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Abstract

Intermediaries are software entities, deployed on hosts of the wireline and wireless network, that mediate the inter-

action between clients and servers of the World Wide Web. In this paper we present a survey of intermediaries, focusing

on systems beyond simple caching proxies. We classify different intermediary systems into three categories, based on their

functionality and focus: First, we investigate notification intermediaries, which are driven by end-user profiles and

operate even in the absence of end-user connection. Then, we study intermediaries developed to support wireless con-

nectivity, mobility, and ubiquity. Finally, we examine intermediary infrastructures designed to extend the support of the

core network for the development and deployment of new services. Based on this survey, we propose a detailed taxonomy

of intermediaries and identify key features of emerging intermediary infrastructures. Taking into account recent ad-

vances and trends in wireless and pervasive Internet technologies, we present a number of research challenges, which

need to be addressed in order to integrate intermediary systems in next-generation Internet infrastructures.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Intermediary systems; World Wide Web; Proxy servers; Edge services; Personalized and mobile services
1. Introduction

The World Wide Web has become the prevail-
ing paradigm for information dissemination on

Internet and the main driving force behind the

popularity of Internet services. The design of the

Web was based on the client–server model of dis-

tributed computing, with servers storing data re-

sources (content) and providing clients with data

on-demand via the HTTP protocol. The tremen-

dous success of the Web has resulted in extra-
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ordinary loads upon the Web infrastructure.

Moreover, the wider deployment of wireless con-

nectivity and the emergence of hand-held devices
have created the need to support seamless Web

access from mobile devices and wireless access

networks. To this end, in the current context of

Web use, client–server interaction is often medi-

ated by a variety of software systems, which seek

to enhance the performance, the scalability, and

the ubiquity of the Web: proxies, intermediaries,

mid-point servers, content service networks, etc.
[26,53,55]. In this work, we adopt the general term

‘‘intermediaries’’ to describe such systems collec-

tively. We define intermediaries as software entities

deployed on hosts of the wireline and wireless
ed.
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network, placed in the content path between origin

servers and client systems. Intermediaries intervene

in the client–server interactions that take place at

the application layer of the Internet [15,53,68]; the

content path is the route taken by client requests and

server responses through the network (see Fig. 1).
The purpose of intermediaries is to extend the

functionality and application-performance offered

by the network to its end-users, without violating

the end-to-end principles applied in the design of

the Internet [62]. A typical intermediary operation

involves the modification of client requests or

origin-server responses and the creation of content

in response to on-line or off-line client requests.
The functionality of intermediary systems varies

from message relaying, caching and replicating

content, to performance enhancements and com-

plex transformations, such as load balancing,

protocol adaptation, content filtering, indexing, and

virus scanning. Intermediary systems can also be

classified as ‘‘middleware’’, since they provide a

‘‘reusable and expandable set of services and
functions, commonly needed by many applications

to function well in a networked environment’’ [8].

In this paper, we present a survey of interme-

diaries, focusing on systems beyond simple caching

and replication proxies. We identify and refine a

set of important characteristics of different inter-

mediaries. We classify examined intermediaries

into three different categories of systems, based on
their functionality and focus: First, we investigate

notification intermediaries, which are driven by

end-user profiles and operate even in the absence

of end-user connection. Second, we look at inter-

mediaries developed to support wireless connec-

tivity, mobility, and ubiquity. Finally, we examine

intermediary infrastructures designed to extend the
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Fig. 1. Intermediary operation.
support of the core network for the development

and deployment of new services. Based on this

survey, we propose a detailed taxonomy of inter-

mediaries and identify key features of emerging

intermediary infrastructures. Taking into account

recent advances and trends in wireless and perva-
sive Internet technologies, we present a number of

research challenges, which need to be addressed in

order to integrate intermediary systems in next-

generation Internet infrastructures.

The importance of intermediary systems is

increasing with the emergence of wireless connec-

tivity, of mobile services, and the need to push

dynamic content towards the edges of the network.
In that context, intermediaries will operate as an

overlay infrastructure, that is a virtual network of

connected components layered on the existing IP

network. This overlay network of intermediaries

will enhance the development and deployment of

‘‘next-generation’’ services for the Web, support-

ing personalization, customization, localization,

and ubiquitous access from various terminal de-
vices over different physical media and protocols.

The remaining of this paper is organized as

follows: Section 2 examines approaches to extend

the client–server model of the Web. Section 3

introduces three dimensions that can be used for

the characterization and analysis of intermediaries

providing services beyond HTTP proxying: func-

tionality, system architecture, and interaction
support. Sections 4–6 give an overview of three

different categories of intermediary systems: noti-

fication systems for the World Wide Web, inter-

mediaries for mobile devices and wireless service,

and intermediary infrastructures. In Section 7 we

present a taxonomy of the reviewed intermediary

systems and discuss efforts to establish a common,

reference intermediary architecture. We also pres-
ent open research issues. Finally, we conclude in

Section 8.
2. Extending the client–server model

2.1. Extending the edges

Initial efforts to extend the functionality of the

Web resulted in systems tightly integrated with
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Fig. 2. Client–server model of the Web and early extensions.
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Web clients and origin servers (see Fig. 2). Such

systems do not comply with the definition of
intermediaries given earlier; therefore, their in-

depth study is outside the scope of this paper. We

do provide a brief overview of such systems,

however, in order to discuss their limitations and

to examine how they address problems similar to

those arising in the context of intermediaries.

Early on, Web developers sought to develop

technologies enabling the dynamic adaptation of
browser interfaces to Web-application require-

ments. This resulted in browser environments

supporting the dynamic downloading and inter-

pretation of compiled code and scripts, like Java

Applets and client-side scripts. Hence, service-

providers have been able to improve the flexibility

of Web-service provision by shipping part of a

service’s computation from the origin server to its
clients. Web-client extensions, however, come with

significant costs due to the existence of numerous

client environments that differ in operating sys-

tem, in supported standards, and in available re-

sources.

The success of the Web created the need to

expand its information resources from collections

of merely static Web-pages to dynamic content
produced by software applications, databases,

legacy systems, etc. This need was addressed by

technologies that enabled the use of Web servers as

front-ends to back-end applications; for instance,

with server-side scripting following the CGI stan-

dard, Active Server Pages (ASP) by Microsoft,

Java Server Pages (JSP), Java servlets, and XML
engines [58]. The increase of dynamic content on

the Web, however, raised numerous research
questions related to the high cost of service

development and maintenance, the achievement of

high availability, incremental scalability, and

effective load management. Furthermore, it af-

fected the latency experienced by Web users, be-

cause the creation and serving of dynamic content

requires on the average orders of magnitude more

CPU time than that of static pages of comparable
size [24].

Several projects have addressed the manage-

ment and performance improvement of dynamic-

content provision (see, for instance [25,30,75]). In

the following sections, we examine two projects,

IBM’s Websphere and INRIA’s Weave, which

proposed alternative approaches for specifying

explicitly the assembly of dynamic content from
‘‘raw’’ data, for caching content while dealing with

consistency with back-end databases, and for

separating the concerns of data retrieval, aggre-

gation, and presentation.

2.1.1. Composition of dynamic content out of

fragments

IBM’s Websphere middleware constructs dy-
namic Web-pages from information fragments

extracted from back-end applications and/or da-

tabases [25,30]. This approach is based on the

premise that Web-pages can be decomposed into a

hierarchy of complex, atomic fragments, that is

parts of a Web-page which change together and

reside at the leaves of the hierarchy [25]. Atomic
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fragments can be updated either on-the-fly or via

update propagation mechanisms, and stored in a

software cache until their expiration. Experiments

have shown that the typical overhead of compos-

ing a Web-page from simpler fragments is minor

to the overhead of constructing the whole page
from scratch [25].

This approach has been used in a number of

very popular Web-sites including the 2000 Olym-

pic Games Web. The system works by taking ob-

jects from one or more sources, constructing pages

and writing them to one or more ‘‘sinks’’, which

can be the file systems of local or remote Web

servers. Efficient construction of Web-pages and
consistency with back-end-database updates are

achieved via a persistent object dependence graph

structure and a trigger monitor integrated in the

publishing system [25].

The concept of the object dependence graph is

incorporated in the Accessible Business Rules

framework (ABR) of Websphere [30], which pro-

vides application developers with access to busi-
ness rules. Business rules are implemented as

persistent objects encapsulating code and attri-

butes. The ABR code contains decision points,

which query back-end databases at run-time and

decide which particular business logic (application

code) to invoke. ABRs represent a useful

abstraction for high-level programming of Web-

based applications serving dynamic content.
The performance of content generation, how-

ever, faces significant overhead due to the high

cost of back-end-database connection and query

execution [30]. This problem is addressed by

caching query results (i.e., dynamic content-frag-

ments) in a general-purpose software cache, and

maintaining the consistency of cached data with

the back-end database through update propaga-
tion mechanisms. Furthermore, by making the

middleware servers multi-threaded and replicated

[30].

The ABR framework is organized as a three-tier

architecture. At the middle layer, application

servers provide support for managing business

rules and caching query results. The bottom layer

hosts data and resources (back-end database) and
the top layer deals with presentation of dynamic

content and user interaction.
2.1.2. Weave

A different approach for managing dynamic

content was introduced in the context of the

Weave project of INRIA, which developed a sys-

tem for specifying and generating data-intensive
Web-sites [75]. Weave separated the three key

concerns of Web-site management, which are

interwoven in many systems: (i) Web-site structure

and content specification; (ii) Web-page presenta-

tion and graphical style; and (iii) implementation,

i.e., content-assembly and HTML creation.

Structure and content are specified in the We-

aveL language, which provides a declarative ap-
proach for specifying the mapping between raw

data (captured in databases) and the logical model

of a dynamic Web-site. Each WeaveL program

consists of a set of ‘‘site class’’ specifications. A site

class represents a set of homogeneous pages in a

Web-site and determines the hyperlinks emanating

from its instances (i.e., its Web-pages), the

parameters that identify instances of the class, and
the SQL queries whose results provide all possible

values for the site-class parameters.

A WeaveL program translates into a series of

queries executed on the underlying database and

producing XML fragments, which are subse-

quently translated into HTML; XML to HTML

translation is conducted by XSLT programs rep-

resenting the specification of the Web-site presen-
tation design. WeaveL-program execution is a

data materialization process driven by a declara-

tive specification of runtime and caching policies

described in the WeaveRPL language.

WeaveRPL provides abstractions for specifying

complex runtime policies for database materiali-

zation, such as the timing of materialization, the

storage of materialized intermediate results from
SQL-query execution and XML-fragment genera-

tion, and the policy for database-update propa-

gation. The goal of the WeaveRPL approach is to

enable the reuse of intermediate results through

caching as a means to improve Web-site perfor-

mance [75].

The architecture of Weave is based on a three-

tier design. At the middle tier lies a customizable
cache system, which caches database data, XML

fragments and HTML files. This is connected to

the underlying database, XML and HTML
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repositories on the back-end, and to the Web-

interface on the front-end [75].

2.2. Proxy servers and Web caches

Proxy servers are deployed by network admin-
istrations and Internet service providers (ISPs), in

order to cope with increased Web traffic and to

optimize their resource use. Proxies intermediate

between Web clients and origin servers, filtering or

redirecting HTTP requests to reduce Web-server

loads and improve user-perceived QoS. Web

proxies also operate as Web-traffic caches, storing

relayed responses and serving identical requests
from local storage [20,49,70]. The potential gains

from Web caching are significant: caching popular

documents on a local network reduces the

incoming traffic and the load imposed on origin

Web servers. Furthermore, users experience much

shorter response times when receiving documents

from a nearby cache than from a distant origin

server.
In the complex hierarchy of wide-area and local

networks that connect Web clients to origin serv-

ers, there are several places where proxy servers

can be deployed. For example, ‘‘reverse’’ proxies

are installed near origin Web servers and cache

content served by these servers; their purpose is to

reduce Web-server load. A special case of reverse

proxies are Web or HTTP accelerators, which are
installed ‘‘in front’’ of mirrored Web servers or of

multiple Web servers collocated on the same

cluster and sharing a common file system [24]. An

accelerator receives and distributes requests,

caching replies so that frequently requested pages

are served from the accelerator cache rather than

the Web server. The distribution of requests can be

achieved either at the TCP-router level or with
round-robin DNS servers, which associate a single

domain name to multiple IP hosts on a round-

robin basis. Implementations of Web-server

accelerators run under an embedded operating

system, which reduces the overhead of TCP and

operating-system buffering [50]. Overall perfor-

mance is improved because of the reduction of

direct hits to origin servers and the serving of static
and dynamic content from the streamlined accel-

erator cache. With the exception of reverse proxies
and accelerators, most proxy servers are deployed

at the relays that connect a local network to an

institutional network, a local ISP network to a

regional-provider network, or multiple regional

networks to a national backbone [26,49]. Proxy

servers placed at different points of the Internet
can be configured to work as hierarchical [71] and

co-operative caching infrastructures [73].

More recently, caching infrastructures have

evolved into Content Delivery or Content Distri-

bution Networks (CDNs), that is specially tuned

overlays to the Internet like Akamai’s network [1].

CDNs ‘‘leverage a strategically arranged set of

distributed Web caching, load-balancing and Web-
request redirection systems’’, in order to replicate

content near the network’s edge, to improve ser-

vice availability, and to reduce service latency [66].

A typical CDN comprises a geographically dis-

tributed collection of cooperating edge proxies,

which belong to a single administrative entity. A

CDN organization offers its services to content

providers wishing to improve their availability and
performance. To this end, the CDN caches popu-

lar data objects of affiliated origin servers and

redirects popular-object requests to the proxy

which is closer to the clients issuing the requests.

Several research challenges arise in the context of

large-scale CDNs with hundreds or thousands of

proxies: the selection of the edge proxy to which a

client request is redirected, the efficient replication
of content to CDN proxies, the consistency

maintenance between edge proxies and origin

servers hosting the same data objects, the inter-

operability between CDNs belonging to different

organizations, etc. Several approaches have been

suggested in recent literature to cope with these

issues, including algorithms for redirecting client

requests to nearby edge proxies, CDN topology,
approaches for populating edge caches with con-

tent, and algorithms for addressing the consistency

problem (see, for instance, [9,32,34,56]).
3. Beyond Web proxies

In the following sections, we examine systems
extending the paradigm of typical Web inter-

mediaries. In particular, we focus on efforts to
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enhance Web intermediaries along three main

dimensions (see Fig. 3):

• The functionality provided by an intermediary

beyond proxying and content caching. Func-

tionality can be described in terms of the capa-

bilities, services, and policies which are
supported by the intermediary’s architecture

and which determine its behavior.

• The system architecture of an intermediary,

which describes its composition in terms of indi-

vidual software components, the division of

roles and functions between these components,

their inter-relationships, and their placement

across the network [27].
• The interaction between intermediaries and their

counterparts (intermediaries, client systems, ori-

gin servers). Interaction can be described in

terms of the patterns of communication and

the protocols supported by an intermediary sys-

tem.

Below, we examine the particular features used
to describe and classify different intermediaries.

3.1. Functionality

A number of important intermediary functions

have been identified, besides the relay of messages

and the replication of content in distributed ca-

ches: customization, filtering, annotation, trans-
coding, protocol translation, and content creation

[8,19,43,53]:

• Customization refers to the capability of restruc-

turing the presentation of content according to:
end-user preferences, terminal-device capabili-

ties, the context of use, the physical location

of access, etc. Customization is important for

systems seeking to support ubiquitous and/or

location-based services.

• Filtering refers to the analysis of content re-

trieved from origin servers. The purpose of fil-
tering is to decide whether the retrieved

content matches the semantic interests of end-

users or if it complies with policies for security

and use. Support for filtering is important when

applying intelligent techniques for service per-

sonalization and localization, protection from

viruses and indecent content, etc.

• Annotation refers to the processing of content in
order to provide users with additional informa-

tion and meta-information, such as summaries,

keywords, highlights, ad banners, etc. Annota-

tions can be stored in formats different than

the original content and can be dispatched to

end-users via different communication mecha-

nisms. Support for annotations can be benefi-

cial for reducing the information overload of
end-users and for extending such services to ter-

minal devices with limited capabilities, voice

interfaces, etc.

• Transcoding is the transformation of the content

from one format to another, to make it deliver-

able to terminal devices that support different

formats or to optimize its transportation across

wireless access points and channels of diversi-
fied bandwidth.

• Protocol translation refers to the translation of

application-level traffic from one application-

protocol to another. Protocol translation is of-

ten performed at mobile support stations of
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wireless networks, between protocols optimized

for wireless media and protocols of the wireline

Internet.

• Content creation refers to the generation of con-

tent at intermediaries systems. Usually, the con-
tent created at an intermediary results from

application code off-loaded, cached, and exe-

cuted at the intermediary, in coordination with

one or more origin servers. Alternatively, inter-

mediaries can produce content out of aggre-

gated information fragments, retrieved from

one or more origin servers and/or local interme-

diary caches.

Intermediary operation is authorized by either

the origin server or the client system. Intermedi-

aries that belong to the former category are called

surrogates while those belonging to the later cate-

gory are called delegates [12]. Surrogates act on

behalf of origin servers whereas delegates represent

the choices of end-users.
For the implementation of the functionalities

described above, intermediary entities need to

support the analysis and modification of client re-

quests and server responses, and the generation of

content. Client-request analysis and modification

may be required in order to: (i) annotate request

messages with additional information about the

context of end-user connections, the properties of
the terminals used, and the end-user profiles; (ii) re-

direct requests for load-balancing purposes; and

(iii) translate requests to some other application

protocol. The need to analyze and modify server

responses arises in cases such as the customization,

transcoding, annotation, and filtering of content.

Finally, the generation of content at an interme-

diary site arises when the intermediary is used to
compose new ‘‘value-added’’ services out of content

retrieved from multiple origin servers. Further-

more, when parts of a dynamic-content generation

process are off-loaded to the intermediary in order

to reduce origin application-server load, network

congestion, and network delays to the client.

3.2. System architecture

Intermediaries can be classified either as cen-

tralized or as distributed. Centralized systems are
composed of tightly integrated software modules

deployed at a single host. Distributed intermedi-

aries consist of two or more software entities de-

ployed at multiple hosts and communicating via

message passing, remote procedure calls, distrib-

uted events, or shared memory. Distributed design
can provide important advantages, such as per-

formance scalability, improved robustness, and

availability.

Intermediaries are also characterized by the

deployment and ownership of their entities.

Deployment can be at the front of origin servers,

at hosts deployed in an intranet or the Internet,

and at the client side. Ownership lies with client
devices, ISPs, intermediary service providers,

CDNs, content providers, and enterprise intranets

[68].

Besides the structure and ownership of inter-

mediary components, it is interesting to consider

the complexity of intermediary implementation.

Several intermediaries provide a limited function-

ality, such as protocol reduction and content
transcoding [38,46,65]. Other systems are more

complex and provide support for content caching

and versioning, for collecting resources from

multiple origin servers, and for indexing large sets

of retrieved content [30,35,78].

Finally, a key aspect of intermediary systems is

their support for configurability and programma-

bility. This support is necessary in order to use
intermediaries as programmable overlay networks,

upon which application origin servers off-load

parts of their business logic (application code), and

service providers develop and deploy new services

[13,23,77]. Tuning of an intermediary infrastruc-

ture can be achieved at different levels of abstrac-

tion and flexibility:

• Through configuration parameters, which deter-

mine the exact set of intermediary operations

invoked in a given context. Different configura-

tions can result to the adaptation of services

provided via the intermediary. Configuration

parameters can be either hard-wired into the

intermediary implementation or extracted from

meta-data files encoded in special XML syntax.
• With the employment of generic execution envi-

ronments supporting the dynamic off-loading of
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intermediary entities into the infrastructure.

General-purpose middleware platforms of this

type, such as the Java Virtual Machine, Jini

[69], mobile-agent execution environments [29],

provide APIs, software libraries, and design
patterns for programming new services in an

intermediary context.

• With compositional frameworks providing

components that can be used as building blocks

for defining new services according to a higher-

level programming model.

The capability of tuning the behavior and ser-
vices of intermediaries results in a separation of

deployment from development issues, the re-

duction of programming effort and maintenance

cost. Tuning by configuration, however, does not

usually offer the same scale of flexibility as a pro-

gramming environment or API, unless configura-

tion itself becomes overly complicated.

3.3. Interaction

An important dimension in the classification of

different intermediaries is their interaction with

origin servers and client systems. Different inter-

action approaches can be characterized by the

mode of communication, the access model, the

communication protocols employed, and the sup-
ported media (wireline or wireless).

Typically, two modes of communication are

employed by intermediary systems: synchronous

and asynchronous. Proxy servers and transcoding

intermediaries typically perform their intermedia-

tion activities in a synchronous (on demand)

manner: the intermediary is activated upon receipt

of a user request, interacts with origin servers and
returns a reply synchronously, while the user re-

mains connected to the system. There is also a

significant number of asynchronous intermediar-

ies, which perform operations on behalf of users

on a longer-term basis, or perform complicated

operations on-demand providing users with a re-

sult at a later time.

The access model depends on the part that ini-
tiates an interaction and can be characterized ei-

ther as push-based or pull-based. Interaction on the

Web is pull-based with clients initiating the re-
trieval of content. A number of projects have

investigated the use of push-based approaches,

which involve servers or intermediaries dispatch-

ing content to clients according to various criteria.

Moreover, many intermediaries work as user-

agents, being constantly connected to the fixed
network, collecting and filtering information on

behalf of the end-users.

Most intermediary servers on the Web ‘‘speak’’

the HTTP protocol and connect to Web servers to

download information. Given, however, the exis-

tence of a variety of other information sources on

the Internet (email-lists, newsgroups, Web data-

bases, WML sites), it can be useful for an inter-
mediary system to support other popular

application-level protocols, such as SMTP, IMAP,

NNTP, WAP, and to have an extensible architec-

ture that could easily incorporate new protocols.

The support for a wider variety of protocols is

necessary in intermediary systems seeking to pro-

vide services to mobile clients, which receive

information from the network typically through
protocols streamlined for low-resource devices and

wireless connectivity. Therefore, some intermedi-

aries implement customary protocols for commu-

nication with particular mobile terminals [21],

customize existing application-level protocols

according to the requirements of the wireless

channel [46], or interface with modules that

‘‘speak’’ wireless protocols (such as WAP/GSM,
SMS/GSM) customizing their content accordingly

[39,72].
4. Notification systems

Notification systems are intermediaries that

monitor changes in origin Web servers on behalf
of subscribed users. Whenever an update in the

content of a monitored source is observed, the

notification intermediary evaluates the relevance

of this change with respect to stored user profiles

and can notify interested subscribers accordingly.

Notification systems extend the functionality of

Web proxies, adding support for filtering, anno-

tation and aggregation. In contrast to Web prox-
ies, notification intermediaries are usually driven

by user profiles or long-term queries, executed
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even when the end-user is off-line. Often, it is up to

the notification intermediary to initiate connection

with a client device, through a push model of

information provision with communication pro-

tocols like SMTP or SMS over GSM.

A key issue in the comparison of different
notification systems is their system architecture: its

component structure, scalability, and support for

expressing and processing user profiles. Another

issue of interest is their support for different

application-level protocols of the Internet.

4.1. SIFT

One of the first examples of an intermediary

notification system is SIFT, the Stanford Infor-

mation Filtering Tool (SIFT) [76]. SIFT was de-

signed and developed to provide large-scale

information dissemination services to users that

subscribe their interests to SIFT servers. SIFT

operates as a centralized server comprised of a

profile-database and a tightly integrated dissemi-
nation engine.

At subscription, a user of SIFT provides the

system with an information-retrieval-style profile

and additional parameters that declare the desired

frequency of updates and the expected amount of

information to be received. SIFT employs the

NNTP protocol to collect news articles published

over USENET News. The collected content is in-
dexed and filtered according to profiles registered

in the SIFT database. Based on filtering results,

SIFT produces notifications, which are ‘‘pushed’’

to interested subscribers via email (SMTP).

Extending SIFT to support pull-based infor-

mation provision over HTTP would be a

straightforward task and has been implemented in

many subsequent, commercial systems. Pulling
resources from the Web, however, would require

the addition of mechanisms to deal with old Web-

pages, with different versions of the same Web-

page, etc.

4.2. AIDE

AIDE, the AT&T Internet Difference Engine, is
a notification system for Web resources. AIDE

was designed to archive and handle multiple ver-
sions of changing Web resources [35]. It is com-

prised of a centralized notification server, a version

archive and a difference engine that identifies and

displays changes in Web-page content. These

components are tightly integrated into the AIDE

server.
Subscribers register in AIDE the list of URLs

they wish to track and a few parameters config-

uring the degree of desired notification. AIDE

supports recursive tracking and differencing of

Web-pages and their descendants. Special empha-

sis is placed on the presentation through HTML of

differences between subsequent versions. Alerts

about changes in tracked pages are ‘‘pushed’’ to
users via SMTP; additional access is provided via

the Web and HTTP.

4.3. IBM’s Grand Central Station

The Grand Central Station (GCS) project of

IBM Almaden sought to expand and improve

earlier efforts dealing with Webcasting-service
provision. A result of the project was an interme-

diary system for the Web focusing on the

description and management of user-profiles and

the support of diversified Internet sources [52,64].

The GCS intermediary is a centralized server

which: (i) speaks multiple application-level proto-

cols (HTTP, NNTP, SMTP) and collects content

from different Internet sources (Web, news, email);
(ii) introduces the Grand Central Station Profile

Language (GCSPL), a boolean-structured predi-

cated language for specifying personalized chan-

nels of information; (iii) incorporates an engine to

process user profiles expressed in the GCSPL; and

(iv) disseminates content to subscribers via Web-

casting channels.

The profile engine of GCS merges different user
profiles into a single, boolean-tree representation

with internal nodes corresponding to boolean

operators and leaf-nodes storing the predicates of

different profiles. A number of algorithms have

been proposed for ‘‘resolving’’ this profile and

generating content for personalized channels [52].

Experiments with this approach showed that pro-

file merging into a common boolean-tree repre-
sentation results to effort-duplication avoidance in

the presence of users with similar profiles. This led
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to good performance scalability with increasing

numbers of subscribers.

4.4. FIGI

SIFT, AIDE and the GCS are ‘‘server-based’’
and centralized tools (according to the taxonomy

in [35]) as they rely on tightly integrated compo-

nents running on a central location and not on

users’ machines or nodes of the networking infra-

structure. An approach for building distributed

intermediaries has been explored with the Finan-

cial Information Gathering Infrastructure (FIGI),

which is a notification system that retrieves, ca-
ches, filters, and serves financial data [31].

Similarly to SIFT, FIGI is user-profile driven.

A FIGI-profile is a set of long-term, continuously

evaluated queries, which include typical queries to

Web databases, HTTP requests for World Wide

Web resources, access to general-purpose search

engines or subject cataloging sites, subscription to

Usenet News, etc. Each profile is annotated by the
user with a number of data and control parame-

ters. Data parameters are query arguments (e.g., a

stock symbol of interest), whereas control

parameters determine the frequency of query exe-

cution, the expected amount of information gath-

ered from queries (e.g., summary vs. full results),

the priority of notification for a given query, etc.

The FIGI server is organized as a distributed,
two-tier architecture. The first tier comprises three

servers that receive user input and act upon it: a

login server, an alert server (alerter), and a profile

registry. The login server deals with user authen-

tication and connection management. The alerter

retrieves information pertinent to a user profile

from the FIGI cache and re-directs it to the user

through his personalized Web interface. The pro-
file registry is a server where users can register or

update their interests. The second tier of FIGI

comprises a profile database, the FIGI cache, and

a proxy server. The profile database stores user

profiles. The proxy server scans continuously the

profile database, schedules and issues requests for

information to wide-area network services. The

results of these requests are tagged with informa-
tion denoting the corresponding user-profile and

are stored in the FIGI Cache. FIGI-modules are
developed on top of the Concordia Mobile-Agent

middleware, as stationary or mobile agents [74].

Therefore, the components of the system can be

distributed dynamically to different hosts residing

at different Internet hosts.
5. Intermediaries for mobility and ubiquity

As resource-limited client machines become

more popular, the use of wireless connectivity, the

heterogeneity of client devices, and the capacity

mismatch between clients and servers are expected

to grow [36,72]. To cope with these trends, system
infrastructures for Internet services have to support

ubiquitous service provision over both wireless and

wireline connections on diversified devices and

client systems, in the presence of personal or

physical mobility of end-users. 1 To this end,

infrastructures have to: (a) optimize client–server

communication over the wireless medium; (b)

support both synchronous (on-demand) and
asynchronous modes of interaction with users, thus

coping with frequent disconnections of wireless

connections and user mobility; (c) support seamless

access from a variety devices; (d) customize content

to adapt to different terminal devices; (e) enable the

provision of multiple formats (HTML, WML,

XML) to the same device over the same link; (f)

optimize the amount of useful content that reaches
users through client devices with limited resources

and restricted interfaces, by enabling service per-

sonalization, localization, and filtering of infor-

mation; (g) guarantee high availability and

robustness, as well as incremental performance and

capacity scalability with an expanding user base.

Clearly, these requirements cannot be met by

traditional proxy infrastructures of the World
Wide Web. Earlier projects have addressed the

problem of providing Internet applications over

wireless connections by deploying intermediary

components (‘‘agents’’) on the wireline network
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and/or the mobile host. Such components mediate

between origin servers and mobile terminals, opti-

mizing communication, dealing with disconnec-

tions, etc. To this end, they provide the minimal

functionality required to do protocol translation

between application-level protocols for the wireline
Internet and streamlined versions for wireless.

Nevertheless, to support personalization, con-

tent customization, ubiquity and mobility, proxy

functionality has to be extended over the opti-

mization and management of wireless commu-

nications. This raises the need for increased

computational resources becoming available at the

intermediary’s host in order to maintain its high-
performance operation. A single-component ap-

proach would deploy an enhanced intermediary in

some host residing at the content path from the

server to the mobile client, typically at the mobile

support station. In the context of ad hoc networks

supported by technologies like Bluetooth, how-

ever, it is questionable whether mobile support

stations would have the computing and storage
resources to host such proxies [47].

End-to-end solutions represent a possible

alternative, with origin servers either storing con-

tent in formats compatible with wireless clients or

adapting it on-the-fly according to client-system,

connection, or end-user profiles [47]. Under the

end-to-end approach, however, adapted content or

adaptation software must be inserted at each ori-
gin server. Consequently, updates have to be

propagated to all origin servers whenever new

terminal devices, wireless access protocols, and

content-formats emerge. Furthermore, on-the-fly

adaptation of content can be very time-consuming,

leading to a deterioration of user experience.

One approach for coping with these problems

suggests the deployment of powerful, client-spe-
cific adaptation intermediaries in the network,

acting as delegates for a specific family of terminal

devices; this is the case of the Blazer system by

Handspring [44]. Another approach, followed by

WebExpress [46] and the Web Stream Customizers

[67], suggests the separation of adaptation con-

cerns between multiple cooperating intermediaries.

A third option, implemented in the context of
WAP and Palm services [45,65], is to combine end-

to-end with proxy-based solutions. In the follow-
ing sub-sections we examine proposed solutions

targeting the requirements of wireless access and

resource-poor clients.

5.1. Handspring’s blazer

Blazer is a general-purpose micro-browser

developed for hand-helds running the PalmOS

operating system [44]. The micro-browser supports

text, links, icons, and colors. Communication be-

tween the micro-browser and origin servers goes

through a proprietary, centralized adaptation

intermediary. The Blazer intermediary supports

HTTP and WAP in its interaction with the micro-
browser, depending on the connection established

by the hand-held. On the origin-server side, the

Blazer intermediary speaks HTTP to communicate

with origin servers. If the hand-held is connected

via WAP, the intermediary translates WAP re-

quests into HTTP.

In contrast to Wap gateways and Web clipping

proxies, the Blazer intermediary can transcode
a variety of formats (HTML, WML/HDML,

cHTML) into a Blazer-specific, stripped-down

HTML format accepted by the micro-browser.

Possible adaptations conducted in this process in-

clude the removal of unnecessary or unsupported

tags, the reduction of the size of Web-pages and

images, and the adaptation of Web-page size to the

screen of the hand-held [44].

5.2. Distributed intermediaries for wireless Web

access

IBM’s WebExpress is a characteristic example

of a proxy-based approach seeking to optimize

Web access from resource-poor clients connected

via wireless connections [46]. WebExpress is com-
prised of two intermediary entities (‘‘agents’’): the

server-side intercept (SSI), dispatched on the wir-

eline network, and the client-side intercept (CSI),

residing on the end-user’s mobile device. The two

agents communicate using a stripped-down ver-

sion of the HTTP/1.0 protocol, on top of a TCP/IP

connection established over the wireless link. Both

agents support HTTP header reduction, simple
caching of content, and run a simple differencing

protocol between the client and server-side caches
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to reduce the data exchanged over the low-band-

width, wireless link.

An extension of the WebExpress approach is

proposed in the context of the Web Stream Cust-

omizer (WSC) project [67]. The WSC system cus-

tomizes Web traffic on-the-fly as it flows along the
content path between a client and an origin server.

The goal of the WSC is to support Web access for

resource-limited clients and to cope with wireless

bandwidth fluctuations, disconnections, etc. To

this end, customizers provide redirection of HTTP

traffic, protocol and content adaptation, com-

pression, and content caching.

A customizer comprises two intermediary enti-
ties: a local component (LC), residing at a local

component server, and a remote component (RC),

residing at a remote component server. Each LC

server is dedicated to one client machine and is

deployed inside or near that machine. An LC

server hosts a number of LC entities, with each LC

managing the traffic that flows between its corre-

sponding client and a single origin server. An RC
server is deployed near one or more associated

origin servers; the RC server hosts a number of

RCs customizing the content provided by these

origin servers.

Typically, for every client of the WSC system,

there are more than one customizers active

simultaneously, each being a different (LC, RC)

pair [67]. A customizer operates on requests to and
responses from a specified set of Web sites which

belong to its domain of applicability. The LC server

of a client re-directs any requests for Web-pages

outside that client’s domains of applicability to the

corresponding origin servers.

Customizers are implemented as Java classes,

stored in jar files. Customizer programming is

done with a callback-based programming model
that facilitates the development of new customizer

entities. The selection, download, installation, and

configuration of customizers can be specified by

the end-user through a Web-based interface.

5.3. Wap gateways and Web clippings

Wap gateways and Web clipping proxies are
intermediaries concerned with the translation be-

tween HTTP and wireless application protocols
for WAP-enabled mobile phones and Palm hand-

held devices, respectively. Both systems handle

content encoded in formats optimized for wireless

access, assuming the availability of this kind of

content at the origin servers.

5.3.1. Wap gateways

The Wireless Application Protocol (WAP) is a

layered suite of standards defining how wireless

devices communicate over the wireless network

and providing lower-level optimizations for the

provision of Web access over wireless devices

[37,65]. WAP has been widely adopted for pro-

viding Internet connectivity and mobile Web ser-
vices over cellular GSM and GPRS mobile phones

[36]. WAP-enabled handsets can establish con-

nections to WAP-compliant wireless data infra-

structures, request content from HTTP servers,

and present it to the user via a WAP micro-

browser running on the handset.

One of the layers of WAP corresponds to the

wireless session protocol (WSP), which manages
the establishment of long-term, wireless sessions

between WAP micro-browsers running on mobile

phones and Wap gateways running on the wireline

network. The WAP gateway is an intermedi-

ary installed ‘‘near’’ the local base-station of the

wireless devices it serves [65]. The gateway man-

ages WSP sessions between wireless devices and

the wireline network: it optimizes communication,
provides header caching, supports session

resumption following disconnections, etc. Fur-

thermore, it translates WSP requests received over

the air into HTTP requests sent over the wireline

network, and HTTP replies received from Internet

into WSP packets sent to the wireless device

[65].

WAP carries content encoded in WML (wire-
less markup language) format. Consequently, the

deployment of WAP applications requires either

the full transformation of existing Web applica-

tions from HTML into WML or the translation of

HTML content into WML on-the-fly. This trans-

lation can be conducted by intermediary servers

installed between the WAP gateway and origin

Web servers. Developing intermediaries to trans-
late automatically arbitrary HTML pages into

WML is not an easy task [65]. Moreover, both
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approaches have obvious drawbacks due to cost

and performance considerations.

5.3.2. Web clippings

Web Clipping is an architecture proposed and

implemented by Palm Inc. to support Web content
retrieval from Palm devices connected via wireless

links [45]. To fetch content from a Web-site via

the Web clipping system, a user has to install a

site-specific Web Clipping Application on his hand-

held device. The clipping application works as a

special-purpose, site-specific browser: it provides a

navigation interface to the content of a particular

Web-site, translates user clicks into query mes-
sages, and displays fetched content (the ‘‘clip-

ping’’) on the hand-held screen.

Typically, clippings are small, ‘‘Palm friendly’’,

HTML 3.2 pages generated dynamically by CGI

scripts or application programs, deployed at se-

lected origin servers. An intermediary server in-

stalled at the Palm.Net data center mediates the

interaction between the local base station of the
Web clipping client and that client’s corresponding

origin server. A Palm device encodes its requests

into a proprietary, compressed format (the Palm

query format), and sends them to the intermediary

using UDP. The intermediary translates incoming

requests into HTTP request messages dispatched

to the ‘‘Palm friendly’’, origin server. Upon the

origin server’s reply, the intermediary translates
the HTML 3.2 content into a compressed format

known as Compressed Markup Language (CML),

and wraps it into a compressed Palm Proxy For-

mat (PPF). Subsequently, the intermediary sends

the PPF file back to the clipping application via

the hand-held’s local base station using UDP [45].

The intermediary server provides limited caching

of static HTML resources and takes care of
encryption–decryption using SSL and the HTTPS

protocol.
6. Intermediary infrastructures

Performance scalability problems are growing

with the wide spread of Internet use: popular
portals like Yahoo receive more than half a billion

page-views per day; during major events, popular
Web-site hit rates approach 1 million per minute

[48]. High loads result in poor end-to-end perfor-

mance and low quality of service [18]. Therefore,

service infrastructures will have to accommodate

millions of simultaneous end-users connecting

from a large heterogeneity of end-user devices and
resulting in highly bursty workloads. At the same

time, service infrastructures are required to sustain

a very high throughput of service requests, support

ubiquitous access through different client-termi-

nals, exhibit 24 · 7 availability and robustness, and

be scalable in terms of capacity and performance

[22,54].

These requirements suggest the shift of com-
putation, storage and complexity from centralized

proxies, mobile devices, and mobile base stations

into the networking infrastructure, in order to

achieve performance scalability, better sharing of

resources, higher cost efficiency and a streamlining

of new service provision [21,61]. Such an approach

would result to the deployment throughout the

network of distributed, programmable and possi-
bly mobile intermediary servers, mediating between

primary sources and various client systems.

In this section, we describe a number of systems

seeking to comply with these characteristics. All

systems described offer a limited level of pro-

grammability or configurability by: (i) providing a

number of software components that represent the

building blocks of new intermediary systems; (ii)
giving guidelines on how these components can be

programmed, configured, deployed, and how they

exchange information; and (iii) providing a

framework within which these components can be

executed.

6.1. The TACC model

The BARWAN project at UC/Berkeley devel-

oped a system to support service access from mo-

bile clients that roam across a collection of

heterogeneous wireless networks [21,39]. A key

component of the BARWAN system is an inter-

mediary server that customizes content retrieved

from origin servers before feeding it to heteroge-

neous mobile clients.
The architecture of the BARWAN intermediary

consists of three software layers with different
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roles: The lower layer, scalable network services

(SNS), provides guarantees for high availability,

scalability, and robustness of the intermediary

operation. The middle layer, TACC, provides a

compositional programming model designed to

simplify the creation and deployment of services
by the intermediary. The top layer handles the

actual presentation of data to various client ter-

minals.

The main component of the TACC composi-

tional framework is the worker. Workers are the

building blocks of TACC applications. They are

combined together according to a programming

model that enables chaining (similarly to the
chaining of processes in a Unix pipe) and the

invocation of one worker from another as a sub-

routine or a coroutine. The TACC programming

model provides a set of generic functionalities:

transformation, aggregation, caching and cus-

tomization of content [21,39]. The transformation

functionality deals with various changes done by

the proxy to the content of a single data object,
such as filtering, format conversion, and com-

pression. Aggregation enables the collection of

data from different origin servers and the combi-

nation thereof in a pre-specified way that adds

value to the collected information. Caching pro-

vided by TACC allows for the caching of original

Internet content, transformed data objects,

aggregated information, and intermediate results.
Finally, customization of services according to user

requirements is achieved via the parameterization

of services according to user preferences.

The TACC software is instantiated in the con-

text of TACC servers, which run on clusters of

workstations and provide support for inter-worker

calling and for chaining APIs. Besides a pool of

available TACC-workers, a TACC server hosts a
front-end module for interfacing with client sys-

tems, a customization database storing user pro-

files, a load balancing/fault tolerance manager,

and a system monitor [39].

The TACC infrastructure has been used to de-

velop and deploy services providing Web access in

resource-poor devices [38], combining searching

and browsing facilities [21], providing distributed,
collaborative repository access to digital music

resources [39], etc.
6.2. The Ninja architecture

An evolution of the TACC model was provided

in the context of the Ninja project from UC/

Berkeley [43]. This project developed a robust
infrastructure for Internet-scale systems and ser-

vices in Java. Ninja separates the functionality

required for building and deploying scalable In-

ternet services into four types of components:

bases, active proxies, units, and paths.

A base is the platform upon which Ninja ser-

vices are deployed. It consists of a local cluster, a

software environment, and a cluster-based execu-
tion environment. The software environment is

designed to support high-concurrency, robustness,

and the transparent distribution of data to cluster-

nodes [42]. Furthermore, it provides a program-

ming model that consists of four design patterns:

wrap, pipeline, combine and replicate [43]. Service

programmers can use these patterns to compose

different stages of a single service. The execution
environment of a Ninja base is called vSpace.

vSpace provides facilities for service component

replication, load-balancing, and fault-tolerance

[43].

Active proxies are fine-grain intermediaries

providing transformational support between ser-

vices running on Ninja bases and terminal devices.

Software running in the context of active proxies
performs dynamic service adaptation, data distil-

lation, protocol adaptation, caching, encryption,

etc. Examples of active proxies include wireless

base-stations, network gateways, firewalls, and

caching proxies.

Paths represent an abstraction that facilitates

service composition out of existing service com-

ponents. A path is comprised of a sequence of
intermediary entities: operators and connectors.

Operators process data and connectors pass data

between operators, conducting protocol transla-

tion when necessary. Operators come with a strict

definition of the input they accept and the output

they provide. There are two types of operators in

the Ninja architecture: long-lived and dynamically

created. Long-lived operators are standard Ninja
services deployed at a Ninja base. Dynamically

created operators run in active proxies and

implement the various transformational opera-
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tions required to adapt the data into a format

acceptable by the next service or device along the

path. Ninja-paths can be established dynamically.

Finally, units are abstractions for the client de-

vices attached to the Ninja infrastructure, which

range from PC’s and laptops to mobile devices,
sensors and actuators.

6.3. WBI

A programmable framework for building

intermediary applications is the Web Browser

Intelligence or Web Intermediaries (WBI) by IBM

Almaden [13,14,53]. The design of WBI focuses on
providing a simple approach for assembling com-

plex intermediary systems from simpler compo-

nents. The goal is to enable application developers

to focus on the programming of each individual

component’s functionality, by providing the glue

that will assemble those components together [13].

WBI has been used to develop a number of

applications such as a manager-repository for
cookies and a Web-browsing service for mobile

devices [14].

The WBI approach is based on the notion of

‘‘information streams’’ that convey data from

information providers (e.g., a Web server) to

information consumers (e.g., a Web browser).

WBI components operate on information as it

flows along the information stream, performing
various transformations. WBI building blocks fall

into five basic categories: request editors, genera-

tors, document editors, monitors, and autono-

mous functions [14]: Request editors receive and

modify requests before forwarding them toward

their destination. Generators are abstractions of

information sources that produce documents in

response to requests. Editors receive and modify
responses before passing them down to their des-

tination. Monitors observe transactions without

interfering. Finally, autonomous functions run

independently of information processing transac-

tions and perform background tasks. These blocks

are called collectively MEGs (monitor/editor/gen-

erator) and can be assembled together into WBI

plugins, which are used to construct the data paths
that transform information flowing from origin

servers to users and implement different applica-
tion scenarios. WBI constructs data paths

dynamically, using a rule-based approach that

determines which MEGs must be invoked and in

what sequence.

WBI plugins can be installed both on client

machines and on any other networked machine,
possibly near the origin servers. Multiple client-

side and server-side WBI intermediaries can

cooperate to establish one WBI service. Since WBI

components are programmable, the intermediaries

developed with WBI can support both synchro-

nous and asynchronous interactions and various

application-level communication protocols.

6.4. eRACE

The extensible retrieval, annotation and caching

engine (eRACE) is an infrastructure designed to

support the development of intermediaries that

provide personalized services over a variety of

devices (mobile, thin clients, desktops) [5,33].

eRACE is driven by XML-encoded eRACE pro-

files, maintained within its infrastructure. eRACE

profiles represent the personal interests and service

characteristics of each user, or the structure of a

portal-service built on top of eRACE and made

available to its end-users. Information collected by

eRACE is stored in a software cache for further

processing (filtering, aggregation, etc.), personal-

ized dissemination to subscribed users, and wide-
area dissemination on the wireline or wireless

Internet. eRACE supports ubiquitous service

provision thanks to the decoupling of content

publishing and distribution from information re-

trieval, storage, and filtering. Because of the ex-

plicit management of eRACE profiles, which

comprise service-related information, the infra-

structure can also incorporate mechanisms for
providing subscribed users with differentiated ser-

vice-levels.

eRACE is organized as a two-tier, distributed

architecture. The first tier includes components

that manage services provided to users: the service

manager, content-distribution agents, and personal

information roadmap servlets (PIR). The second

tier of eRACE consists of a number of protocol-
specific agent-proxies, an object cache that stores

multiple versions of retrieved resources, and an
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annotation engine that indexes collected resources,

executes user-queries, and produces user alerts,

encoded in XML. eRACE comprises agent-proxies

like WebRACE, mailRACE, newsRACE and

dbRACE that retrieve and cache information from

the Web, POP3 email-accounts, USENET NNTP-
news, and Web-database queries respectively. The

most important proxy is WebRACE, the agent-

proxy that deals with information sources on the

Web and is accessible through the HTTP protocol

[33]. WebRACE is developed in Java and consists

of a distributed crawler [78], and an object cache.

Other proxies have the same general architecture

with WebRACE, differing only in the implemen-
tation of their protocol-specific proxy engines.

eRACE’s structure supports information pro-

vision according to different access models (pull or

push), protocols (HTTP, SMTP, WAP, GSM/

SMS), and tailored to various client-device capa-

bilities (PC, PDA, mobile phone, thin clients).

6.5. iMobile

Building mobile services from proxy compo-

nents is the main goal of the iMobile project of

AT&T Research [59]. Similarly to WBI, iMobile

provides a framework for assembling and config-

uring intermediary components into new, distrib-

uted intermediary applications. These applications

are executed in the context of iProxy, a program-
mable proxy server designed to host agents and

personalized services developed in Java [60].

Additional programmability is provided by iMo-

bile’s support for user and device profiles. In a

nutshell, the iMobile proxy maintains user and

device profiles, accesses and processes Internet

resources on behalf of the user, keeps track of user

interaction, and performs content transformations
according to device and user profiles.

The architecture of iMobile consists of three

main abstractions: devlets, infolets and applets: A

devlet is an agent-abstraction for supporting the

provision of iMobile services to different types of

mobile devices connected through various access

networks. A devlet-instance communicates with a

device-specific driver that is either co-located in the
iProxy server or resides at a remote mobile support

station. This driver speaks the protocol of the
mobile device’s access network and communicates

with the devlet via TCP, in a scheme similar to the

client–intercept–server model of WebExpress [46].

The devlet sends iMobile-specific commands to the

iMobile server (the ‘‘let engine’’), to invoke an

iMobile applet that represents the implementation
of a particular iMobile service. The server’s output

is encoded in a MIME type appropriate for dev-

let’s terminal device, and is passed back to the

terminal device by the devlet.

The infolet abstraction provides a common way

of expressing the interaction between the iMobile

server and various information sources or infor-

mation spaces (in iMobile terminology) at a level
higher than the HTTP protocol and the URI

specification. Different sources export different

interfaces to the outside world: JDBC and ODBC

for corporate databases, the X10 protocol for

home networks, IMAP for email servers, etc. Fi-

nally, iMobile applets are modules that process

and aggregate content retrieved by different sour-

ces and relay results to various destination devices.
At the core of an iMobile server resides the let

engine, which registers all devlets, infolets and

applets, receives commands from devlets, re-

directs them to the right infolet or applet, trans-

codes the result to an appropriate terminal-device

format and re-directs it to the terminal device via

the proper devlet.

6.6. Intermediaries for dynamic content provision

The emphasis of the intermediary infrastruc-

tures presented above is on providing mechanisms

for the specification and execution of intermediary

tasks that involve the assembly, caching, custom-

ization, presentation, and delivery of content.

These mechanisms, however, have limited appli-
cability when it comes to origin servers that pro-

vide dynamic content extracted and assembled

from back-end databases and application servers,

according to proprietary business rules.

Typically, dynamic content is non-cacheable.

Also, as described earlier, the process of dynamic-

content creation can lead to an overloading of

origin servers and to a deterioration of user-per-
ceived quality of Web-service provision. To cope

with these problems, several projects have pro-
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posed the off-loading of application-server logic

onto intermediary systems deployed throughout

the network [6,10,23,51].

An early example of an intermediary system

that provides application off-loading is the active

cache intermediary [23]. The active cache is a Web
proxy that caches and executes code supplied from

origin servers. To this end, the system employs a

construct called cache applet, that is a server-sup-

plied software component written in Java and at-

tached to a Web resource and a URL. Whenever

the active cache intermediary caches a document,

it also fetches and stores the corresponding cache

applet. When a user-request hits on a cached
document, the intermediary can invoke the asso-

ciated cache applet. The cache applet runs and

determines what the intermediary will send back to

the user: either a new document created on-the-fly

by the applet, or a document cached at the inter-

mediary’s storage, or a new document fetched by

the applet from the origin server.

The active cache intermediary has special pro-
visions for security and resource management in

order to avoid potential problems from malicious

cache applets [23]. In particular, cache applets

implement a Java interface with minimum func-

tionality that allows them to check the availability

of a document in the cache, to read and write a

document, and to communicate with their origin

server. Security restrictions are enforced with the
general security mechanisms of Java, through

static checking of cache-applet bytecodes by the

active proxy, and with monitoring of an applet’s

resource consumption.

Using the active cache, an application server

can off-load part of its processing to intermediary

nodes close to the end-user. The active-cache ap-

proach, however, does not provide any general
abstractions for specifying which parts of a Web

service will be encapsulated into a cache applet,

the cache consistency policies that a cache applet

should follow, or the off-loading of business logic

to more than one cooperating cache applets.

More recent research efforts focus on Web

applications with a three-tier architecture, which

consists of a presentation, a business logic, and a
database tier [77]. Several projects study the off-

loading of different parts of these tiers to the
intermediary infrastructure [10,41,77]. To this end,

they adapt techniques applied previously in the

performance enhancement of dynamic-content

generation at origin Web servers; for example,

through the specification of Web-pages as struc-

tured collections of information fragments. These
fragments are associated with policies for the re-

trieval, caching, and consistency-maintenance of

Web-page content. The assembly of fragments into

dynamic Web-pages and the implementation of

policies regulating the storage of fragment-con-

tents is conducted at the intermediaries. Such an

approach is implemented in commercial systems

like the Websphere Edge Services of IBM [3] and
the EdgeSuite content distribution network of

Akamai [6], which place portions of the presenta-

tion and business logic tiers to intermediary servers

near the network’s edge.

The EdgeSuite network of Akamai is based on

the Edge Side Includes (ESI) specification accepted

by the World Wide Web consortium [2]. The ESI

specification consists of: (i) an XML-based mark-
up language, which is used to specify Web-page

structure and contents; (ii) the content invalidation

specification, which defines the rules used to

invalidate content stored at ESI intermediaries;

(iii) the architecture specification, which provides

directives on the use of HTTP headers for the

control of ESI intermediaries; and (iv) the Java

ESI (JESI) Tag Library Specification, which pro-
vides a Java-based API for manipulating ESI

content. The ESI markup language specifies dy-

namic Web-pages as templates that consist of

hierarchies of fragments [2]. To this end, it pro-

vides tags that specify inclusion of fragments

within other fragments, conditional inclusion,

cache and access profiles of fragments, and reval-

idation rules. The core functionality expected from
ESI-compliant intermediaries comprises the ability

to retrieve and include fragments that make up a

Web page and the processing of rules that specify

conditions under which fragment retrieval and

assembly occur. Also, the access and use of envi-

ronmental variables supported by the CGI and

cookie specifications and the handling of excep-

tions and errors.
The EdgeSuite network consists of ESI-enabled

origin application servers and intermediaries (edge
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servers). EdgeSuite intermediaries act as surrogate

proxies with a functionality that can be configured

via the ESI mechanisms. An EdgeSuite interme-

diary operates as follows: Upon receipt of an end-

user request for some Web-page, the intermediary

fetches and caches the corresponding Web-page
template from its origin server; subsequent re-

quests for the same page that are intercepted by

the intermediary, trigger an interpretation of the

cached template according to its associated

cacheability profile. Communication between

EdgeSuite origin servers and intermediaries uses

an optimized HTTP with persistent connections

and traffic compression. Furthermore, EdgeSuite
implements the content invalidation protocol

provided by ESI, which allows ESI-enabled origin

servers to send invalidation messages and over-

write information replicated in the intermediaries.
7. Taxonomy and open research issues

7.1. A classification of intermediary systems

From the discussion of intermediary systems

presented in previous sections, we can observe that

existing intermediaries lack the necessary seman-

tics, and have limited programming and system

support, to be used as open overlay networks.

Furthermore, they do not provide adequate sup-
port for adaptability and reconfigurability, which

are key requirements in the context of emerging

pervasive Internet systems and telecommunication

technologies beyond 3G [63].

In particular, proxy intermediaries are central-

ized software modules that relay HTTP messages

and cache static Web pages, without processing or

modifying the relayed content. In essence, they
operate as special-purpose systems with a ‘‘hard-

wired’’ functionality that does not provide any

substantial support for reconfiguring or adapting

their operation, for instance through configuration

parameters or programming constructs.

Notification intermediaries are driven by end-

user profiles and operate even when the end-user is

disconnected. They provide support for the
semantic analysis and filtering of relayed content.

Their implementation incorporates algorithms for
information retrieval, personalization, content

ranking, etc. Most notification intermediaries

operate as tightly integrated, centralized servers.

Some systems provide a limited support for a re-

configurable behavior, through configuration

parameters or policy metadata.
Intermediaries for wireless access and mobile

clients typically implement a common set of

functionalities: they operate as gateways between

the HTTP and wireless protocols, they customize

content for resource-limited client devices and

wireless access, and they provide basic support for

disconnected operation of mobile clients. How-

ever, most systems are tailored to the needs of a
particular wireless protocol or of a family of mo-

bile devices. Their implementation relies either on

tightly integrated servers with a complex, pro-

prietary architecture, or on lighter cooperating

agents with a limited functionality. Their design,

provides limited support for adapting to changing

conditions of use, for operating with multiple

wireless protocols, for customizing the content
relayed according to the needs of different terminal

devices, and for sustaining peak loads. Intermedi-

aries for mobility and wireless access are installed

usually under the administrative domain of the

wireless service provider. They do not cooperate

with intermediary entities of other domains in

order to establish overlay networks of service

modules in an open network setting.
Recent research efforts sought to develop

intermediaries with provisions for performance

scalability, high availability, support for dynamic

content, and a programmable functionality. The

long-term goal of these efforts has been to develop

open overlay networks, deploy them on top of the

Internet, and provide infrastructural support for

the implementation of new services. In order to
provide performance scalability and high avail-

ability, intermediary infrastructures have modular

system architectures, comprising components that

can be distributed in a cluster environment or in

wide-area networks. A number of intermediary

infrastructures support some level of dynamic

service adaptability by maintaining and managing

metadata about content structure, user profiles,
policies of use, service characteristics, etc. Addi-

tional programmability is supported with the
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specification of core software components, and of

programming abstractions enabling the composi-

tion thereof into commonly used patterns. The

exact functionality of individual components can

be programmed with a programming language like

Java. In some cases, the choice of compositional
patterns takes place at run-time, based on the

evaluation of rules described in some configuration
Table 1

Key features of intermediary systems

Web

proxies

WAP

gateway

Palm

clippings

AID

Functionality

Customization – – – –

Filtering – – – U

Annotation – – – –

Transcoding – – U –

Protocol translation – U U –

Content creation – – – U

Authorization Client or

server

Client Client Clien

System architecture

Structure Centralized Centralized Centralized Cent

Component

deployment

Network Network Network

and client

Netw

Content caching U U limited U

Crawling support – – – U

Archiving – – – U

Configurability – – U –

Programmability – – – –

Interaction

Wireless support – U U –

Proxy-server

protocol

HTTP HTTP HTTP HTT

Client-proxy

protocol

HTTP WSP UDP and

compressed

messages

HTT

SMT

Access model Pull Pull/push Pull Pull/

Communication

mode

Synchro-

nous

Synchro-

nous

Synchro-

nous

Asyn

nous
language. Finally, communication between inter-

mediary components, clients, and servers relies

upon application-level protocols and does not

allow the definition of messages with richer

semantics.

In the intermediary infrastructures examined
above, the location of components is determined

mainly at deployment time and confined to one
E WBI TACC eRACE EdgeSuite

U U U U

– – U –

U – U U

U U U –

U U – –

U U U U

t Client or

server

Server Client Server

ralized Distributed Distributed Distributed Distributed

ork Network,

client,

server

Network

and server

Network Network

U U U U

– – U –

– – U –

U – U U

U U – –

U U U –

P HTTP HTTP HTTP,

NNTP,

SMTP

Optimized

HTTP

P,

P

HTTP Wireless

protocols

HTTP,

SMTP,

GMS/SMS

HTTP

push Pull/push Pull Pull/push Pull/push

chro- Synchro-

nous, Asyn-

chronous

Synchro-

nous

Asynchro-

nous, Syn-

chronous

Synchro-

nous, Asyn-

chronous
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administrative domain. Possibilities for dynamic

migration, replication, or off-loading of compo-

nents to the network are limited and of a narrow

scope. Components do not encode their interfaces

in some standardized description or publish them

in directories. Therefore, they cannot be located
by third parties searching for service bindings.

Moreover, available programming constructs are

tailored to the scope of each different intermedi-

ary system, rather than being general-purpose.

Most intermediaries studied do not explicitly

manage information and metadata about their

execution status, i.e., request rates, pending

operations, service throughput, available band-
width, response times of origin servers, network

latency, resource utilization, etc. Any descriptions

of profiles, configuration parameters, and com-

ponent-structuring specifications are system-spe-

cific and do not follow common and widely

adopted standards. There is an absence of inter-

faces for exporting services to other intermediary

systems and of primitives for specifying arbitrary
data aggregations and transformations out of

third-party origin servers or service components.

Furthermore, existing intermediaries have limited

interaction with lower layers of the communica-

tion-protocol stack, their underlying operating
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Fig. 4. The communication infrastructure of next-ge
system, and execution environment. Conse-

quently, it is difficult to specify, using program-

ming abstractions, algorithms for the dynamic

adaptation of intermediary behavior to changing

infrastructure conditions.

A summary and classification of the character-
istics of selected intermediaries is presented in

Table 1. The classification is organized along three

dimensions: intermediary functionality, architec-

ture, and interaction with clients and origin serv-

ers. Each dimension is refined further according to

particular features of relevance.

7.2. Research issues

The future of intermediary systems for the Web

is driven by ‘‘next-generation’’ Internet infrastruc-

tures that emerge from the convergence of Internet

with 2.5–4G wireless systems. These infrastructures

entail heterogeneous access networks, network

overlays providing caching and content distribu-

tion, and a variety of client devices (see Fig. 4).
Behind the push towards these infrastructures lies

the vision of providing end-users with any service

through any client, anytime and anywhere. To

meet this vision, we need to establish service-

development frameworks and deployment infra-
WLANs

WPAN

Browser
Terminals

Mobile 
phones

PDAs

PRS

less
s

BluetoothIEEE 802.15

Intermediaries
for Wireless

y
re

neration Internet services (adapted from [57]).



M.D. Dikaiakos / Computer Networks 45 (2004) 421–447 441
structures that [40,55,72]: (i) Enable the production

and/or assembly of new services from existing,

basic services and ‘‘off-the-shelf’’ components. (ii)

Support services that are dynamically adaptable to

personal interests, context, location, terminal de-

vice, access network, and bandwidth. Moreover, to
changing conditions, such as resource-demand and

capacity allocation, deployment of new services or

service components, failures of software and

hardware. (iii) Provide services seamlessly to ter-

minal devices in the presence of low wireless cov-

erage and high mobility, and maintained during

hand-overs even across heterogeneous access net-

works. Many research challenges need to be ad-
dressed in order to develop such infrastructures.

Some of these are described below.

Programmability: Programming constructs of

existing intermediaries do not have the necessary

generality, expressiveness, and power to enhance

the development and maintenance of adaptable,

high-performance, scalable, and open systems.

Therefore, new programming models, languages,
APIs, and generic compositional frameworks are

required for the programmatic description, at a

reasonably high level, of new intermediaries. Such

programmatic descriptions should be amenable to

compilation into executable code, which will be

deployed at execution environments distributed

throughout the intermediary infrastructure (e.g.,

virtual machines). Intermediary components
should also have well-defined interfaces registered

with public registries, to enhance their discovery

and composability, possibly following Web ser-

vices standards like WSDL and UDDI [28]. The

programming of generic components could be

performed using existing programming languages,

such as Java, with calls to service APIs of the

system infrastructure.
Communication support: Interaction between

existing intermediaries, origin servers, and client

systems employs application-level protocols, such

as HTTP, SMTP, WAP, and Java RMI. As we

move towards intermediaries defined out of inter-

acting components in an open, distributed setting,

we need to come up with general mechanisms for

specifying and standardizing richer interaction
semantics between intermediary components, ori-

gin servers, and diverse clients. These semantics
must be independent of the various underlying

communication protocols. The XML-based SOAP

protocol adopted by Web services represents a step

towards this direction, as it supports the definition

of arbitrary message-types carrying messaging or

remote procedure-call information, on top of
existing application-layer protocols (HTTP,

SMTP, etc.) [28].

Adaptability: Dynamic (run-time) adaptation to

changing conditions in the service infrastructure

and the context of use is one of the major chal-

lenges for next-generation Internet infrastructures

[63]. Various issues arise in this context: monitor-

ing the performance of service components and
adapting accordingly the resources used, enabling

the dynamic off-loading of service components to

the infrastructure, moving execution state across

diverse platforms, migrating services within the

infrastructure, dynamic adaptation to different

client devices, etc. [55,63].

Advances in pervasive computing and wireless

Internet will shift the scope of intermediary sys-
tems from adapting and aggregating content re-

trieved from origin servers of the Web, towards

dynamic mediation between service providers and

diverse client devices over wireline and wireless

connections. Consequently, intermediary infra-

structures will be transformed into distributed

environments with capabilities that can be located

and retrieved dynamically according to changing
application needs, to available resources, etc.

These infrastructures will support the discovery of

service components, the dynamic composition of

new services on-demand, and the adaptation to

changing conditions of use, placement, behavior,

resource consumption, etc.

Support from the middleware: To cope with

adaptability requirements, future programming
frameworks for intermediary systems must provide

support for the explicit description and manage-

ment of adaptation conditions, such as user con-

text, resource availability, performance, and

measured QoS. Additional support will be re-

quired at the programmatic level for requesting

resources according to usage needs, authenticating

third parties that request service, using persistent
components that provide standard data man-

agement facilities (caching, indexing, filtering,
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metadata extraction, garbage collection), imple-

menting policies for QoS, security, access, etc. In

summary, future intermediary systems will require

extensive support from emerging middleware

infrastructures. Providing this support is a difficult

challenge as it presumes:

• The capability of the middleware to collect,

manage, and export a variety of information

collected from different layers of the communi-

cation protocol stack [63].

• The standardization of middleware APIs

through which intermediary components can

exchange information with the middleware, lo-
cate service components, retrieve code and data,

etc.

• The integration of key middleware components

with the telecommunication infrastructure at a

wide scale and the deployment of middleware

services and intermediary execution frameworks

to nodes of the infrastructure.

7.3. A general framework for intermediary infra-

structures

Several of the open issues mentioned above can

be addressed in the context of the framework

proposed by the IETF open pluggable edge services

(OPES) working group, which focuses on the

specification of intermediary services in open,
distributed settings [4,7].

The OPES group is introducing a general ref-

erence architecture for distributed intermediary

(edge) services [11]. The basic concepts of this

architecture are: entities, flows, and rules. An

OPES flow is a sequence of message exchanges

between an origin server and a client system at the

application layer of the Internet. An OPES entity

is a process operating on OPES flows. OPES

entities reside in OPES processors deployed at

hosts throughout the Internet [12]. There are two

types of entities: service applications or proxylets

and data dispatchers or OPES engines. A proxylet

encapsulates the transformation logic applied by

an OPES intermediary to messages exchanged

between clients and servers passing through that
intermediary. A data dispatcher is a policy

enforcement point that decides which proxylet to
invoke on a particular flow of messages. To make

decisions about proxylet invocations, data dis-

patchers maintain state information, use applica-

tion-specific knowledge, and evaluate a set of

OPES rules that consist of conditions and related

actions. OPES rules must be encoded according to
a standardized schema expressed in some common

policy language [17]. In some cases, the function-

ality provided by an OPES intermediary can be

implemented outside its application-service enti-

ties, through remote-procedure calls initiated by

the data dispatcher to one or more remote call-out

servers. Communication between the data dis-

patcher and call-out servers must be carried
according to the OPES call-out protocol (OCP),

which specifies the requirements for the commu-

nication protocol between a data dispatcher and a

call-out server [16].

One of the key aspects of the OPES architecture

is to enable the deployment of OPES intermedi-

aries at network hosts that belong to different

administrative domains. Consequently, the OPES
architecture has to address issues such as verifi-

ability, security, authentication, authorization,

and accounting. To ensure the verifiability of

OPES operations, the architecture requires the

support of operation tracing. To this end, each

data dispatcher must support the annotation of

messages exchanged in the context of an OPES

flow with information about the OPES services
operating on that flow. Moreover, the architecture

requires that operations conducted upon a given

flow are explicitly authorized by either the origin

server or the end-user (client system) involved. The

architecture also requires that an OPES interme-

diary is not hidden from the end-user or his client

system. Thus, the IP address of an OPES processor

must be known to and be directly accessible by the
end-users invoking its services. This requirement,

however, does not preclude the chaining of OPES

processors with only the first one in the chain

being exposed to the end-user [11].

The OPES architecture dictates that OPES

entities and call-out servers implement a trust

policy describing which parties are trusted to

operate on data and what security requirements
are required for communication. Trust can be

delegated for various levels of data granularity.
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Delegation starts at either an origin server or a

client system and moves to other entities in a

stepwise manner, creating ‘‘trust domains’’ that

expand across different administrative domains.

OPES processors are required to maintain an ex-

plicit representation of their trust domain and to
report it for tracing purposes.

The OPES working group has also proposed a

reference system architecture for creating OPES

overlay infrastructures on top of the Internet and

for supporting the provisioning of added-value

services [68]. According to this proposal, an OPES

intermediary comprises three basic components:

the data dispatcher (OPES engine), the proxylet

run-time system, and the remote call-out system. A

typical dispatcher must include a message parser, a

rule processor, and rule modules storing applicable

policies.

The proxylet run-time system is the environment

that executes proxylet entities; it also provides a

number of libraries offering core intermediary

functionalities and a mechanism for hosting loa-
dable proxylets. Typical proxylet-library functions

include HTML parsing, crawling, caching, archiv-

ing, logging, etc. In addition to the proxylet library

functions, the OPES system architecture supports

the downloading and installation of proxylets from

remote proxylet providers into a local run-time

system. This process is controlled by an OPES

administration server, which handles security issues
of authentication and sandbox validation of

proxylet codes. Finally, the remote call-out system

is the environment used for invoking services of

remote call-out servers and for handling their re-

sponses.

In summary, a typical operation of an OPES

intermediary entails the invocation of a proxylet

upon an OPES flow; the proxylet may in turn in-
voke a number of functions from the intermedi-

ary’s proxylet-library, from other proxylets of the

intermediary, or from remote call-out servers. The

invocation of a particular proxylet upon some

OPES flow is decided by the intermediary’s OPES

engine, which parses messages of that flow and

evaluates applicable policy rules.

The OPES working group has identified key
issues that need to be addressed in order to

establish an IP-based, open infrastructure for
general-purpose intermediary systems that span

across different administrative domains. In par-

ticular, the OPES architecture:

• Incorporates provisions for the reconfigurabil-

ity of intermediary behavior at run-time, based
on applicable policies expressed in a commonly

accepted metadata format, in combination with

application-specific knowledge and state infor-

mation. Metadata-mediated reconfigurability is

supported by the concept of OPES processors,

which evaluate OPES rules and invoke interme-

diary actions accordingly.

• Supports the dynamic reconfigurability and
adaptability of intermediary functionality

through the downloading of rule sets and code

modules on demand. This is possible thanks

to concepts like the proxylet run-time system,

the OPES administration server, and proxylet

and policy-rule providers. The proxylet run-

time system supports the dynamic installation

and execution of proxylet modules retrieved
from local storage or from the network. The

OPES administration server provides the func-

tionality required to cope with security issues

when retrieving code and rules from remote pro-

viders.

• Supports the availability of core intermediary

services through the provision of proxylet li-

braries installed on each OPES intermediary
and being accessible to the proxylet source code

through API calls.

• Offers provisions for off-loading complex func-

tionality to remote call-out servers. The imple-

mentation of a remote call-out system in each

OPES intermediary facilitates the integration

of remote functionality in the proxylet program-

ming model. Furthermore, call-out functionality
enables the deployment of notification interme-

diaries in the context of an OPES-compliant

infrastructure.

• Incorporates provisions for mechanisms that

manage trust and security in intermediary archi-

tectures and ensure end-to-end data integrity

and end-user privacy protection.

• Enables the use of higher-level communication
protocols (like OCP and SOAP), which support

richer message semantics than HTTP.
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Evidently, the implementation and deployment

of OPES-compliant overlay infrastructures is a

challenging endeavor. Many research questions

have to be addressed in this context, such as: the

naming and discovery of available service entities;

the design of programming models for the com-
position of new services specified at a high level of

programming abstraction; the provision of high-

availability and incremental scalability through

mechanisms for network-scale resource and QoS

management that integrate monitoring informa-

tion from different layers of the software and

communication protocol stack with knowledge

about applicable policies for resource-use and
QoS. Also, the creation and management of dy-

namic, virtual organizations involving cooperating

intermediary entities that belong to different

administrative domains.
8. Conclusions

The tremendous success of the Web, the

explosion of information available on Internet,

and the emergence of mobile and thin clients have

rendered the archetypal client–server model of the

Web obsolete. Nowadays, numerous intermediar-

ies intervene between origin servers and client

systems, as information flows from one end to the

other during a simple Web interaction. The com-
mon goal of intermediaries is to improve the

quality of end-user’s Web experience by improving

the performance of Web requests, by coping with

information overloading, and by supporting

seamless access to Web services via different ter-

minal devices and physical connections. Interme-

diary intervention ranges from very simple chores,

like relaying requests and replies and trans coding
content-formats, to more complicated tasks such

as caching, filtering, personalization, and crawling.

Intermediaries represent a useful abstraction for

designing, developing, analyzing and comparing

emerging system infrastructures for ‘‘next-genera-

tion’’ Web services.

In this paper we presented an overview of a

wide range of systems that can be described as
intermediaries, classifying them in a number of

broad categories according to their basic func-
tionality: Web proxies, notification systems, wire-

less-Web proxies, infrastructural intermediaries.

We examined the requirements arising from the

need to support personalization, mobility, and

ubiquity under high loads. We identified and re-

fined a set of important properties and character-
istics, which can be used for: (i) the classification of

existing systems and the analysis of their capabil-

ities; (ii) the comparative study of different sys-

tems; (iii) the design of new intermediary systems.

Based on this set of properties, we introduced a

detailed taxonomy of characteristic intermediary

systems (Table 1), identifying and investigating

important features.
From this taxonomy, it becomes evident that

more recent systems typically consist of distributed

software modules, which support a wider variety

of client devices and protocols. Furthermore, that

emerging intermediary systems have infrastruc-

tural characteristics as they provide abstractions

and modules for the development and deployment

of new applications and services. Nevertheless,
many open challenges have to be addressed in

order to make intermediary functionalities seam-

lessly available, easily programmable and adjust-

able to the needs of service providers and end users

of next-generation Internet infrastructures. These

challenges arise from the need to make interme-

diary systems more open, flexible and fully inte-

grated with the adaptable and reconfigurable
networks of the future.
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