics (GStat) web site.
(c) GGUS and EGEE-SEE ticketing systems.
(d) CIC broadcasts and GOC entries for site downtime.
(e) Machine logs, diagnostic commands output, and databases.

These sources are analysed below, while at the end of this section we make an
assessment of the usefulness of each one of these sources, based on the accuracy and
completeness of the error information provided.

4.1. Analysis of error information sources

A. Site Availability Monitoring (SAM) report web site. EGEE main-
tains a central “reporting web site” [9] (restricted certificate-based access) for pub-
lishing test-job results for all sites of the infrastructure, primarily serving Grid
managers and administrators. From there, authenticated users can further access
detailed reports for each site that show the last few entries of the SAM tests. SAM
pages show the results of tests performed automatically, approximately every 1 to
3 hours, and the results of extra tests submitted by the administrators of Resource
Centres (RCs) or responsible Regional Operations Centre (ROC) managers and
administrators.

Failure Management in Grids: The Case of the EGEE Infrastructure

Fig. 3. GStat GIIS entries at site CY01

Test jobs are short jobs designed to check the health of the various Grid compo-
nents of a site. This testing is done using the DTEAM Virtual Organisation, which
exists mainly for running such internal tests on the entire infrastructure. It is worth
noting here that DTEAM jobs are typically short, around 10 minutes of CPU time,
unlike production-VO jobs that usually take several hours to complete. A SAM test
probe consists of several subtests, checking Grid aspects such as the operational sta-
tus of the Workload Management System of a site, the middleware version and the
version of the Certification Authority RPMs (Linux software packages) installed.

B. Grid Statistics (GStat) web site. GStat is an application that monitors
the “health” of the Grid Information System [3]. From the main GStat web page†,
Grid administrators can navigate to retrieve information collected for every EGEE
Resource Center. The most interesting point there is the graphs showing error
(alert) levels and various other metrics, usually going as far back as the last 12
months. From these graphs one can examine the stability of a Grid site, and possibly
how long an error lasted.

An example of such graphs is given in Figure 3, which shows the number of local
Grid Index Information Server (GIIS) entries that reveal site resources (hardware,
services, supported software environments, policies, etc) for site “CY01.” A site’s
GIIS normally runs on the Grid Gate and collects information about all resources
present at the site [18]. GIIS entries are requested by the GStat server by running
an LDAP [6] search command every few minutes; the data returned to GStat is the
reply from the GIIS of the corresponding Grid Gate.

The data in Figure 3 consists of a number of ‘normal’ (up-to-date) entries in-
dicated with the light-coloured line. The number of entries found varies from time
to time due to the dynamic nature of the Grid (more specifically resulting from
site configuration changes and changes of the software environment installed by the
various VOs on the site). This means the number of normal entries can fluctuate
and the site’s information system could still be considered error-free and up to date;
on some occasions however, the entries abruptly drop to zero (or quite lower than
the current value), perhaps due to some network fault that causes timeouts or even

†http://goc.grid.sinica.edu.tw/gstat/

Parallel Processing Letters

Fig. 4. GStat GIIS response time for site CY01

disconnections or a failure of the GIIS daemons running on the Grid Gate. For
example, in the top-right graph of Figure 3, the two occurrences of a sudden fall
followed by the immediate sudden rise are indications of such errors. In the bottom
graphs, the timeline is even wider, 3 months for the bottom-left and a year for the
bottom-right, so traces of such errors disappear completely.

The other type of GIIS entries found on the same graph (Figure 3) are so-called
‘old’ entries, meaning the information system of the site may not be up to date
(the timestamp is older than 10 minutes). Such entries are shown on the graphs
with the darker line. For a site to pass testing, old entries must not exist, and the
darker line should be at zero; an example of a problem with old entries can be seen
on the bottom-right graph (between May and July), during a period in which the
site suffered major network problems, indicated by the rise of the darker line above
zero.

Other points of interest in GStat pages are total and per-VO CPU and job
statistics, storage space reporting, as well as estimated and actual response time for
each supported VO. All this information is given in the form of graphs except the
latest values which are given as numbers.

It is also worth mentioning here the SmokePing network latency monitoring
tool [10], which provides network monitoring metrics for EGEE sites. These metrics
give additional insight to site administrators and they are particularly useful when
combined with GStat measurements or SAM results, in order to narrow down the
set of components that may be responsible for a failure. For example, if GStat shows
increased response time for GIIS as in Figure 4, the SmokePing graph can indicate
whether this is a general problem with the site’s network. As shown in Figure 5, this
was indeed the case: notice that the network latency shows an order of magnitude
increase during the same interval that the GIIS response time displayed a similar
increase. Suppose on the other hand that GIIS showed high response time (above
the usual range of 2-15 s) but SmokePing graphs showed normal latency (usually
around 40 ms)‡: in such a case, the fault origin would most probably lie on the CE,
due to heavy load, abnormal CPU or hard drive temperature etc.

C. GGUS ticketing systems. The third error information source under eval-
uation consists of the Global Grid User Support (GGUS) and 2nd-level ticketing
systems for each federation of the project. The ticketing systems in EGEE are used

‡from our own observations these are the normal values during error-free periods

Failure Management in Grids: The Case of the EGEE Infrastructure

Fig. 5. SmokePing network latency for site CY01

Fig. 6. GGUS Search Interface – Searching for tickets by keyword

in other organisations to efficiently manage tasks and requests. A ticket corresponds
to a task-request and has various attributes such as the name and e-mail of the ticket
submitter (initiator), the name of the responsible federation, the name and e-mail
of the person who is assigned to the task, the ticket status (open, pending, solved,
etc), and a log that shows the reason for opening the ticket, the work done, and
how the problem was solved. To give an example, all tickets that were created for
site CY01 from the beginning of the EGEE project in April 2004 up to the end of
January 2006 are shown in Figure 6.

As far as grid operational support is concerned, the ticketing systems are mainly
used to report component failures as well as needed updates for sites. GGUS tickets
are typically opened because of an error that appears in the SAM (Site Availability
Monitoring) reports or the GStat monitoring website; such tickets are opened by on-
duty Core Infrastructure Centre (CIC) personnel. Once a GGUS ticket is opened, it
is also visible to the affected federation’s ticketing system, and intermediate updates
are done there, but everything is also visible in the GGUS system, including the
solution, the full log, and the ticket closing time and date. For this reason, a
combination of both global and regional helpdesks is not necessary to make more
sense of this type of error information, i.e. we only need to access the GGUS entries.
Note that federation-level tickets can be opened also, and in such cases GGUS has
no corresponding entries, but these tickets mostly relate to needed updates (and

Parallel Processing Letters

not failures) that each federation has chosen to handle internally.

D. CIC broadcasts and GOC entries for site downtime. Site managers
are required to broadcast information related to site downtime events through the
Core Infrastructure Centre (CIC) web site; this information is subsequently e-mailed
to all affected parties. CIC e-mails often contain information related to the error
that caused the site manager to set the site in maintenance mode; at other times,
downtime events are associated with performance or security upgrades and are not
related to errors. Frequently the downtime announcements follow a series of SAM
failures and a resulting ticket prompting the site to fix the errors; at other times
the administrator declares the site down before the operations support has the time
to open a ticket.

Site managers must also declare downtime in the Grid Operations Centre (GOC)
website, in order to place the site’s status in maintenance mode instead of produc-

tion. Such entries are typically one short phrase, e.g. “CE hard drive burned,” and
also contain the start and end dates and times of the downtime event. As it was
previously mentioned, the entire list of downtime events is visible from the GStat
website.

E. Machine logs and diagnostic commands’ output. The last category of
error information sources used in EGEE consists of data found on the nodes of a
Grid site:

(a) The machine logs, such as messages, and /var/log/globus-gatekeeper.log, found
in /var/log/. Information stored inside these logs is usually produced by Op-
erating System or middleware-specific sensors and, in some cases, is made
available through distributed monitoring systems like GridICE [4].

(b) The output of various diagnostic commands executed on the machines that
are involved in the error (while the error persists), such as ps aux, diagnose -j,
checkjob -v <jobID>; and

(c) The Logging and Book-keeping Service (LBS) database records found on the
Resource Broker (RB), which can reveal detailed error information spanning
many sites of many different countries, usually an entire region.

4.2. Case studies

In this section we present some of the more interesting case studies involving
error detection, analysis and correction. These studies were conducted between
December 2005 and February 2006 on the University of Cyprus EGEE Grid site
(“CY01”), in parallel to standard maintenance operations. The analysis was aided
by diagnostic commands and log information, and the output of the diagnostic
commands was recorded while the failures persisted.

Case study 1: DTEAM VO jobs queued indefinitely. As mentioned in
section 2, the DTEAM VO is used for testing the EGEE infrastructure. Standard
test jobs are automatically submitted every three hours to all EGEE sites, and
the results are published on the website of the Site Availability Monitoring system
(SAM). Other DTEAM jobs can also be submitted manually by site administrators,
for running non-standard tests on the infrastructure.

Failure Management in Grids: The Case of the EGEE Infrastructure

At one point, there was a series of DTEAM jobs queued on site “CY01” that
for some reason (unknown at the time) failed to start. This was a mixture of SAM-
related jobs and DTEAM jobs coming from other sites of the federation that were
testing a Grid service. By the time this was noticed by “CY01” site administrators,
the number of jobs had reached 30 (the normal is usually 1 to 2 such jobs), and
they were all in status ‘queued’, while there were enough free resources to execute
4 of them immediately. This caused several SAM entries to fail.

This problem persisted for several days, and we had to deal with it at first by
manually forcing the queued jobs to run on idle processors. It was then discovered
that the problem was caused by an erroneous job scheduler and resource manager
configuration (site administrators’ responsibility). These components are somewhat
complicated, and their configuration non-intuitive, especially in the case of Maui
[7,21], the middleware component responsible for handling job scheduling on a large
number of EGEE sites. The need for reconfiguring Maui and the underlying resource
manager (Torque [13]) became evident, but this involved more than a few hours of
work, so we had to make a quick workaround to fix the problem, mimicking our
actions of manually starting queued jobs: this was a fairly simple script that read
the output of the job queue every 4 hours, and detected which queued jobs belonged
to DTEAM; the script was then forcing jobs to start execution (whenever possible,
based on the free resources), while logging the output of the force-run command.

After a few days of tuning the configuration of Maui and Torque, the problem
rarely appeared; when it did, the workaround handled it successfully. DTEAM jobs
are still likely to be queued (not indefinitely but for several hours) for various other
reasons; by monitoring our site over an extended period of time, we observed that
DTEAM VO members may at any point submit a large number of jobs on the site,
and the result is that the job scheduler avoids starting some of them as a result
of the fair share policy implemented (i.e. the ‘maximum running jobs’ limit set
for testjobs is exceeded and Maui does not allow more DTEAM jobs to run before
others terminate).

To sum up, the cause of the problem here was the lack of proper resource man-
ager and job scheduler configuration, although it can be reduced to a more general
problem with abusing the DTEAM VO and using up the few available CPU slots
provided by the sites for SAM tests. The symptoms were treated first due to the
urgency of the matter, while the subsequent fine-tuning of the resource manager
and the job scheduler configuration addressed the root cause of the problem. The
primary tool used to identify the problem was the Site Availability Monitoring re-
port website, and the tool that lead to understanding the problem was qstat, which
is part of the middleware diagnostic commands. While the actual tool for resolving
the problem permanently is part of the middleware (i.e. configuring maui prop-
erly), the temporary patch that was applied by writing a small bash script belongs
in the UNIX toolset and it is not part of the middleware. Note that patching things
up in this manner is not uncommon practice for site administrators, especially for
problems where there is no other solution available.

Case study 2: Active Worker Node dies. In this case study, a Worker
Node crashed while a job was running on it, causing the job to be completely lost
and also creating a second problem with resource allocation. In the following output

Parallel Processing Letters

obtained from qstat§, notice production job of the LHCb experiment [11], with ID
74896.ce101. It appears to be running (Status [S] = Running [R]).

[root@ce101 root]# qstat

Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----

73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN lhcb002 00:33:58 R lhcb

However, the output of diagnose -j (Maui job scheduler command) shows a
problem with this job, which is demonstrated in the log excerpt below:
[root@ce101 root]# diagnose -j
...
74896 Running DEF 1 DEF 3:00:00:00 1 1 lhcb002 lhcb

...
WARNING: active job ‘74896’ has inactive node wn107.grid.ucy.ac.cy

allocated for 1:18:17:03 (node state: ‘Down’)

After checking to see what was the problem with worker node wn107, we could
neither connect to the machine remotely nor ping; the machine was also inacces-
sible from its console. The WN had crashed due to hard drive overheating. After
restarting the failed node, the job was exiting (Status = E) from the queue but this
state persisted for several minutes. This can be seen below from the new output of
qstat:
[root@ce101 root]# qstat
Job id Name User Time Use S Queue
---------------- ---------------- ---------------- -------- - -----

73933.ce101 STDIN atlas004 0 Q atlas
74896.ce101 STDIN lhcb002 00:33:58 E lhcb

The output of diagnose -j erroneously showed that the job was running normally.
The only difference from the previous message is that the warning on ‘wn107 being
down’ was no longer present, which means that the job scheduler was updated with
the information that the WN was started, and the server daemon (pbs server) of
the resource manager on the CE could connect to the torque client (pbs mom) on
the restarted WN. This job had to be killed manually, since the data from it being
executed on wn107 had been lost when the machine died, and it was certain that
the job could not recover. The new output of diagnose -j (after restarting the failed
WN) can be seen below:
[root@ce101 root]# diagnose -j

...
74896 Running DEF 1 DEF 3:00:00:00 1 1 lhcb002 lhcb
- 1:18:33:49 [NONE] [NONE] [NONE] >=0 >=0 NC0 [lhcb:1] [NONE]

Another related problem was that the worker node that had crashed, was later
reserved and could not be utilized for a fresh job, despite the fact that its CPUs
were idle. This can be seen from the output of other Maui commands, such as
showres -n and checkjob <jobID>.

As it turned out, the job stayed in the queue with ‘exiting’ status, despite the
attempts to delete it (qdel), suspend it (mjobctl -s), and similar modifications with
Torque and Maui commands. All such attempts failed because the job was at a
state that could not accept modifications. Next, the reservation that was made on
wn107 was removed manually using Maui command releaseres ¡jobID¿, so at least
the node was free to serve another job.

The job was later removed from the queue (after spending more than several
hours in ‘exiting’ status, even persisting after a restart following a middleware
upgrade) by manually deleting the resource manager job-specific files from the Grid
Gate, and restarting the resource manager.

§command of PBS Torque resource manager used to show the status of batch jobs

Failure Management in Grids: The Case of the EGEE Infrastructure

To sum up case study 2, the problem originated due to a middleware bug that
did not allow the job scheduler to ‘understand’ that one of the worker nodes had
crashed and a job was lost, so manual modifications by the site administrator were
necessary in order to clear the failed job and allow the restarted worker node to be
utilised by new jobs. The primary tool used to identify the problem was part of the
middleware diagnostic commands (diagnose -j). The tools that lead to understand-
ing the problem were also various middleware diagnostic commands related to the
Local Resource Management System (LRMS) and the job scheduler, as were the
tools for providing the actual (manual) solution. Note here that the system admin-
istrator happened to execute this particular command that resulted in detecting
the problem, and it was not through an alert created by a monitoring tool that the
detection of the problem was made. A system like Nagios would have been useful
for issuing such an alert, i.e. that host wn107 had crashed. This alert could have
been sent through e-mail or sms, and the actions described above would have been
assumed earlier.

4.3. Assessment of sources

Based on the analysis and the case studies presented above, we can derive the
following assessment on the usefulness of individual error-information sources.
Site Availability and GStat Monitoring: From our experience, the SAM re-
ports are usually accurate in indicating Grid site problems. The only drawback is
that production jobs run for much longer than test jobs, and this may cause some
errors to escape the SAM testing; also, the frequency of the SAMs may not be as
high as needed to catch all errors. For this reason we can also combine some mon-
itoring information from GStat, but this is not easy to do automatically because
the graphs are in image format and the data used to generate the graphs are not
readily accessible.

Furthermore, SAM relies on end-to-end tests that do not always help in identi-
fying the root causes of observed Grid-component failures. As we saw earlier, the
identification of the causes of failures requires the examination of log files and/or
the invocation of diagnostic commands.
Ticketing systems: By reading the tickets posted by end-users and Grid admin-
istrators, we can find out notifications of problems that arise in EGEE, along with
human-produced commentaries on these problems. It is often useful to combine
information extracted from tickets (ticket timestamp, problem category, etc.) with
error-related information retrieved from SAM tests and logging systems in order to
detect the root causes of errors.
GOC and CIC downtime: While easy to gather and easy to separate between
“downtime due to errors” and “downtime due to standard maintenance tasks” with-
out the need to automate the process (such entries are infrequent), these sources
present important drawbacks: the most important one is that the site manager or
administrator publishing this information may be covering up for other types of
failures. Furthermore, some downtime may not be announced due to negligence or
lack of motivation, since more downtime will be accounted for that site (on some oc-
casions, short failures may pass unnoticed). This source is possibly both inaccurate
and incomplete.

Parallel Processing Letters

S A Mm o n i t o r i n g G S t a tm o n i t o r i n g G r i d I C Em o n i t o r i n g S m o k e P i n gm o n i t o r i n g
W e bS e r v e rH T M Lt a b l e s G i fi m a g e s H T M Lt a b l e s G i fi m a g e sW e bS e r v e r

o p e r a t o rm o n i t o r i n g
o p e r a t o rm o n i t o r i n g

E ¥ m a i lt e x tE ¥ m a i lt e x t
H T M Lt a b l e s

I n t e r n e tL o c a l A r e a N e t w o r kO p e r a t i n gS y s t e mG r i dM i d d l e w a r eH a r d w a r e
G r i d M i d d l e w a r e(j o b e x e c u t i o n e n v i r o n m e n t)O SL o g sG r i d V OM a n a g e r s S e r v i c eL o g sH a r d w a r eL o g sG r i d S i t eA d m i n sN e t w o r kA d m i n s

D i a g n o s t i c sC o m m a n d s L B S
E G E E I N F R A S T R U C T U R E

C I C G G UG O CT i c k e t i n gs y s t e m s m o n i t o r i n gp a r a m e t e r s
G r i d U s e r sE ¥ m a i lt e x t

Fig. 7. Failure Management in EGEE.

Machine logs, diagnostic commands output, and databases: The machine
logs and the LBS database do not rely on human intervention for their production,
and we can therefore consider them the most accurate and complete error informa-
tion sources from the ones examined here. Processing and integrating these logs
requires extra work since they are in non-standard formats. On the other hand,
obtaining diagnostic command output of real value is also tricky, since this will
only be of use if it is obtained at the right time, i.e. while the error persists and
perhaps even before a subsequent change of the machine state that can hide the
initial error information.

5. Towards a Failure Management Infrastructure

The capability to manage failures in a large-scale Grid infrastructure requires
the establishment of tools that support the discovery of failures and the detection
of their causes. Discovery and detection are both very important for administrators
and users: administrators can employ such tools to “debug” the infrastructure
and to reduce the mean time to repair (MTTR) between failures. Grid users can
take advantage of failure management systems in the context of monitoring and
debugging their jobs.

Failure detection and management in EGEE relies on a large number of sys-
tem attributes, which are monitored or measured on a continuous basis by EGEE’s
monitoring systems discussed in the previous section. These monitored attributes
represent the status of components belonging to the different layers of the infras-
tructure (hardware, middleware, services). They are stored inside the corresponding
monitoring systems, although some of them are also kept in log files and databases

Failure Management in Grids: The Case of the EGEE Infrastructure

on various Grid nodes. EGEE’s monitoring systems publish on the Web a selection
of the monitored attributes, using different non-standard formats (HTML tables,
images, etc). Additional access to monitored attributes can be achieved with the
help of diagnostic libraries, which are typically available to system administrators
with special access privileges. Higher-level failure-related information can also be
registered by Grid users and administrators through a number of existing ticketing
systems; this information is also published on the Web, usually in free-text format.
An overview of the failure management mechanisms that are currently in place in
EGEE, is shown in Figure 7.

Following the discussion in Section , it is evident that existing error-information
sources and monitoring systems can be used by Grid users and system administra-
tors to identify Grid components or services that are failing to operate. Neverthe-
less, individual sources do not support the investigation of the root causes behind
observed failures due to the following reasons:

• Typically, such an investigation requires the integration of data from different
error-information sources. However, the integration of error-related data pub-
lished through the Web is quite difficult and costly due to the non-standard
encodings adopted by the different monitoring systems, which render the dif-
ferent data sets syntactically and semantically incompatible. Furthermore,
most of the monitoring systems do not provide standardized interfaces and
protocols that could be used to export their data in raw formats amenable to
integration and further processing.

• Due to the scale and complexity of Grid infrastructures like EGEE, the data-
sets collected by their monitoring systems are large and complex. Conse-
quently, the automatic identification of error conditions and component fail-
ures requires the implementation of advanced data management and mining
techniques, which are beyond the scope and the capabilities of existing moni-
toring systems.

• The information that is collected and published by EGEE’s monitoring sys-
tems normally represents the status of Grid resources and not the factors that
cause the failures. The identification of these factors often calls for extensive
experimentation involving the invocation of diagnostic tools and the applica-
tion of expert knowledge. Automating these processes requires the elicitation
of prior knowledge and its representation through artificial intelligence tech-
niques.

• The users of a failure management system will benefit from feedback informa-
tion and guidance that is translated to their individual context. For example,
a Grid end-user may wish to find out the exact step where a failure occured in
the life-cycle of a failed job, in the context of Figure 2. On the other hand, a
Grid administrator would like to know which hardware or software component
of his infrastructure is failing and why, in the context of Figure 1.

With these requirements in mind, we propose an architecture for a Failure Man-
agement System of EGEE, which we depict in Figure 8. The proposed system con-
tains a set of wrappers that extract on a continuous basis information from various
error-information sources and monitoring systems of the EGEE infrastructure. This

Parallel Processing Letters

O SL o g sS e r v i c eL o g sH a r d w a r eL o g sD i a g n o s t i c sC o m m a n d s L B SC I C G G UG O CT i c k e t i n gs y s t e m s S A Mm o n i t o r i n g G S t a tm o n i t o r i n g G r i d I C Em o n i t o r i n g S m o k e P i n gm o n i t o r i n gS A Mw r a p p e r G S T A Tw r a p p e r G r i d I C Ew r a p p e r S m o k e P i n gw r a p p e rL B Sw r a p p e r I n t e g r a t e dE r r o r % I n f o r m a t i o nR e p o s i t o r yT i c k e t i n gw r a p p e r
A u t o m a t i cF a i l u r eD e t e c t i o nF a i l u r eI n v e s t i g a t i o nM o d u l eK n o w l e d g eB a s e F a i l u r e M a n a g e m e n tS y s t e mH i g h D l e v e lR e p o r t i n gM o d u l e

Fig. 8. Failure Management System Architecture.

information is stored in a common Integrated Error-Information Repository, which
provides a simple API for exporting selected data-sets. An Automatic Failure De-

tection module applies simple algorithms and models to detect monitored-attribute
values signaling the occurrence of errors in the infrastructure. The Failure Inves-

tigation Module uses various expert rules to pinpoint the possible causes of errors
and to suggest the invocation of diagnostic commands that may help the user to
further investigate an incident and to identify its possible causes. To this end, the
Failure Investigation Module uses also a Knowledge Base, where information about
prior failure cases is stored. Finally, a High-level Reporting Module translates the
information about identified failures and feedback provided by the system to the
context of the user of the Failure Management System.

6. Conclusions

Detecting and managing failures is an important step toward the goal of a de-
pendable Grid. However, this is currently an extremely complex task due to the
complexity, the scale, and the multi-institutional span of Grid infrastructures. In
this paper, we examined the problem of failure detection and management in the
context of EGEE, the largest Grid infrastructure in operation world-wide. We iden-
tified the sources that provide information about errors on the EGEE Computing
Grid, and assessed these sources in terms of their usefulness, accuracy and com-
pleteness of the error information provided. Moreover, we presented and analyzed
the error types that can lead to Grid job failure. We presented in detail two case

Failure Management in Grids: The Case of the EGEE Infrastructure

studies of Grid errors by describing the problem symptoms, the root cause of the
failure, and the troubleshooting process that was used to resolve the problem.

The experiences described in this paper show that manual failure management
in large-scale infrastructures such as EGEE is a tedious and cumbersome process.
Furthermore, that current middleware systems do not provide adequate support
for handling failures and for supporting Grid dependability. Therefore, we need to
develop tools that will support system administrators and end-users to identify fail-
ures of Grid components and to investigate their route causes. These tools should
provide a higher-level representation of failures, integrating information from the va-
riety of error-information sources presented earlier. Furthermore, they should ease
the troubleshooting process undergone by Grid system administrators by automat-
ing diagnostic and corrective functions, and helping them cope with the complexity
of error-information provided by underlying monitoring systems through proper
abstractions and uniform user-interfaces. Also, we need to develop systems and al-
gorithms for processing the information collected by the various failure-information
sources in order to support the automatic identification and prediction of failures,
in order to improve the dependability of the Grid’s operation.

Acknowledgements

This work was supported in part by the European Commission under projects
EGEE (Contract IST-2003-508833) and the Network of Excellence CoreGRID (Con-
tract IST-2002-004265) of the Sixth Framework Progamme of the European Union.
The authors wish to thank Chryssis Georgiou, George Tsouloupas and Demetris
Zeinalipour-Yazti for their helpful comments and suggestions, Nicolas Jacq for in-
sights on the results of the WISDOM data challenge concerning grid reliability, as
well as Fabrizio Pacini and Zdenek Salvet for clarifications on the internals of the
Workload Management System of EGEE.

References

[1] Enabling Grids for E-SciencE project. http://www.eu-egee.org/.
[2] gLite Middleware. http://glite.web.cern.ch/glite/ (accessed June 2006).
[3] Grid Statistics (GStat) description.

http://goc.grid.sinica.edu.tw/gstat/filter help.html (accessed June 2006).
[4] GridICE: a distributed monitoring tool for Grid systems. http://grid.infn.it/gridice/

(accessed June 2007).
[5] LCG Middleware. http://lcg.web.cern.ch/LCG/activities/middleware.html (accessed

June 2006).
[6] Lightweight Directory Access Protocol, open source implementation, website.

http://www.openldap.org (accessed June 2006).
[7] Maui Administrator’s Guide.

http://www.clusterresources.com/products/maui/docs/mauiadmin.pdf (accessed May
2006).

[8] MPI: A Message-Passing Interface Standard. http://www.mpi-forum.org/docs/mpi-
11.ps (accessed June 2006).

[9] Site Functional Tests for EGEE sites. https://lcg-sft.cern.ch/sft/lastreport.cgi (ac-
cessed June 2006).

Parallel Processing Letters

[10] SmokePing network latency measurement tool. http://oss.oetiker.ch/smokeping/ (ac-
cessed June 2006).

[11] The Large Hadron Collider beauty experiment, homepage.
http://lhcb.web.cern.ch/lhcb/ (accessed June 2006).

[12] The WISDOM (Wide In Silico Docking On Malaria) Data Challenge, general statis-
tics. http://wisdom.eu-egee.fr/malaria/grid stat.php?menu grid=general (accessed
June 2006).

[13] Torque Administrator’s Manual. http://www.clusterresources.com/torquedocs21/ (ac-
cessed May 2006).

[14] WISDOM: Initiative for grid-enabled drug discovery against neglected and emergent
diseases. http://wisdom.eu-egee.fr/ (last accessed June 2006).

[15] Internet X.509 Public Key Infrastructure – Certificate and Certificate Revocation List
(CRL) Profile. http://www.ietf.org/rfc/rfc3280.txt (accessed March 2006), 2002.

[16] Job Description Language: Attributes Specification.
http://edms.cern.ch/document/590869/, May 2006.

[17] Aaron Brown. Coping with human error in IT systems. ACM Queue magazine,
http://www.acmqueue.com, November 2004.

[18] Stephen Burke, Simone Campana, Antonio Delgado Peris, Flavia Donno, Patri-
cia Mendez Lorenzo, Roberto Santinelli, and Andrea Sciaba. gLite 3.0 User Guide.
https://edms.cern.ch/document/722398/, May 2006. Document Status: PRIVATE.

[19] G. DaCosta, M. D. Dikaiakos, and S. Orlando. Nine months in the life of EGEE: a look
from the South. In Proceedings of 15th IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS
2007), October 2007.

[20] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable
Virtual Organizations. International J. Supercomputer Applications, 15(3):200–222,
2001.

[21] Sophie Lemaitre, Jeff Templon, Steve Traylen, Markus Schulz, and Da-
vide Salomoni. Maui Cookbook. http://grid-deployment.web.cern.ch/grid-
deployment/documentation/Maui-Cookbook.pdf (accessed May 2006).

[22] F. Pacini. gLite Workload Management System service.
https://edms.cern.ch/document/572489/, May 2006.

[23] D. Thain and M. Livny. Grid 2: Blueprint for a New Computing Infrastructure, chapter
19: Building Reliable Clients and Services. Elsevier, Morgan Kaufmann, 2nd edition,
2004.

[24] M. Xu, Z. Hu, W. Long, and W. Liu. Grid 2: Blueprint for a New Computing Infras-
tructure, chapter 14: Service Virtualization: Infrastructure and Applications. Elsevier,
Morgan Kaufmann, 2nd edition, 2004.

