
Towards a Universal Client for Grid Monitoring
Systems: Design and Implementation of the Ovid

Browser
Marios D. Dikaiakos and Artemakis Artemiou and George Tsouloupas

Department of Computer Science
University of Cyprus
1678 Nicosia, Cyprus

Email: {mdd,cs01aa2,georget}@cs.ucy.ac.cy

Abstract— In this paper, we present the design and implemen-
tation of Ovid, a browser for Grid-related information. The key
goal of Ovid is to support the seamless navigation of users in
the Grid information space. Key aspects of Ovid are: (i) A set of
navigational primitives, which are designed to cope with problems
such as network disorientation and information overloading;
(ii) A small set of Ovid views, which present the end-user
with high-level, visual abstractions of Grid information; these
abstractions correspond to simple models that capture essential
aspects of a Grid infrastructure. (iii) Support for embedding and
implementing hyperlinks that connect related entities represented
within different information views; (iv) A plug-in mechanism,
which enables the seamless integration with Ovid of third-party
software that retrieves and displays data from various Grid
information sources, and (v) a modular software design, which
allows the easy integration of different visualization algorithms
that support the graphical representation of large amounts of
Grid-related information in the context of Ovid’s views.

I. INTRODUCTION

Grids are federated distributed computing infrastructures
that support resource sharing and coordinated problem solving
in dynamic, multi-institutional, geographically dispersed Vir-
tual Organizations (VOs) [18], [19]. In these infrastructures,
a variety of middleware monitoring components produce,
collect, maintain, and publish data about the configuration, the
structure, and the state of Grid resources [22], [29]. The col-
lection of all that data constitutes a large, complex, dynamic,
and fragmented information space, which we call the Grid
information space. Seamless access to this space is invaluable
for Grid end-users, application developers, and administrators,
as it can help them gain a better understanding of Grid
configuration, operation, and state, providing useful insights
into properties otherwise obscured by Grid virtualization.

Large Grid infrastructures typically host a plethora of mon-
itoring tools and services. For example, the Monitoring and
Discovery Service [16] provides information about the con-
figuration and availability of hardware resources participating
in Globus-based infrastructures; RGMA [14] and MapCen-
ter [13] monitor the configuration and availability of nodes
that belong to Grid infrastructures compatible with the EDG
middleware [21]; the Network Weather Service [28] provides
estimates of end-to-end network bandwidth and latency, as

well as of CPU load and memory utilization; OCM-G [11]
collects and publishes performance-monitoring information of
instrumented Grid applications that run on top of CrossGrid
middleware [3], [25]; and SCALEA-G [27] combines the pre-
sentation of performance-monitoring information about Grid
resources and applications, which run on top OGSA-based
Grid systems [17].

Therefore, in order to access Grid-related information, Grid
users have to use different types of monitoring client software.
The choice of the monitoring client depends on the type
of information sought, the Grid monitoring system used to
collect that information, and the middleware deployed on the
Grid infrastructure of interest. Different monitoring clients,
however, employ different protocols to retrieve information
from monitoring sources, support different human-computer
interaction paradigms, have customized user-interfaces, and
display information mostly in “raw” formats, such as listings
or tables. Recent Grid monitoring systems export their infor-
mation in HTML, XML, or graphical formats, thus making it
accessible through Web-based front ends [7], [10], [13], [28].
Nevertheless, Web-based presentations of monitoring data are
organized also as collections of listings and tables that provide
only a partial view of a Grid infrastructure, as captured by the
sensors of the corresponding monitoring systems. Thus, the
adoption of the Web browser as a common client-side system
for delivering monitoring information relieves end-users from
the need to employ cumbersome command-line instructions or
special-purpose tools; however, it does not support the view
of a coherent information space, inside which an end-user
can seamlessly navigate and retrieve Grid-related information.
Consequently, discovery and retrieval of information about
the status and configuration of Grid infrastructures remains a
daunting experience and a major obstacle to the Grid’s wider
adoption.

The goal of our work is to design a “universal” monitoring-
client software that will replace the plethora of existing and
emerging monitoring clients, while implementing functional-
ities that will enable Grid users to: (i) retrieve and visualize
information from different monitoring systems; (ii) navigate
seamlessly into the Grid information space, discovering dy-



namically and accessing available Grid information sources;
(iii) maintain a coherent view of the Grid information space by
placing retrieved monitoring information into proper context.
To meet this goal, we designed and implemented Ovid, a
browser for Grid-related information. The design and imple-
mentation of Ovid addresses the following key challenges:

• In contrast to the Web and to traditional hypertext sys-
tems, Grid-information retrieval cannot be accomplished
with a single protocol or function call. Grid information
sources are heterogeneous and comply to different com-
munication and query protocols (LDAP, HTTP, SOAP,
proprietary). Therefore, we need a monitoring-client that
can retrieve information from different sources, using
different protocols on the back-end, while it maintains
the view of a coherent information space on the end-user
side (see Figure 1).

• Grid-related information is not organized in hyper-
text form: information retrieved from Grid information
sources does not contain explicitly encoded links between
related information items. Therefore, the implementation
of navigational functionalities requires the definition and
management of hyperlinks inside the monitoring client.

• The structure and presentation of information retrieved
from Grid information sources is “source-oriented,” in
the sense that it reflects the functionality and data orga-
nization of each particular source. Consequently, in order
to establish the view of a coherent information space,
the monitoring-client has to provide and support a visual
representation of retrieved information that is close to the
user’s perception of the Grid.

In this paper, we present the design and implementation of
Ovid and discuss how Ovid addresses the challenges men-
tioned above. The remaining of the paper is organized as
follows: Section II provides a presentation of the functionality
currently supported by Ovid. Section III describes the software
design of Ovid. Sections IV and V discuss in more detail
how Ovid supports navigation and plug-ins. We conclude in
Section VI.

II. KEY CONCEPTS

A. Overview

Ovid is designed to support end-user navigation inside a
virtual information hyperspace, whose structure is defined by
a model of the Grid architecture. Hyperspace nodes correspond
to entities of the Grid model. Node content is retrieved dynam-
ically from Grid information sources providing metadata about
real resources that correspond to the model entities. Hyperlinks
that connect hyperspace nodes correspond to relations derived
from the model’s structure. Key features of the Ovid browser
are:

• A set of primitives, which are commonly found in Web
browsers and hypertext systems, and have been proven
essential in supporting end-user navigation inside large
information spaces and in coping with problems such
as network disorientation and information overloading:

Fig. 1. The concept of Ovid.

hyperlinks, back and next keys, bookmarking
and history mechanisms, and text-search pan-
els [26]. These primitives help end-users navigate inside
the Grid information space using a simple hypertext-like
interaction paradigm.

• A graphical representation of a Grid infrastructure model
capturing key aspects of Grids. This model is used to
organize internally the information retrieved from various
sources and to help the user establish the mental concept
of a coherent information space. Ovid embeds hyperlinks
in the graphical representation of the Grid model, turning
it into a spatial hypertext map.

• A plug-in mechanism, which enables the dynamic integra-
tion in Ovid of third-party monitoring clients that retrieve
and display data from disparate Grid information sources.

The combination of simple navigation primitives with the
plug-in mechanism and the hypertext-map encoding of the
Grid, hides the complexity of protocols and systems that
are used to retrieve Grid-related information. Furthermore,
the navigation functionality supported by the GUI of Ovid
enables users to maintain a view of the Grid as a unified
information space, where it is relatively easy to locate useful
information through simple navigation and search mechanisms
(see Figure 1).

B. Ovid Views: a graphical representation of a Grid model

Grid infrastructures consist of geographically distributed
Grid Sites, which belong to different administrative domains,
communicate through Internet, and make their resources avail-
able to one or more Virtual Organizations [2], [19]. Typically,
a Grid site comprises a cluster of computing and storage
nodes interconnected through a high-speed local-area network.
Each Grid site also hosts a number of local services, which
manage the site’s membership to a Grid infrastructure by
providing remote access to local resources and information.
The operation of Grid infrastructures is supported by central
services, which publish information about the configuration



Fig. 2. A model of a Grid infrastructure.

and state of resources, handle authentication and security
issues, and facilitate job submission and control.

This view of a Grid infrastructure (depicted in Figure 2),
represents an architectural abstraction of several large Grid
testbeds [1], [2], [3], [4], [5], [6], [25] and is a high-level
model for the Grid. Basic entities of this model are: (i) Ab-
stractions of Grid resources, such as sites, clusters, storage
devices, worker nodes (computing hosts), and network links;
these abstractions are represented as rectangular boxes and
links in Figure 2; (ii) Abstractions for Grid services, which are
represented as oval shaped boxes in Figure 2; services manage
access control to resources and publish information about
resource configuration and status; for instance, Computing
Elements manage access to computational resources of Grid
Sites and Storage Elements act as interfaces to local storage
devices.

The model of Figure 2 captures the basic configuration of
a Grid infrastructure as perceived by its end-users and can
be easily translated into an extensible ontology for Grids,
organizing and placing into context Grid-related information.
It is worth noting that this model reflects in part the structure of
the GLUE Information Model (also known as GLUE Schema),
which is a set of information specifications capturing key
aspects of Grid architecture [8], [9]; GLUE is used as the
data model of choice for the Information Services of several
large testbeds [1], [2], [3], [4], [5], [6], [25].

Ovid presents graphically different aspects of the model
of Figure 2 in order to support end-user navigation inside
the Grid information space and to convey the notion of a
coherent Grid information hyperspace to its end-users. To this
end, the browser displays in its main panel a set of Ovid
Views, which represent an instantiation of the model for some
specific infrastructure of interest. Currently supported Ovid
Views represent graphically the following entities:

• The collection of Grid sites that participate to a selected
Virtual Organization (see Figure 3).

• The collection of resources that belong to individual Grid
sites (see Figure 4).

• The network topology interconnecting these sites (see
Figure 6).

• Simple information derived from Grid Information Ser-
vices about Grid sites, their resources, their status, etc.

Ovid Views are spatial hypertext maps: they store attributes of
the Grid entities they represent, such as identifier (URI), type,
and status; also, they contain statically embedded hyperlinks,
which encode hierarchical containment or reference relation-
ships between the interlinked entities of the Grid model.
Ovid supports also the dynamic installation and invocation of
external hyperlinks through its Views; these hyperlinks point
to information that is retrieved from plug-ins of third-party
monitoring services and placed into proper context.

C. Software design

Ovid’s software is based on the object-oriented Model-
View-Controller (MVC) design paradigm [24]. This paradigm
divides the functionality of an object-oriented application into
three categories: the Model, the View and the Controller.
The Model category contains the data source in which all
data manipulation and processing operations take place. The
View category contains all the “views” derived by the corre-
sponding model. Typically, these views are visual or textual
representations of manipulated data. The Controller category
handles user interaction with the software and transforms user
request into messages, which are sent to the Model in order to
produce the desired view with the requested information. In
our implementation, we adopted the Model-Delegate variation
of MVC, which was introduced by Sun Microsystems in
its Java Swing GUI components [20]. This variation merges
the View and Controller categories into one category named
Delegate.

The use of the Model-Delegate architecture in Ovid is very
important: each Grid information source is managed by a
different Model-Delegate module. Each Model component en-
capsulates the queries that can be issued upon its correspond-
ing information source, speaks the source’s communication
protocol, manages the transactions between the source and the
browser, receives and interprets the source’s output, casting it
into a format tailored to Ovid’s internal data structures.

D. Ovid functionality

Ovid is invoked as a stand-alone client program on a Grid-
user’s workstation; its user interface is similar to that of known
Web browsers and consists of a navigation toolbar, an input
bar for inserting information through the keyboard, and a main
display panel, which is used to display available Ovid Views.

1) Navigation and Search functionality: Ovid provides
several options to facilitate end-user navigation through the
Grid information space. A user can start his navigation by
typing-in the domain name of a central Information Server of
a Virtual Organization at the input-bar of Ovid; this opens the
VO-Sites View to the main display panel (see Figure 3). The



Fig. 3. VO-Sites View: Grid sites of the CrossGrid testbed [3], [25]

Fig. 4. Expanded-Site View.

VO-Sites View represents all the sites (clusters) that belong to
the selected Virtual Organization. This representation displays
each site as a star-shaped collection of resources, with the
Computing Element located at the center of the star, connecting
together its associated Worker Nodes and Storage Elements.
Different colors are used to represent the state of sites and
resources (accessible, free, busy).

The VO-Sites View is a hypertext map to the information
space of the selected VO. For instance, when the user clicks
at the center of a chosen site, Ovid displays that site’s
visual representation expanded in a new panel (see Figure 4).
Furthermore, Ovid implements a “mouse-over” functionality
on top of this expanded view: when a user rolls his mouse
over the visual representation of some resource, a tool-tip
appears providing textual information about attributes of the
actual resource (its name, its local resource manager, etc). The
user can click on the visual representation of the resource in
order to retrieve and display more information about it.

Users can select the Back and Next buttons, to move

back and forth in their navigation history. The History
mechanism allows users to view their recent navigation history
and jump directly to previous navigation steps by clicking
on some history item. Ovid supports also the bookmarking
of Ovid Views: users can select the Bookmarks button to
retrieve a small graphical-dialog window that allows them to
store their current View as a bookmark or to reactivate a stored
Ovid View. Finally, Ovid provides a Refresh button for
retrieving and displaying up-to-date information on the current
Ovid View.

Ovid users can perform keyword-based searching for Grid
resources: by selecting Ovid’s Search button and typing-in a
keyword, users can get a list of all the available resources with
a domain name that matches the given keyword. Selecting an
item from this list brings the corresponding resource’s display
in Ovid’s main panel.

2) Plug-in functionality: An important property of Ovid is
its support for installing and invoking external plug-ins. This
support is provided through the Plug-in Manager of Ovid.
External plug-ins are components that retrieve and display
information from Grid information sources (e.g., monitoring
systems) attached to Grid resources. End-users can use this
manager to discover and activate supported plug-ins, and to
extend the information that can be displayed through Ovid,
dynamically. To this end, users can right-click on a Grid-
resource representation to get a pop-up menu that displays
all information sources attached to those resources, and to
invoke the corresponding plug-ins for retrieving and displaying
monitoring information.

III. SYSTEM DESIGN

The system design of Ovid comprises three main parts: (i) a
set of modules and data-structures that manage the internal
state of Ovid and end-user location inside the virtual Grid
hyperspace; (ii) a set of front-end modules that manage Ovid’s
graphical-user interface and end-user interaction support, and
(iii) a set of back-end modules handling the interaction with
various Grid information sources. The front and back-end
modules are grouped together in model-delegate components.
An overview of the design is presented in Figure 5.

A. Internal state

The Shared Data Structures of Ovid are used to organize
and store information reflecting the structure of the Grid model
described in Figure 2. For instance, information maintained in
the Shared Data Structures represents the sites that comprise
a VO, the resources that belong to a site, the monitoring
services supported by a specific resource, the network topology
of a VO, etc. The modules of Ovid make use of these data
structures to support virtual-navigation in the Grid information
space.

The virtual “location” of a user during his navigation inside
the Grid information hyperspace is represented by a Context
object. This object has the following attributes: (i) the active
Virtual Organization; (ii) the Grid resource that the user
has selected in his last navigation step (a Grid site, node,



Fig. 5. Ovid’s design diagram.

etc); (iii) the type of the selected resource; (iv) the “Model-
Delegate” entity that is active and provides information about
the selected resource, and (v) the user security certificate (if
available). Ovid uses the Context object in order to interpret
end-user input (mouse clicks and keyboard input) properly.
Whenever an end-user interacts with Ovid’s GUI (e.g., to
navigate to a new location), the Context is updated with
information reflecting the user’s new virtual location and the
new state of Ovid.

Changes in the Context are monitored by the History
Engine module, which stores Context objects to the hard
disk in order to maintain a log of successive Contexts. The
History Engine uses this log to support the history-dependent
navigation mechanisms provided with buttons, such as Back
and Next.

The Plug-in Manager provides support for plug-in in-
stallation, removal, and modification. Whenever a plug-in is
installed, the Manager records in the Shared Data Structures
of Ovid configuration information representing the name of
the plug-in, the protocol it uses to retrieve data from its
associated Grid information service, and the types of resources
that support interaction with that plug-in.

B. Front and Back- ends

Ovid’s front-end comprises a User Interface module, which
manages the generic interaction functionality provided by the
browser through its navigation and input toolbars. Navigation
operations are handled by the Navigation Manager and can
be invoked when the user presses the Back, Next, and
Refresh buttons, or types inside the Search input bar and
hits return. Whenever any of these navigation primitives is
activated, the Navigation Manager invokes other modules to
update Ovid’s internal state and display.

The main display panel of the browser is controlled by
Model-Delegate components, which create and manage the

Fig. 6. VO-Topology view.

various Ovid Views. Currently, Ovid incorporates two de-
fault Model-Delegate components: VO-Sites and Network
Topology. Additional components can be invoked dynamically
through the plug-in mechanism described later. The VO-
Sites module consists of the Grid Information Service (GIS)
client Model and the VO View Handler Delegate. The GIS
client queries the information service of a selected Virtual
Organization to retrieve information regarding the sites of that
VO and their properties (names of Computing and Storage
Elements, numbers and names of constituent Worker Nodes,
status information, etc). This information is stored in the
Shared Data Structures of Ovid and used by the VO View
Handler for creating the VO visual representation (see Fig-
ure 3). Besides visualizing the VO structure, the VO View
Handler takes control of the interactions that the end-user has
with the VO View. In order to overcome problems that arise
from network disconnections, the data retrieved from the GIS
client are kept in the cache of Ovid.

The Network Topology module consists of the Topology
Resolver Model and the Topology View Handler Delegate. The
Topology Resolver discovers the underlying network topology
of a selected Virtual Organization. To this end, it uses the
Grid to execute recursive, distributed, pairwise traceroutes
between all sites that belong to the selected VO. Alternatively,
it can retrieve this information from monitoring tools such as
TopoMon [15]. The collected traceroute information is stored
in a traceroute log file kept in Ovid’s cache. This file is used
by the Topology View Handler, which implements a graph-
visualization algorithm to display the VO-Topology view (see
Figure 6), and handles the user interaction with that particular
view.

Other Model-Delegate components can be added dynami-
cally to Ovid as plug-ins. Plug-ins are supported by the Ovid
architecture in order to facilitate the extension of the browser’s
functionality with new features, new views, and new types
of information. In a plug-in component, the Model module
acts as a software client to some Grid monitoring system or
information service, whereas the Delegate module provides
a visual representation of the information retrieved from the



Model and supports end-user interaction. Notably, one Model
can be associated with multiple Delegates to provide for
alternative visual representations and interaction paradigms
with the same information source.

IV. IMPLEMENTATION ISSUES

A. Navigation support

As mentioned earlier, Ovid supports a set of generic nav-
igation primitives commonly found in most Web browsers.
These primitives are chosen in order to help users build and
maintain a mental model of their virtual navigation path in
the Grid information space, thus facilitating the location of
useful information and the avoidance of network disorienta-
tion problems [26]. Access to Ovid’s navigation primitives
is given via Back, Next, Refresh, Stop, History
and Bookmarks buttons, and the input bar where the user can
type-in or paste plain text. All these user-interface entities are
placed at the navigation toolbar of Ovid.

When the Back or Next primitives are invoked, the
Navigation Manager of Ovid exchanges messages with the
History engine to gain access to Ovid’s history file and retrieve
information pointing to the Context that should be restored.
If the context found belongs to an Ovid’s default Model,
the visualization information of the restored context can be
retrieved from the cache. If the restored context belongs to an
external plug-in, Ovid directly passes a call to the context’s
corresponding Model in order to update the active display
panel of Ovid with the visualization information of the restored
Context.

When the Refresh primitive is invoked, the Navigation
Manager reads Ovid’s active state from the Context, asks the
active Model to retrieve fresh data from its associated Grid
information source, and invokes the active Delegate module
to redraw its visual representation of the retrieved data. The
Search primitive is invoked when a user types a search
string at the input bar of the search dialog. In that case, the
Navigation Manager retrieves a list of entities that can be
matched against the given string, and compares them to the
string. The results of this matching are presented to the user. If
the user clicks upon a matched entity, the Navigation Manager
invokes the proper Model-Delegate where the corresponding
resource is registered to, in order to produce a view of that
resource.

The History button invokes the History window, which
provides access to history data maintained by the History
Engine. The History window supports the direct selection
and display of a stored view or the removal of entries from
the history logs. Similarly, the Bookmarks button invokes a
small window that allows the user to store the active state of
Ovid, in order to easily access it in the future.

B. Hyperlinks

The navigation functionality of Ovid is supported by hyper-
links. A hyperlink is a clickable object-geometry embedded
in an Ovid View and associated with a hyperlink resolver.
The resolver is a piece of code that is part of the View’s

Delegate module and is activated by a click on its object-
geometry. Upon activation, the hyperlink resolver determines
the semantics of the click and identifies the Model that needs
to be invoked in its response. To this end, it inspects the current
Context object and retrieves information regarding the selected
resource and its associated Models. Then, the resolver makes a
call to the appropriate Model, passing as argument the current
Context and information about the resource selected with the
click. The Model replies by instructing its Delegate to update
the active View.

In our current implementation, whenever a user clicks on
a Grid resource in the VO-Sites view, the hyperlink resolver
gets from Context the domain name and type of the selected
resource. Then, it makes the appropriate call to the Information
Service Client, which turns the control of Ovid’s main panel
to its View module, providing the corresponding view.

C. Plug-ins

One of the principal advantages of Ovid is that it can retrieve
and display information from a variety of Grid information
sources, without having to “hard-wire” the code that handles
information retrieval and visualization into its implementation.
The concept of plug-ins is central to the achievement of this
characteristic.

An Ovid plug-in is a small, pluggable, Model-Delegate-
based component that implements the ConnectionClass
interface specified inside Ovid. ConncectionClass spec-
ifies methods such as: (i) getMenu; this returns a menu-
list with all the operations supported by the plug-in; (ii) a
listener method, which handles user selection of the plug-
in menu’s choices; (iii) refreshModel, which instructs the
plug-in’s Model module to update the information displayed
by its Delegate module; (iv) handleURISelection, which
takes as a parameter the domain name of a resource
and retrieves information about it from the Model, and
(v) giveSupportedResourceTypes, which returns a
vector containing the resource types supported by the plug-
in.

In the current implementation of Ovid we have implemented
plug-ins for the MapCenter [13] monitoring system (see Fig-
ure 7), which runs on several large testbeds, such as EGEE,
DataGrid and CrossGrid, and for the JIMS monitoring sys-
tem [12], which runs on the CrossGrid testbed. Furthermore,
the VO-Sites and the VO-Topology modules are implemented
as plug-ins, which are integrated by default in Ovid and
support its generic navigational functionality.

The registration and management of plug-ins is handled by
the Plug-in Manager (Figure 5). End-users can interact with
this manager through a small GUI component, which displays
a dialog window providing access to all operations that can
be executed on the plug-ins. If the user selects the “install”
operation, he is presented with a list of available plug-ins.
After selecting a plug-in for installation, the Plug-in Man-
ager updates the configuration information it maintains and
proceeds automatically with the registration of Grid resource
types supported by the plug-in. To this end, it queries the



Fig. 7. Using the MapCenter plug-in.

plug-in to retrieve this information. The GUI displays also a
list with all plug-ins already installed in the browser. The user
can choose a plug-in from the list, in order to update it or
remove it.

V. CONCLUSIONS AND FUTURE WORK

Navigation inside large information spaces is a key chal-
lenge in modern, open, large-scale, distributed systems. This
challenge has been addressed with success in the case of
the World-Wide Web, due to the wide acceptance of Web
browsers as universal systems for navigating the Web and for
viewing Web information. This challenge arises also in the
context of the Grid. The dynamic nature, the heterogeneity,
the scale, and the open architecture of the Grid, make the use
of modeling abstractions for Grid infrastructures an essential
condition for harnessing their power. Such abstractions must
hide the numerous details involved in Grid infrastructures,
while maintaining and providing end-users and administrators
with high-level “views” of important aspects of Grids, such as
the capacity of resources available in a Virtual Organization,
the measured performance of Grid nodes and VOs, the average
network distance and bandwidth between two nodes, and the
network topology linking the nodes of a VO.

To address these challenges, we have designed and devel-
oped Ovid, a tool for modeling Grid infrastructures visually,
and for navigating through these visual representations using
the familiar interaction paradigm of Web browsers. Ovid
has an open and flexible architecture that enables the easy
integration of different visualization models and algorithms.
Furthermore, it supports the easy installation and invocation
of plug-ins, enhancing the visualization of properties derived
from a variety of monitoring systems and Grid services.
Currently, we are extending Ovid by developing plug-ins
for different monitoring systems and generic Web services.
Furthermore, we are investigating the development of better
algorithms for visualizing large-scale Grid infrastructures with
hundreds of Sites and thousands of nodes. Finally, we are
investigating approaches for generalizing the management of
Ovid’s implicit hyperlinks, based on approaches like the ones
described in the Dexter hypermedia model [23].

VI. CONCLUSIONS AND FUTURE WORK

Navigation inside large information spaces is a key chal-
lenge in modern, open, large-scale, distributed systems. This
challenge has been addressed with success in the case of
the World-Wide Web, due to the wide acceptance of Web
browsers as universal systems for navigating the Web and for
viewing Web information. This challenge arises also in the
context of the Grid. The dynamic nature, the heterogeneity,
the scale, and the open architecture of the Grid, make the use
of modeling abstractions for Grid infrastructures an essential
condition for harnessing their power. Such abstractions must
hide the numerous details involved in Grid infrastructures,
while maintaining and providing end-users and administrators
with high-level “views” of important aspects of Grids, such as
the capacity of resources available in a Virtual Organization,
the measured performance of Grid nodes and VOs, the average
network distance and bandwidth between two nodes, and the
network topology linking the nodes of a VO.

To address these challenges, we have designed and devel-
oped Ovid, a tool for modeling Grid infrastructures visually,
and for navigating through these visual representations using
the familiar interaction paradigm of Web browsers. Ovid
has an open and flexible architecture that enables the easy
integration of different visualization models and algorithms.
Furthermore, it supports the easy installation and invocation
of plug-ins, enhancing the visualization of properties derived
from a variety of monitoring systems and Grid services.
Currently, we are extending Ovid by developing plug-ins
for different monitoring systems and generic Web services.
Furthermore, we are investigating the development of better
algorithms for visualizing large-scale Grid infrastructures with
hundreds of Sites and thousands of nodes. Finally, we are
investigating approaches for generalizing the management of
Ovid’s implicit hyperlinks, based on approaches like the ones
described in the Dexter hypermedia model [23].

VII. ACKNOWLEDGMENTS

This work was supported in part by the European Union un-
der the CrossGrid project (contract number IST-2001-32243).

REFERENCES

[1] DataTAG project. http://www.datatag.org (accessed Sept. 2004).
[2] EGEE: Enabling Grids for eScience in Europe. http://www.eu-egee.org,

(accessed April 2004).
[3] European CrossGrid Project. http://www.crossgrid.org (accessed April

2005).
[4] European DataGrid Project. http://www.eu-datagrid.org (accessed Sept.

2004).
[5] iVDGL project. http://www.ivdgl.org (accessed Sept. 2004).
[6] Large Hadron Collider Computing Grid (LCG). http://lcg.web.cern.ch

(accessed Oct. 2004).
[7] S. Andreozzi, N. De Bortoli, S. Fantinel, A. Ghiselli, G. Tortone, and

C. Vistoli. GridICE: A Monitoring Service for the Grid. In Proceedings
of the Third Cracow Grid Workshop, pages 220–226, October 2003.

[8] S. Andreozzi et al. GLUE Schema Specification, version
1.2. http://infnforge.cnaf.infn.it/projects/glueinfomodel/ (accessed Apr.
2005).

[9] S. Andreozzi, M. Sgaravatto, and C. Vistoli. Sharing a conceptual
model of Grid resources and services. In Proceedings of the 2003
Conference for Computing in High Energy and Nuclear Physics, March
2003. http://www.slac.stanford.edu/econf/C0303241/.



[10] M. Baker and G. Smith. GridRM: An Extensible Resource Monitoring
System. In Proceedings of the IEEE International Conference on Cluster
Computing (CLUSTER ’03), pages 207–214. IEEE Computer Society,
December 2003.

[11] B. Balis, M. Bubak, W. Funika, R. Wismuller, M. Radecki, T. Szepie-
niec, T. Arodz, and M. Kurdziel. Grid Environment for on-line appli-
cation monitoring and performance analysis. Scientific Programming,
12(4):239–252, December 2004.

[12] Kazimierz Balos and Krzysztof Zielinski. JIMS - the Uniform Approach
to Grid Infrastructure and Application Monitoring. In 4th Cracow Grid
Workshop 2004, December 2004.

[13] F. Bonnassieux, R. Harakaly, and P. Primet. MapCenter: an Open GRID
Status Visualization Tool. In Proceedings of ISCA 15th International
Conference on parallel and distributed computing systems, September
2002.

[14] A. Cooke, A.J.G. Gray, L. Ma, et al. R-GMA: An Information
Integration System for Grid Monitoring. In On The Move to Meaningful
Internet Systems 2003: CoopIS, DOA, and ODBASE, volume 2888 of
Lecture Notes in Computer Science, pages 462–481. Springer, 2003.

[15] M. den Burger, T. Kielmann, and H.E. Bal. TopoMon: A Monitoring
Tool for Grid Network Topology. In Sloot, Tan, Dongarra, and Hoekstra,
editors, Proceedings of the International Conference on Computational
Science-Part II, volume 2331 of Lecture Notes in Computer Science,
pages 558–567. Springer, 2002.

[16] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith,
and S. Tuecke. A Directory Service for Configuring High-Performance
Distributed Computations. In Proceedings of the 6th IEEE Symp.
on High-Performance Distributed Computing, pages 365–375. IEEE
Computer Society, 1997.

[17] I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, H. Kishimoto,
F. Maciel, A. Savva, F. Siebenlist, R. Subramanian, J. Treadwell, and
J. von Reich. The Open Grid Services Architecture, Version 1.0. Open
Grid Services Architecture Working Group, Global Grid Forum, July
2004. https://forge.gridforum.org/projects/ogsa-wg/.

[18] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The Physiology of
the Grid. An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Open Grid Service Infrastructure WG,
Global Grid Forum, June 2002.

[19] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. International J. Supercomputer
Applications, 15(3):200–222, 2001.

[20] A. Fowler. A Swing Architecture Overview.
The inside Story on JFC Component Design.
http://java.sun.com/products/jfc/tsc/articles/architecture/ (accessed
Nov. 2004).

[21] Fabrizio Gagliardi, Bob Jones, Mario Reale, and Stephen Burke. Euro-
pean DataGrid project: Experiences of deploying a large scale testbed for
E-science applications. Lecture Notes in Computer Science, 2459:480–
499, 2002.

[22] M. Gerndt, R. Wismueller, Z. Balaton, G. Gombas, P. Kacsuk,
Z. Nemeth, N. Podhorszki, H-L. Truong, T. Fahringer, M. Bubak,
E. Laure, and T. Margalef. Performance Tools for the Grid: State of
the Art and Future. APART White Paper. Technical Report Research
Report Series, vol. 30, University of Technology Munich, SHAKER
Verlag, 2004.

[23] Frank G. Halasz and Mayer D. Schwartz. The Dexter Hypertext
Reference Model. Communications of the ACM, 37(2):30–39, 1994.

[24] G. E. Krasner and S. T. Pope. A cookbook for using the model-view-
controller user interface paradigm in Smalltalk-80. Journal of Object
Oriented Programming, 1(3):26–49, August/September 1988.

[25] J. Marco and R. Marco et al. First Prototype of the CrossGrid
Testbed. In F. Rivera, M. Bubak, A. Gomez-Tato, and R. Doallo, editors,
Grid Computing. First European AcrossGrids Conference. Santiago de
Compostella, Spain. February 2003. Revised papers, volume 2970 of
Lecture Notes in Computer Science, pages 67–77. Springer, 2004.

[26] J. Nielsen. Multimedia and Hypertext: The Internet and Beyond. Morgan
Kaufmann, 1995.

[27] H.-L. Truong and T. Fahringer. SCALEA-G: A unified monitoring
and performance analysis system for the grid. Scientific Programming,
12(4):225–238, December 2004.

[28] R. Wolski, L.J. Miller, G. Obertelli, and M. Swany. Performance
information services for computational grids. In Jarek Nabrzyski, editor,
Grid Resource Management, State of the Art and Future Trends, pages
193–213. Kluwer Academic Publishers, 2003.

[29] S. Zanikolas and R. Sakellariou. A Taxonomy of Grid Monitoring
Services. Future Generation Computer Systems, 21(1):163–188, January
2005.


