
1

Characterization of Computational Grid Resources
Using Low-level Benchmarks

George Tsouloupas Marios D. Dikaiakos
{georget,mdd}@ucy.ac.cy

Dept. of Computer Science,
University of Cyprus

1678, Nicosia, Cyprus

Abstract— An important factor that needs to be taken into
account by end-users and systems (schedulers, resource brokers,
policy brokers) when mapping applications to the Grid is the
performance capacity of hardware resources attached to the
Grid and made available through its Virtual Organizations.
In this article, we examine the problem of characterizing the
performance capacity of Grid resources using benchmarking.
We examine the conditions under which such characterization
experiments can be implemented in a Grid setting and present
the challenges that arise in the Grid context. We specify a small
number of performance metrics and propose a suite of micro-
benchmarks to estimate these metrics for sites that belong to large
Virtual Organizations. We describe benchmarking experiments
conducted with, and published through GridBench, a tool that we
built to manage benchmarking experiments over the Grid and to
publish and analyze performance metrics. Finally we show how
results derived from GridBench can help end-users assess the
performance capacity of resources belonging to a large Virtual
Organization.

I. INTRODUCTION

Information about the performance capacity of computa-
tional Grid resources is essential for the intelligent allocation
of resources to Grid applications. This need arises from the
diversity in performance capacity, which is common-place in
heterogeneous Grids. Performance capacity estimates can help
users and schedulers make more informed resource allocation
decisions by combining this information with information
about application performance (empirical or other).

Our goal is to complement the information available via
Grid information and monitoring services by annotating re-
sources with low-level performance metrics. Our conjecture
is that the use of lightweight benchmarking for performance
evaluation and functionality tests can be useful for schedulers,
resource brokers, service providers and end-users.

In order to achieve our goal, a number of challenges need
to be addressed:

• First, we need to determine a small set of simple, easy
to understand and clearly defined performance metrics
that effectively characterize the performance capacity of
heterogeneous resources.

• Then, we have to select and implement a set of minimally
intrusive benchmarks that will help us derive measure-
ments of the chosen metrics upon resources deployed on
real Grids. The deployment of the selected benchmarks
on a Grid should not require excessive administrative

effort or the reconfiguration of existing middleware, and
should not raise issues related to software licensing.
Benchmarking experiments should take minimal time and
should not result to a major disruption of Grid operations.

• The management of benchmarking experiments should
not incur excessive cost upon end-users or system ad-
ministrators. The benchmarks should be executed on the
different Grid resources of a Virtual Organization, both
in a periodic and in an “on-demand” manner. Periodic
execution can be performed if benchmarking is to be
used as a mechanism for active, non-intrusive, end-to-
end performance monitoring, which can provide resource
brokers and Grid schedulers with an up-to-date feed of
performance metadata. In this paper we focus on on-
demand execution, which can be useful to end-users and
administrators that wish to investigate the performance
attributes of resources participating to a Virtual Organi-
zation.

In the remainder of this article, Section II describes our
approach to characterization of computational Grid resources
through benchmarking and provides a short description of
related work, as well as the GridBench framework which we
used to obtain our results. Section III describes the metrics
and benchmarks which we propose for use in the character-
ization of resources. Section IV presents the experiments we
conducted, while Section V describes some practical issues
we faced. In the last section we present our conclusions and
the general direction of our future work.

II. RESOURCE CHARACTERIZATION

In existing Grid infrastructures, the performance capacity
of Grid resources can be obtained through Grid Information
Services (such as the Monitoring and Discovery Service [12]).
Scheduling decisions based on the performance capacity (or
“speed”) of the candidate resources have to rely, at best, on
the size of main memory, number of CPU’s, and their nominal
speed (e.g. in MHz). This is due to the fact that this is
what users or schedulers can expect from information services
such as MDS. Despite that, Grid information service designers
recognized the importance of performance capacity and made
allowances in their information schemata for including perfor-
mance information. An example is the GLUE Schema [7], de-
veloped for interoperability between US and European projects



2

used by middleware systems supporting large infrastructures,
such as the EGEE [1], and the OSG [4]. The Glue schema
includes placeholders for the GlueHostBenchmarkSF00
and GlueHostBenchmarkSI00 attributes, in order to ac-
commodate the SPECFloat2000 and SPECInt2000 bench-
marks. Such information is usually obtained and specified by
system administrators, and therefore it is potentially inaccurate
because it is prone to human error, be it intentional or
unintentional. The fact that this is static information also
creates problems because experience shows that a resource’s
performance capacity does change over time, either by the
addition or removal of CPU’s or even by simple alterations in
the configuration of the hardware or software.

A. Related work

The Grid Assessment Probes [8] test and measure per-
formance of basic grid functions such as job submission,
file transfers, and performance of Grid Information Services.
DiPerF [11] is a distributed performance-testing framework,
that aims to automate service performance evaluation. It coor-
dinates a pool of machines that test a target service, collects
and aggregates performance metrics, and generates perfor-
mance statistics for service “fairness” and service throughput.
The ALU Intensive Grid Benchmarks (AIGB) [10] aim to
measure the performance of Grids via pre-defined work-flows
using the established NAS Parallel Benchmarks as computa-
tional kernels.

Infrastructure Monitoring tools such as NWS [26] can
provide useful real-time information of several system aspects,
and while most monitoring tools do measure network latency
and bandwidth between distributed Grid resources, they do
not address computational performance of the monitored re-
sources. NWS has “CPU sensors” which can provide measure-
ments mainly for the purpose of forecasting CPU availability,
but it does not provide benchmarking metrics to measure
computational performance and capacity.

The Inca test harness and reporting framework [20] is a
system that aims to automate the testing of resources, auto-
mate resource data collection, perform resource verification
and monitor service agreements. The Site Functional Tests
(STF) [5] are a set of tests that are periodically executed in
order to evaluate the functionality of different middleware at
Grid sites participating in EGEE [1]. The test results could
potentially provide an indication of the performance of some
basic and some not-so-basic middleware tasks such as file
replication.

In contrast to the work presented in this paper, DiPerF
and GRASP focus on service and file-transfer performance
and do not address computational resource performance. Inca
and the SFT are testing frameworks that were not specifically
designed for computational performance evaluation and so do
not address the computational performance of a Grid site.
These tools and the benchmarks we propose could work in
synergy. As suggested in [20], the benchmarks proposed by
GridBench [22] and GRASP [8] could be views as “tests”
and invoked using the Inca framework. In contrast to the
AIGB, our effort focuses on lightweight benchmarking for

the performance characterization of Grid resources, while the
Computationally Intensive Grid Benchmarks are pencil-and-
paper definitions of workflow-type applications. Finally, the
work presented in this paper aims to complement, and by no
means replace, the information provided by monitoring tools
(such as NWS) by providing up-to-date low-level performance
metrics.

B. Characterization through benchmarking

Micro-benchmarks provide a commonly accepted basis for
comparing different computer systems in terms of their per-
formance. They are also used to investigate performance prop-
erties of computer systems under carefully tuned, benchmark-
induced workloads that stress particular aspects of system
performance. For example, CPU benchmarks, such as Whet-
stone [9], focus strictly on CPU arithmetic operations in a tight
loop with minimal memory requirements, thus disregarding
the effect of other factors on overall performance. Micro-
benchmarks have many uses to different kinds of users: for
example, administrators could use benchmark measurements
to detect and pin-point faults or problems in general, and end-
users could use measurements to select appropriate resources
for running their application.

A small set of suitable metrics is necessary for quantitative
performance characterization. These metrics need to reflect the
basic factors affecting performance of heterogeneous compu-
tational Grid resources. The size of this set, i.e. the number
of metrics, should be of reasonable size. Too small a set
would run the danger of missing essential performance factors
while a large set of metrics would complicate decision-making
by providing too much information, but more importantly it
would impose a higher cost from the additional benchmark
executions.

Once the set of metrics is established, a carefully selected
set of benchmarks must be employed. It is also essential that
the selected benchmarks run for the minimum amount of time
and produce reliable results. While long-running codes (i.e,
real or synthetic kernel-benchmarks) may potentially provide
more accuracy or higher-level metrics, they are not desirable
since they would tend to be more application-specific and they
would incur a large cost for running benchmarks, especially
if they are run at regular intervals.

The heterogeneity of Grid resources (introduced by both
different hardware architectures and operating systems) im-
poses the additional requirement of portable benchmarks. A
key factor in the selection of benchmarks should be their
portability and code availability. Heterogeneity, its impact on
measured performance and the portability issues that arise have
been the subject of study in [14].

The collected results must be made easily available for use
by the decision-making process. The benchmarking process
produces a high volume of measurement data, considering that
some measurements are not simple scalars and that it would
be of interest to maintain a historical record of performance
measurements, e.g. for the statistical assessment of resource
availability and dependability.



3

C. GridBench

GridBench [22], [24] is a set of tools that aim to facilitate
the characterization of Grid nodes or collections of Grid
resources. In order to perform benchmarking measurements
in an organized and flexible way, the GridBench framework
is provided as a means for running benchmarks on Grid
environments as well as collecting, archiving, and publishing
the results. We used the GridBench framework to perform
the experiments described in Section IV. GridBench provides
an interactive graphical user interface for configuring and
invoking benchmarks. We used this interface to conduct and
manage our experiments, and used its facilities to create
the charts that were used in the analysis. We made use of
Gridbench’s functionality for executing benchmarking jobs
that are generated from high-level benchmark definitions and
for archiving results to a database back-end. This functionality
of GridBench is exposed via web-services. For interoperability
with the underlying test-bed we used the “GlobusPlugin”
middleware plug-in provided by GridBench.

III. METRICS AND MICRO-BENCHMARKS

A. Metrics

A critical step in our methodology is the selection of a
concise set of metrics for the low-level characterization of the
Grid’s computational resources. It is a reasonable assumption
to make that the resource’s performance depends mainly on the
performance of its CPU’s, the performance of its memory and
caches, and the performance of its interconnects. Of course
there is a wealth of other factors affecting machine perfor-
mance ranging from I/O performance to Operating System
robustness to fitness for running a specific application. We
chose to limit the set of metrics to a concise size, but kept the
design open for easy inclusion of more metrics as deemed
necessary. In terms of specific metrics we have chosen (i)
Operations Per Second for CPU performance (integer/floating-
point), (ii) Available Memory and Bytes per second for writing
and reading to and from main memory/cache (iii) Latency and
Bandwidth for evaluating the machine’s interconnects, and (iv)
I/O bandwidth. These metrics are easily understood and well-
established for evaluating their respective performance factor;
they are given in Table I.

TABLE I

METRICS AND BENCHMARKS.

Factor Metric Delivered By
CPU Operations per second (mixture of

floating point and integer arithmetic)
EPWhetstone

CPU Floating-Point operations per second EPFlops
CPU Integer operations per second EPDhrystone
memory sustainable memory bandwidth in

MB/s (copy,add,multiply,triad)
EPStream

memory Available physical memory in MB EPMemsize
cache memory bandwidth using different

memory sizes in MB/s
CacheBench

Inter con-
nect

latency, bandwidth and bisection
bandwidth

MPPTest

I/O Effective I/O bandwidth b eff io

B. Micro-benchmarks

In the choice of benchmarks, we have had to deal with a
trade-off which involves (i) minimizing the overlap of what the
benchmarks actually measure, and (ii) providing as complete
a characterization as possible. In order to deliver the required
metrics, eight benchmarks are employed:
(i) EPWhetstone, (ii) EPFlops, (iii) EPDhrystone, (iv) EP-
Stream, (v) CacheBench, (vi) EPMemsize, (vii) MPPTest and
(viii) b eff io. Primarily, these benchmarks were selected for
their acceptance in the community and because they are open-
source.

During the execution of each of the benchmarks listed
above, it is imperative that the only process imposing sub-
stantial load on the CPU is the benchmark process, especially
since the results are calculated using wall-clock time. Another
thing to note is that the “EP” prefix of some benchmark names
(namely EPWhetstone, EPFlops, EPDhrystone and EPStream)
denotes the “embarrassingly parallel” nature of its execution,
which means that each process runs on a CPU independently
without any communication during the measurement. The
accumulated result from all the processes is then reported as
the performance of the whole resource. In many cases it is
useful to have results from benchmarks executed as both i)
one process per CPU and ii) one process per SMP node, in
order to expose characteristics such as shared main memory
and shared network interfaces (see the description of EPStream
for an example).

EPWhetstone is a simple adaptation of the traditional
Whetstone CPU benchmark [9] so that it runs simultaneously
on a set of CPU’s using MPI. It is implemented in C, and uses
MPI for collecting the final measurements from each process
(communication time is excluded from measurements). Each
process performs a mixture of operations, such as integer arith-
metic, floating point arithmetic, function calls, trigonometric
and other functions. The benchmark the average rate at which
these operations were performed, using wall-clock time. The
typical execution time is less than 10 seconds.

EPFlops is a floating-point CPU benchmark adapted from
the “flops” benchmark [6]. It is modified so that it runs
simultaneously on a set of CPU’s using MPI. It measures the
performance of a CPU’s floating-point operations in different
“mixes” of floating-point operations. The benchmark employs
a set of 8 modules, where each module is made up of a
different mix of operations. Different combinations of the 8
modules yield a set of four metrics (“ratings”) with different
ratios of each of the four floating-point operations (these are
described in detail in [6]). The benchmark tries to maximize
register usage in order to be as independent as possible from
the performance of the memory sub-system. It is implemented
in C and typical execution times are under 5 minutes.

EPDhrystone is an integer operations benchmark, adapted
from the C version of the “dhrystone” benchmark [25]. It is
modified so that it runs simultaneously on a set of CPU’s using
MPI. Dhrystone is based on a workload from an extensive
set of applications, but does not target numerical computa-
tions.While EPDhrystone may not correlate with many codes
from the natural sciences, but they do for some others (such



4

as Discrete Simulation and microprocessor simulation).As
before, the benchmark has been adapted to run concurrently
on a set of CPU’s using MPI. The benchmark returns the
accumulated result from all the processes in “dhrystones” per
second. Typical execution times are under 10 seconds.

EPMemsize is a platform independent benchmark that aims
to measure memory capacity. It is written in C and it runs
simultaneously on a set of CPU’s using MPI. It first determines
the maximum amount of memory that can be allocated. It then
proceeds to determine the maximum amount of memory that
can be allocated in physical memory. The size of physical
memory available is important to memory-intensive applica-
tions that profit from allocating as much memory as possible
while avoiding the use of slow swap memory. Detecting the
physical memory in the machine in a platform-independent
way may not depend on any system-specific system call to get
the memory size. More importantly, the value that is returned
by a “get physical memory()” system call is usually not the
real amount of physical memory that can be allocated by
an application; the system kernel, services as well as other
processes also take up memory, file-system caches etc. The
benchmark operates by accessing memory until a substantial
delay occurs (determined by a configurable delay threshold).
The process is performed repeatedly and the maximum amount
of memory allocated without incurring swapping is returned.

EPStream is a simple adaptation of the C implementation
of the well-known STREAM memory benchmark [15] so that
it runs simultaneously on a set of CPU’s using MPI. The
STREAM benchmark measures the sustainable local memory
bandwidth (MB/s). It is a simple synthetic benchmark program
and in addition to providing memory bandwidth it also gives an
idea of the corresponding computation rate for simple vector
kernels. The STREAM benchmark measures bandwidth while
performing four operations: copy, scale, sum and triad – a
commonly quoted metric for memory performance. In the case
of SMP machines, such as clusters of dual-CPU or quad-
CPU machines, this benchmark can provide useful information
when run in either of two modes: i) One process per SMP node
(e.g. 1 process on a dual node) and ii) One process per CPU
(e.g. 4 processes on a quad node). This information can be
crucial since the memory bandwidth available may be shared
between more than one CPU’s1. The typical execution time of
EPStream is around 10 seconds.

CacheBench is a benchmark aiming at evaluating the
performance of the local memory hierarchy of a machine
[17]. The benchmark is implemented in C and performs a set
of operations – read, write, read/modify/write, memset() and
memcopy() – varying the underlying array size thus exposing
the performance of the (potentially multi-level) cache. For
example, a knee can be observed at the different cache sizes
when the results are plotted on a graph (see Figure 5(a)).
An instance of CacheBench is invoked on each CPU of the
resource under study and results are reported independently for
each CPU. The operations at each size run for a configurable

1An example of this is that Dual Intel “Xeon” nodes typically have a single
memory controller per SMP machine, while AMD “Opteron” SMP machines
typically have a separate controller for each CPU and can thus achieve a
higher memory bandwidth.

amount of time (default is 2 seconds) and the average band-
width (MB/s) is reported. Typical execution times are under 5
minutes.

MPPTest is a benchmark that tests MPI communication
speeds by various ways and provides a variety of options for
a detailed performance analysis [13]. MPPtest is platform and
MPI-implementation independent and can therefore be used
with any MPI implementation. For the purpose of resource
characterization it is desirable to have a focused set of mea-
surements and to this end, only three types of measurement
are performed: (i) Latency, (ii) point-to-point bandwidth and
(iii) bisection bandwidth. “Bisection bandwidth” refers to
measurement of bandwidth with all processes participating in
contrast to the point-to-point measurement where only two
processes communicate at any time. The typical execution time
is on the order of minutes (depending on the measurement
detail) and results are calculated using wall-clock time. Typical
execution times are under 3 minutes.

The b eff io benchmark is included in order to evaluate the
shared I/O performance of (shared) storage at a resource (site).
This benchmark is used “to achieve a characteristic average
number for the I/O bandwidth achievable with parallel MPI-
I/O applications” [18]. B eff io produces a metric given in
Megabytes per second, which represents the average obtained
by performing several storage access patterns. Access patterns
include: (i)Multiple processes read/write data scattered in a
file; (ii) Multiple processes read/write adjacent data; (iii)
Multiple processes read/write data in separate files; and (iv)
each of the multiple processes accesses data in a different
segment of a segmented file (a detailed description of the
access patterns can be found in [18]). Typical execution times
are under 10 minutes.

IV. EXPERIMENTATION

The experiments described in this section were conducted
on a medium-size testbed [2], [3] with 17 sites and 140
CPU’s. The experiments were conducted wholly within the
GridBench framework and the charts were generated using
the GridBench GUI.

We first looked at CPU performance; we selected a set
from the available resources at the time and invoked the CPU
benchmarks. We did this with a simple drag-and-drop from the
benchmark list onto the the selected resources in the resource
list. Figure IV shows the result of invoking the three CPU
micro-benchmarks EPDhrystone, EPWhetstone and EPFlops
on the set of currently available resources. Quite apparently,
the shape of the graphs is very similar, since all the sites
participating in the testbed under study have pretty much the
same type of processors (Intel PIII/P4). It is also apparent that
results from EPWhetstone and EPFlops are very close. Again
this is expected since Whetstone relied more on floating-point
operations than on integer operations.

Selecting one of the CPU performance metrics for analysis,
Figure 2(a) shows results for the EPWhetstone benchmark,
providing a “view” of the available resources at a point in time,
from a CPU performance perspective. When EPWhetstone is
executed on a Grid resource it returns a set of values, each



5

Fig. 1. CPU performance

(a) EPWhetstone performance

(b) STREAM performance and SMP impact

Fig. 2. EPWhetstone and STREAM performance.

value measuring the CPU performance of a single CPU. When
the resource under study is a cluster, a stacked bar-chart is
generated, where each segment represents the contribution of
a single cluster node. If a number of CPU’s come from the

same SMP worker node, their performance is aggregated and
displayed as a single segment.

The first deduction to be made is that these resources are
operational; all the processes were initiated and completed
successfully and the results returned. A successful benchmark
execution just before staging and running the actual appli-
cation, can verify that the resource is operational from a
hardware and middleware point of view and could indicate
degraded performance of the resource.

It is also evident in Figure 2(a) that the different resources
vary greatly in terms of processing power. They vary both
in terms of the number of CPU’s and in terms of individual
CPU performance. For example, resource zeus24.cyf-kr.edu.pl
has a larger number of CPU’s than xgrid.icm.edu.pl, but the
latter resource has faster CPU’s. (See (1) in Figure 2(a)).
If we focus on resource zeus24.cyf-kr.edu.pl we can observe
that 3 CPU’s (indicated as (2) in Figure 2(a)) appear to
be performing slightly worse than the rest. This could be
attributed to other processes running on the specific cluster
nodes. This could also be attributed to other problems, ranging
from hardware faults to software misconfigurations. It was
in fact determined, by observing the monitoring information
collected during the benchmark execution, that on the three
machines in question there was non-negligible CPU load right
before and immediately after the execution of the benchmark.
For some applications this could be of little importance, but for
some tightly-coupled codes a single slow node could seriously
impact performance. Internal resource uniformity can also be
evaluated. Unevenly sized segments could result from a set of
cluster nodes that are of dissimilar performance (e.g. (3) on
Figure 2(a)) where the resource is known to contain a mixture
of single- and dual-CPU nodes.

Having looked at the CPU performance we then proceeded
to memory performance. Again we parform a simple drag-
and-drop of the EPStream benchmark onto the resources.
Figure 2(b) shows results for the EPStream benchmark,
characterizing the Grid resources from a memory bandwidth
perspective. By comparing Figures 2(a) and 2(b), we observe
that the relative performances of the resources are in fact
different when comparing based on memory performance
rather than on CPU performance. With memory intensive
codes in mind, it would make sense for the user to make
a decision based on memory bandwidth results rather than
on CPU results. It is also notable that the large difference
in CPU performance between resource zeus24.cyf-kr.edu.pl and
resource gtbcg01.ifca.unican.es in Figure 2(a) is much smaller
when comparing memory performance in Figure 2(b). A user
intending to run a memory intensive code could choose to do
so on resource zeus24.cyf-kr.edu.pl since it has good aggregate
memory bandwidth using a smaller number of CPU’s (po-
tentially enjoying a speedup because of lower communication
overhead).

Figure 2(b)-bottom illustrates how memory bandwidth is
shared between processes running on the same dual-CPU
machine. The resource xgrid.icm.edu.pl provides 4 dual Intel PIII
nodes. In this case, memory bandwidth does not scale with the
number of CPU’s, in fact the aggregate memory bandwidth
remains almost the same. This is another factor that could be



6

taken into account when running memory-intensive codes.

Fig. 3. EPMemsize benchmark showing the approximate maximum amount
of memory that could be allocated in physical memory.

In addition to memory bandwidth, the size of main memory
is also important. At this point, in order to illustrate the
functionality, instead of invoking new benchmarks we pulled
archived measurements from the database. Figure 3 shows the
maximum amount of physical memory that could be allocated
on the worker nodes in a set of resources.

Fig. 4. MPI point-to-point messaging 3 100Mbit/s and 1 1000Mbit/s Ethernet
resources.

If the application of interest is a parallel code then it makes
sense to look at the performance of the interconnect; we invoke
the MPPtest. Figure 4 shows the point-to-point communication
performance on four resources. Three of the measurements
coincide since the three sites employ the same network in-
frastructure, i.e. switched 100Mbit/s Ethernet network. The
fourth site has a 1Gbit/s network and performs significantly
better (at least in terms of bandwidth). Nearly identical results
are obtained when measuring bisection bandwidth since none
of the resources had enough nodes to saturate the local
interconnect. Latency and bandwidth can be read on the graph
by considering the zero-size and max-size (16,384) packet-
size measurements respectively. The bandwidth is calculated
at approximately 8.7MB/s for the 100Mbit/s sites and at
approximately 33MB/s for the 1Gbit/s site (33MB/s is possibly
a result of a PCI bus bottleneck).

Deciding that we need more information on memory
performance, we look closer at cache performance. Fig-
ure 5(a) shows the execution of the CacheBench bench-
mark on 4 CPU’s on a resource. The specific metric is the
“read/modify/write” metric giving the memory bandwidth in
MB/s. The effect of the cache is apparent at the drop-off
around 512 KB A user could use this information to tune
application parameters for optimal use of the cache for a
specific resource.

(a) CacheBench benchmark showing the effect of the memory cache on
memory bandwidth

(b) Effective Disk I/O

Fig. 5. Interconnect and memory cache performance.

In terms of disk I/O performance, Figure 5(b) shows the
results of the effective I/O bandwidth measurements on sev-
eral resources. For each execution, 2 CPU’s were used on
2 separate worker nodes. It can be seen that the resource
cluster.ui.sav.sk performs considerably better than the others.
We discovered that while the worker nodes were in fact
connected over a 100Mbit network, the shared storage had
a 1Gbit interface connected to the switch’s 1Gbit uplink.

All charts shown in this article were generated using the
GridBench GUI using data archived (from previous runs) in
its XML database and from newly obtained data. This data
is available for retrieval not only by end users, but also by
automated decision-makers such as schedulers. A scheduler
could use micro-benchmark results to “rank” the resources
based on performance (CPU, memory or MPI). This could
be taken a step further where the ranking depends on a user-
specified function of several micro-benchmarking metrics. So
a user, while “shopping around” for the right resources to
purchase, could assign more weight to memory bandwidth
than to floating-point CPU performance and zero-weight to
interconnect latency, and rank based on these. A scheduler
could periodically evaluate a resource’s “health” by invoking
one of the micro-benchmarks. Since execution times for most
benchmarks are typically less than 10 seconds, this would
impose little additional delay and would potentially save a
scheduler from time-consuming failed submissions.
Application Performance
To illustrate how this information can be used, we selected
three resources from our testbed that support MPI and have



7

at least 4 CPU’s and ran some experiments on application
performance. We used two applications from two distinct
areas of science: Air Pollution Simulation, and Blood-flow
Simulation. For air pollution simulation, we used the VERTLQ
kernel which comes from the STEM-II Eulerian numerical
model that is used for the simulation of air pollutant factors.
We have used the parallel (very tightly-coupled) version of
the code [16]. This code benefits mostly from a fast CPU. For
Blood-flow Simulation, the “bstream” kernel is extracted from
a medical application, developed at the Univ. of Amsterdam,
for pre-operative planning of vascular reconstruction. It is a
tightly-coupled code that involves blood-flow simulation using
a Lattice Boltzmann method in 3-D artery models [19]. This
code benefits mostly from a high memory bandwidth.

(a)

(b)

Fig. 6. Application completion times.

We first invoked a CPU benchmark (EPFlops) and a memory
benchmark (EPStream) onto the resources, the results are
shown in Figure 6(a). In terms of CPU performance zeus
and xgrid appear to be almost identical, while cagnode is
slightly behind. In terms of memory performance zeus clearly
dominates the other two. If we were to pick a resource for
the memory-intensive bstream, we would clearly pick zeus. If
we were to pick a resource for the CPU-intensive vertlq we
would probably pick zeus again, considering the huge memory
performance difference, although xgrid is slightly faster.

To run the applications, we again used the GridBench
tool by integrating the two applications just as with regular
benchmarks. The integration of a new application into the
tool (depending on the complexity of the application) is
quite straight forward and it basically involves specifying a

new GBDL template [23]. Once an application is integrated,
the tool can be used to submit the application as a regular
benchmark and automatically obtain measurements such as
completion-time and staging-time. This process as well as a
more extended analysis can be found in [21].

The results in Figure 6(b) verify the selections we made ear-
lier based on the microbenchmarks. Resource zeus outperforms
in both cases, which was somewhat expected. What is more
interesting that for bstream there is a 45% drop in performance
by going from zeus to cagnode, while for vertlq there is only
a 25% drop. Additionally, if the user was making a selection
based purely on CPU performance then they would’ve picked
xgrid. This would’ve lead to a 9% drop in performance of vertlq
and a 25% drop in performance of bstream. Without the extra
information from the performance exploration, the user could
have easily suffered a considerable drop in performance.

V. PRACTICAL ISSUES

During our experimentation and our effort to characterize a
set of resources, we have come across several issues regarding
the functionality of the infrastructure. The fact that these prob-
lems surfaced, and could therefore be addressed, is another
incentive for running benchmarks. For example, early on in the
experimentation there were issues regarding the execution of
MPI codes. The errors were sometimes reproducible and some-
times not. By running micro-benchmarks it was determined
that some cluster nodes at several Grid sites were inaccessible
(due to outdated OpenSSH keys), yet they were reported
to be available. The administrators were contacted and the
problem resolved. Another configuration issue we met often
was the incorrect spawning of processes. Specifically, more
processes than available CPU’s were spawned on a worker
node, which was easily detected by looking at the results of
CPU micro-benchmarks. A problem that was often met and
is categorized as a “general system issue” is the presence of
run-away processes on several resources. This was detected
by the observation of degraded performance by some micro-
benchmarks.

In many cases the underlying reason for failed benchmark
executions or degraded performance of a benchmark was not
determined, it is important though that many problems were
detected and action could be taken to correct then. Some of
these issues could have been detected by proper monitoring,
but many of them would not surface without using an end-
to-end test (involving most of the hierarchy of employed
middleware) such as a benchmark.

Other issues include some “hidden costs” of running bench-
marks involving multiple worker-nodes. In our experimenta-
tion, the benchmarks were submitted as regular jobs, and while
extra care was taken to have benchmarks that run for very short
times, many queues at the different resources were seriously
affected. The reason for this was that the benchmark job (or,
for that matter, any other parallel job) will hold back other
jobs until enough resources are available for it to execute.
This is a well known problem and it emphasizes the need
for carefully scheduled benchmark executions, possibly using
special permissions and, of course, carefully tuned benchmark
parameters that respect to resource attributes.



8

VI. CONCLUSIONS AND FUTURE WORK

We have presented a concise set of benchmarks for the
characterization of computational Grid resources, in terms of
the performance of CPU, main memory, interconnects and
I/O. We have also presented an adopted set of benchmarks to
deliver those metrics. This small set of lightweight benchmarks
can be run on the Grid resources with little overhead and with
minimal effort by the user. The resulting measurements are
archived and made available via a web-service.

We have also presented a set of results obtained from
our Grid test-bed and described how results such as these
can be useful. These results emphasize the variation of the
performance capacity of Grid resources and the need to
quantitatively assess the performance of each resource.

Low-level performance metrics can be an aid for resource
selection in the users’ effort to “map” application kernels to
appropriate resources.These metrics can be used by sched-
ulers in the resource allocation process, as they can provide
a basis for ranking resources using low-level performance
metrics. Additionally, the execution of a micro-benchmark
on a resource is in itself a validation of the operational
state of the resource, playing an important role in tackling
problems related to resource allocation. An additional use for
the micro-benchmark characterization would be the combina-
tion of these performance measurements with other external
information such as resource pricing. The low-level nature of
the measurements makes no presumptions on the performance
characteristics of any application, so these measurements could
form the basis for a cost-model for charging for the use of
computational resources. Furthermore, users could verify the
“advertised” performance of a resource by running these light-
weight benchmarks. Another example would be the adminis-
trative use of benchmarks to detect problems or faults in the
Grid’s computational resources.

In the future we plan to further investigate the relation
between application performance and micro-benchmark per-
formance in the context of Grid environments. Building on the
work presented in this article, we plan to further investigate the
use of characterization in scheduling and resource allocation
on the Grid, and to investigate the use of micro-benchmarks for
automated evaluation of Grid “resource health” and automated
detection of degraded performance. We are also working in the
direction of automated benchmark parameter selection.

REFERENCES

[1] EGEE: Enabling Grids for eScience in Europe. http://www.eu-egee.org,
(accessed April 2004).

[2] European CrossGrid Project. http://www.crossgrid.org (accessed April
2005).

[3] Interactive European Grid Project Project. http://www.interactive-grid.eu
(accessed June 2006).

[4] Open Science Grid. http://www.opensciencegrid.org, (accessed Sep
2005).

[5] Site Functional Tests (SFT). http://lcg-testzone-reports.web.cern.ch/lcg-
testzone-reports/sftestcases.html, (accessed Apr. 2005).

[6] Al Aburto. flops.c version 2.0. ftp://ftp.nosc.mil/pub/aburto (accessed
Oct. 2004), 1992.

[7] S. Andreozzi et al. GLUE Schema Specification, version
1.2. http://infnforge.cnaf.infn.it/projects/glueinfomodel/ (accessed Apr.
2005).

[8] Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Bench-
mark probes for grid assessment. In 18th International Parallel and
Distributed Processing Symposium (IPDPS 2004), CD-ROM / Abstracts
Proceedings, 26-30 April 2004, Santa Fe, New Mexico, USA. IEEE
Computer Society, 2004.

[9] H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The
Computer Journal, 19(1):43–49, 1976.

[10] R.F Van der Wijngaart and Michael Frumkin. Alu intensive grid
benchmarks. https://forge.gridforum.org/projects/gb-rgs, 2004.

[11] Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf:
an automated distributed performance testing framework. In Proceedings
of the 5th International Workshop on Grid Computing (GRID2004).
IEEE, November 2004.

[12] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
and S. Tuecke. A Directory Service for Configuring High-Performance
Distributed Computations. In Proceedings of the 6th IEEE Symp.
on High-Performance Distributed Computing, pages 365–375. IEEE
Computer Society, 1997.

[13] William Gropp and Ewing L. Lusk. Reproducible measurements of MPI
performance characteristics. In PVM/MPI, pages 11–18, 1999.

[14] Eamonn Kenny, Brian Coghlan, George Tsouloupas, Marios Dikaiakos,
John Walsh, Stephen Childs, David O’Callaghan, and Geoff Quigley.
Heterogeneous grid computing: Issues and early benchmarks. In
International Conference on Computational Science (3), pages 870–874,
2005.

[15] John D. McCalpin. Sustainable Memory Bandwidth in Current High
Performance Computers. Advanced Systems Division Silicon Graphics,
Inc., October 1995.

[16] José Carlos Mouriño, David E. Singh, Marı́a J. Martı́n, J. M. Eiroa, Fran-
cisco F. Rivera, Ramon Doallo, and Javier D. Bruguera. Parallelization
of the stem-ii air quality model. In HPCN Europe, pages 543–546, 2001.

[17] Phillip J. Mucci and Kevin London. The cachebench report, 1998.
[18] Rolf Rabenseifner, Alice E. Koniges, Jean-Pierre Prost, and Richard

Hedges. The parallel effective i/o bandwidth benchmark: b eff io.
Message Passing Interface Developer’s and User’s Conference (MPIDC),
March 2000.

[19] P.M.A. Sloot, A. Tirado-Ramos, A.G. Hoekstra, and M. Bubak. An
interactive grid environment for non-invasive vascular reconstruction.
In 2nd International Workshop on Biomedical Computations on the
Grid (BioGrid’04), in conjunction with Fourth IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid2004), Chicago,
Illinois, USA, April 2004. IEEE.

[20] Shava Smallen, Catherine Olschanowsky, Kate Ericson, Pete Beckman,
and Jennifer M. Schopf. The inca test harness and reporting frame-
work. In SC ’04: Proceedings of the 2004 ACM/IEEE conference on
Supercomputing, page 55, Washington, DC, USA, 2004. IEEE Computer
Society.

[21] A. Tiramo-Ramos, G. Tsouloupas, M. D. Dikaiakos, and P. Sloot. Grid
Resource Selection by Application Benchmarking: a Computational
Haemodynamics Case Study. In Proceedings of the International
Conference on Computational Science 2005. Springer, May 2005. To
appear.

[22] G. Tsouloupas and M. D. Dikaiakos. GridBench: A Tool for Bench-
marking Grids. In Proceedings of the 4th International Workshop on
Grid Computing (Grid2003), pages 60–67. IEEE Computer Society,
November 2003.

[23] George Tsouloupas and Marios D. Dikaiakos. Characterization of
Computational Grid Resources Using Low-level Benchmarks. Technical
Report TR-2004-5, Dept. of Computer Science, University of Cyprus,
December 2004.

[24] George Tsouloupas and Marios D. Dikaiakos. Gridbench: A workbench
for grid benchmarking. In Peter M. A. Sloot, Alfons G. Hoekstra,
Thierry Priol, Alexander Reinefeld, and Marian Bubak, editors, EGC,
volume 3470 of Lecture Notes in Computer Science, pages 211–225.
Springer, 2005.

[25] Reinhold P. Weicker. Dhrystone: a synthetic systems programming
benchmark. Commun. ACM, 27(10):1013–1030, 1984.

[26] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A
Distributed Resource Performance Forecasting Service in Metacomput-
ing. Journal of Future Generation Computer Systems, 15(5-6):757–768,
1999.


