
A Comparison of Techniques used for Mapping Parallel Algorithms
to Message-Passing Multiprocessors

Marios D. Dikaiakos
Departments of Astronomy and Computer Science-Engineering

University of Washington

Kenneth Steiglitz Anne Rogers
Department of Computer Science, Princeton University

Abstract
This paper presents a comparison study of popular cluster-

ing and mapping heuristics which are used to map task-flow
graphs to message-passing multiprocessors. To this end, we
use task-graphs which are representative of important scien-
tific algorithms running on data-sets of practical interest. The
annotation which assigns weights to nodes and edges of the
task-graphs is realistic It reflects current trends in processor,
communication channel, and message-passing interface technol-
ogy and takes into consideration hardware characteristics of
state-of-the-art multiprocessors. Our experiments show that
applying realistic models for task-graph annotation Bffects the
effectivmess and functionality of clustering and mapping tech-
niques. Therefore, new heuristics are necessary that will take
into account more practical models of communication costs. We
present modifications to existing clustering and mapping algo-
rithms which improve their efficiency and running-time for the
practical models adopted

1 Introduction
In this paper we present a comparison study of

popular clustering and mapping heuristics which are
used to map task-flow graphs to message-passing mul-
tiprocessors. To this end, we use task-graphs which
are representative of two important algorithms for
the N-Body problem, running on data-sets of prac-
tical interest. The annotation which assigns weights
to the nodes and the edges of the task-graphs is real-
istic. It reflects current trends in processor, commu-
nication channel, and message-passing interface tech-
nology and takes into consideration hardware char-
acteristics of state-of-the-art multiprocessors. Our
experiments show that applying realistic models for
task-graph annotation affects the effectiveness and
functionality of clustering and mapping techniques.
Therefore, new heuristics are necessary that will take
into account more practical models of communication
costs. We present modifications to existing cluster-
ing and mapping algorithms which improve their ef-
ficiency and running-time with the practical models
adopted.

Task-graphs are derived with FAST, a software
system that we built to evaluate the execution of
parallel scientific algorithms on message-passing sys-

tems [5, 81. These graphs are a special case of the
data dependence graphs (DDG’s) that are used fre-
quently as abstract representations of parallel pro-
grams [lo, 17, 20, 22, 19, 181.. The nodes of DDG’s
correspond to single program instructions or sets of
instructions, depending on the DDG-granularity de-
sired. Their arcs correspond to dependences, which
enforce a partial order of execution on program state-
ments.

A key issue that arises in systems employing data
dependence graphs is the execution of these graphs
on the processors of a parallel computer. There are
many approaches for addressing this problem, most of
which can be classified as static or dynamic. Static
schemes apply in systems where the DDG’s can be
constructed before program execution. In that case,
the user-program or the compiler can take advantage
of information pertinent to the DDG for making deci-
sions that will guide the assignment of graph-nodes to
different processors, and the scheduling of tasks within
each processor [l, 221. I t is not always possible, how-
ever, to create the DDG’s before the program execu-
tion. In that case, execution of DDG’s is accomplished
with dynamic schemes that are enforced through the
operating system or the hardware.

In this paper we examine algorithms used in static
schemes. Such algorithms assume for simplicity that
the processors of a parallel system form a clique inter-
connection topology (fully-connected network). Map-
ping is usually accomplished in two phases [lo , 20, 191:

1. The clusterzng or znternalrzatzon phase, seeks to
minimize communication overhead and improve
parallel time by deciding that certain tasks must
go together on the same processor, even if other
processors are available.

2. The mappang or processor asszgnment phase,
maps the groups of tasks formed by the clustering
phase to the processors of the parallel architecture
at hand. At the same time, it seeks to preserve a
small parallel time.

In conjunction with clustering and mapping, it is nec-
essary to perform schedulzng of tasks that are assigned
to the same cluster.

0-8186-6427-4/94 $04.00 0 1994 IEEE
434

The organization of this paper is as follows: in the
next section we give the graph-theoretical framework
that we use to implement and evaluate clustering and
mapping heuristics. In Sections 3 and 4 we describe
the clustering and mapping heuristics studied and sug-
gest modifications that will improve their effective-
ness and performance, given the practical annotation
model adopted. Section 5 presents simulation results
and comparison-studies, and Section 6 gives our con-
clusions.

2 Modeling parallel executions
The task-graphs used in our study are called

parallel-execution graphs and follow the Macro-
Dataflow model of computation [19]. In this model,
each task starts executing upon receipt of all incom-
ing messages and continues to completion without in-
terruption. Upon completion, it forwards its results
to adjacent tasks. Each node in a parallel-execution
graph is assigned the computation time of the corre-
sponding task and each edge is assigned the latency of
the respective message. A parallel-execution graph is
an abstraction of the parallel execution, which enables
us to estimate parallel time and available parallelism
easily, and study the mapping of the parallel compu-
tation onto some realistic message-passing multipro-
cessor. Parallel-execution graphs are formally defined
as follows:

where:

1. V is the set of tasks.

2 . Epe = E U Esch is the set of edges. Edges
in E correspond to explicit messages, and rep-
resent program-determined dependences between
tasks. EdCh is a set of edges introduced in the
graph to define the order of execution among
tasks mapped on the same processor and with no
program-determined dependences between them.

3. proc: A mapping from the set of task nodes V to
the set of processors P : V v E V, proc(v) gives
the processor in P that executes task v.

4. T (v) , v E V is the time it takes processor proc(w)
to perform v’s computations.

5 . D (e) , e = (u , v) E E is the weight assigned to
edge e. D(e) denotes the time-interval between
the time that task U finishes its execution and
the time that task v gains access to the data car-
ried by edge e. If U and v are mapped onto dif-
ferent processors, D (e) is equivalent to the inter-
val between the time when proc(u) has finished
executing task U , and the time when message e
has been loaded into the buffers of the destina-
tion processor’s proc(v) network interface. For a
single-hop message, it is: D (e) = Ide,ay(e) +
S o v (e) + W (e) / B + L n g e s t i o n (e) + Ro,(e) where:
tde loy(e) is the delay between the time the send-
ing processor issues the Send instruction initiat-
ing message e , and the time that this processor

U

U

L, :

.I:

m

I:

m:

r u u . D u I I p I :

Y Y i

Figure 1: Blocking vs. Non-blocking Send’s.

starts loading the message body to the buffers of
its network interface. Sou(e) is the time it takes
the sending processor to load its network inter-
face’s output buffers with the contents of mes-
sage e and with control information (setup cost).

e) is the number of bytes carried by message wL 5 , is the bandwidth of the communication links
(in bytes per second), t c o n g e a ~ i o n (~ is the time e
spends waiting in busy queues o the intercon-
nection network, and Ro,(e) is the time it takes
a message to be loaded in the input buffers of
the receiving processor’s network interface. Ad-
ditionally, we use 6(e) to denote the time it takes
the message to propagate through the communi-
cation channels and then to be loaded into the
input buffers of its destination’s network inter-
face. For one-hop messages this is equal to :
W (e) / B + t eonges t ion(e) + %,(e).

On the parallel-execution graph we can now define the
Parallel Time as the weight of its critical path, i.e,
of the path with the largest sum of node and edge
weights.

Message-Passing Interface Primitives
Point-to-point communications in parallel systems

are implemented with Send and Receive primitives is-
sued by parallel tasks. These primitives can be charac-
terized as blockin or non-blocking, and as synchronous
or asynchronous [4]. Such characterizations determine
the point in time when a communication primitive re-
turns control to the task that called it. Also, they
define the semantics of communication, and affect its
performance. In the Macro-Dataflow model of com-
putation edges in E represent pairs of Send and Re-
ceive primitives. Send’s can be either blocking or
non-blocking, and synchronous or asynchronous. Re-
ceive’s must be blocking because of the definition of
Macro-Dataflow. According to the non-blocking com-
munication paradigm, messages are dispatched simul-
taneously at the end of the execution of a task. In

435

Figure 2: Scheduling edges. The bold arrows denote
the sequential paths of execution in the clusters.

contrast , according to the blocking paradigm, mes-
sages are transmitted serially from tasks with no over-
lap between the loading of a buffer and the subse-
quent message-dispatches or computation (see Figure
1) . Therefore, the choice of message-passing interface
primitive affects the annotation of task-graph edges
and, hence, the clustering and mapping steps taken.

3 Clustering
Clustering specifies the sequential units of compu-

tation in a parallel program by mapping tasks to clus-
ters. A cluster is a set of tasks that execute sequen-
tially on the same processor. The principle goal of
clustering is to achieve the minimum parallel time for
a given task graph on a clique architecture, with as
many processors as tasks (“abundant” clique). If com-
munication overhead were zero, the trivial solution to
clustering would assign each task to a different pro-
cessor of an “abundant” clique. In the realistic case,
however, a parallel execution that assigns every node
of a task-graph to a different processor of an “abun-
dant” clique might not achieve minimum completion
time because of communication delays and overhead.

Formally, clustering is the problem of partition-
ing the nodes of a parallel-execution graph G,, into
clusters, and deriving the clustered parallel-execution
graph with the shortest parallel time among all pos-
sible clustered graphs GSe mapped on “abundant”
cliques. I t has been proven that finding the optimal
clustering of a directed acyclic graph that follows the
MacreDataflow model of computation is NP-hard in
the strong sense, if the cost function is the minimiza-
tion of parallel time of the graph on an “abundant”
clique architecture [19]. A number of heuristics have
been developed to cope with the clustering problem
[9, 14, 19, 211.

Clustering heuristics applied to G,, .will update its
proc information to reflect the formation of clusters.
If, for instance, nodes U and v are clustered within the
same cluster L , then proc(u) = proc(v) = L . Fur-
thermore, clustering alters E , the set of edges of Gpe,
by introducing new “scheduling” edges that express
the scheduling priorities among nodes belonging to
the same cluster. For example, in Figure 2, cluster
L merges with node D. If task D is scheduled to run
after task A and before task B , the edges (A , 0) and
(D , B) are inserted in the clustered graph to determine

Figure 3: Edge weights (blocking Send’s) .

the new schedule.
Finally, clustering heuristics change the weights as-

signed to the edges of GPe. For example, we consider
a node U E V that sends n + 1 messages to nodes w1,
wz,. . . ,wk, v, wk+l,. . . , w,, in that order (see Figure
3). Assume that proc(wi) # p r o c (w j) # proc(u) #
p r o c (v) , V i # j . If the clustering heuristic assigns
nodes U and v to the same cluster, the weights of the
outgoing edges U, wl),. . . , (U , wk) of U will remain the
same. The weig 6 t of (U , TI) will be changed from:

to:
n

see Figure 3). The weights of edges

D C (U , W i) = D (U , W j) - So , (U ,TI) , i = I C + 1 , . . . , n .

These formulas correspond to the case where the
message-passing interface of the “abundant” clique
provides a blocking Send communication primitive.
Most clustering heuristics, however, have been de-
signed with the assumption that , after clustering,
D‘(u,v) will be equal to zero and D “ (u , w ~) will be
the same as D(u, wj).

4 Clustering Heuristics
The clustering heuristics examined here perform

a number of refinement steps on the input parallel-
execution graph. Each step performs a refinement on
the output of the previous clustering step by merg-
ing two clusters, and scheduling their tasks within the
newly formed clusters. In the initial parallel-execution

[U, wk+l),. . . , (U , w,) will be reduced to

436

graph, each task-node is a cluster by itself. The heuris-
tics complete and report a final clustering when an
end-condition is satisfied.

We focus on edge-zeroing heuristics with no back-
tracking. These algorithms proceed by merging con-
nected nodes of the parallel-execution graph. Assign-
ing two connected nodes to the same cluster eliminates
the message that corresponds to the edge connecting
them. After clustering, the message will be carried out
through local memory Write’s and Read’s at the mem-
ory of the processor that executes the cluster. There
is no backtracking, that is, once a cluster has been
formed at one step of the heuristic, it cannot be split
at a later step.

Various algorithms belonging to this class of c lus
tering methods can be characterized with respect to:

1. The method for choosing which edge to eliminate.

2. The end-condition of the heuristic.

3. The scheduling heuristic employed when merging
two clusters into a sequential thread of execution.

The choice of scheduling heuristic is orthogonal to the
method for zeroing edges and to the end-condition.
Here we give concise presentations of a number of clus-
tering heuristics. A comprehensive discussion on clus-
tering can be found in [ll].
4.1 Sarkar’s Clustering Algorithm

graph in a number of steps described below [19]:
Sarkar’s heuristic clusters a parallel-execution

1. Sort the edges e E E of the graph in descending
order of their weights D (e) .

2. Merge the two clusters that include the head and
tail node of the edge with the greatest weight, if
this change does not increase parallel time.

3. Repeat step 2 until all edges are scanned

It is not difficult to see that the complexity of
Sarkar’s heuristic is O(lEl . (IVl + IEl). This re-

Therefore, we also implemented a variation of Sarkar’s
method that sorts the edges in descending order of
their weights and examines only a percentage of them,
starting from the one with the largest weight.
4.2 Kim and Browne’s Algorithm

proach to clustering [14]:

sults in very high execution times for 1 arge graphs.

Kim and Browne’s method takes a different ap-

1.

2.

Mark all edges in the parallel-execution graph as
unexamined.

Find the critical path in the graph com-
posed of unexamined edges only. This is
the path with the longest cumulative weight
in the graph. The cumulative weight of a
path (u1 2121, (212, w), . . . (~n -1 , un) is equal to

(T (u i) + D(Ui u i + l)) + T(un).

3.

4.

Merge in the same cluster the nodes belonging to
the critical path and mark all edges incident to
nodes of the critical path as examined.

Apply steps 2 and 3 to the subgraphs formed by
nodes and unexamined edges, until all edges are
examined.

The complexity of Kim and Browne’s heuristic is
O(lV1 . (IVl + IEI)), since there are at most IVl con-
nected components in a graph and it takes O(lVl+lEl)
time to find the critical path in each component.
4.3 Greedy Dominant Sequence Algo-

The clustering algorithm by Yang and Gerasoulis
[21], identifies a t every step the critical path of the
graph, named the Dominant Seqvence (OS). The
heuristic chooses one edge belonging to the DS and
merges the clusters of its adjacent nodes, if this deci-
sion leads to a shorter parallel time. After the clus-
tering, the algorithm computes the new DS. The com-

lexity of Yang and Gerasoulis’ heuristic is O((lE1 +
eVl) . loglvl) . We implemented a simpler, greedy ver-
sion of this algorithm, which we call Greedy Dominant
Sequence (GDS) algorithm:

1. Identify the Dominant Sequence of the graph.

2. Choose the edge of the Dominant Sequence whose
elimination results in the largest decrease of par-
allel time. Merge the clusters of the nodes adja-
cent to the selected edge.

3. Repeat Steps 1 and 2 until there is no edge in the
DS whose elimination can decrease parallel time.

Identifying the Dominant Sequence requires a depth-
first search of the graph which takes O(lEl+lVl) time.
Choosing which edge of the Dominant Sequence to
eliminate takes time proportional to the number of
edges in the Dominant Sequence, that is, O(lV1). The
algorithm will perform O(I VI) clusterings and, there-
fore, the total com lexity of the Greedy Dominant Se-
quence is O (I V I . (bl+ [V I)) .
4.4 Greedy-Linear Algorithm

Kim and Browne’s heuristic improves parallel time
in the case where a simple scheme is used to assign
weights to edges, and “elimination” of an edge results
in zeroing its weight. Under the more realistic scheme
employed in our study, however, Kim and Browne’s
heuristic may result in clustered graphs with larger
parallel times than the unclustered ones. With this
consideration in mind, we modified this heuristic and
introduced a version that we call Greedy-Linear. This
algorithm is called “linear” because, as in Kim and
Browne’s method, it outputs clusters that are linear
chains of task-nodes. The heuristic works as follows:

1. Mark all edges in the parallel-execution graph as

2. Find the critical path in the graph composed of

rithm

unexamined.

unexamined edges only.

437

3.

4.

For every edge of the critical path, cluster its ad-
jacent nodes only if this does not result in a larger
parallel time. Mark all the edges incident to nodes
of the critical path as examined.

Apply steps 2 and 3 to the subgraphs formed by
nodes and unexamined edges, until all edges are
examined.

5.2 SNC Heuristic
Sarkar’s mapping algorithm is slow because of the

large constants involved in its complexity. We imple-
mented a modified version to improve its running time,
although without achieving a better asymptotic com-
plexity. This version follows exactly the same steps
as the original heuristic. It does not, however, take
into consideration communication costs when calcu-
lating parallel time. .We call i t SNC, that is, Sarkar’s

Testing whether the clustering of an edge results in a
larger parallel time can be accomplished in constant
time, without having to recompute the parallel time of
the graph. Therefore, the complexity of this algorithm
is O(lVl . (IVl + IEI)) as well.

5 Mapping
Clustering produces a clustered parallel-execution

graph with a number of clusters usually much larger
than the number of available processors of the target
architecture. Optimal Mapping is the problem of find-
ing an assignment of clusters to processors, leading
to a parallel time shorter than the times derived by
all other assignments, for the given number of proces-
sors [IS]. The Optimal Mapping problem of a clus-
tered directed acyclic graph has been proven to be
NP-complete [19]. In this section, we present a num-
ber of heuristics used to map parallel-execution graphs
following the MacreDataflow model, to a given set of
processors.

5.1 Sarkar’s Algorithm
Sarkar’s heuristic is a modified version of the Pri-

ority List Scheduling algorithm [20]. It uses a list,
pblock, of size P , where P is the number of available
processors. pblock entries are initially empty. When
the algorithm completes, pblock [i] contains the tasks
assigned to processor i , for i = 1,. . . , P . The algo-
rithm creates a priority list of task-nodes, according
to a topological-sort ordering of the graph. Then, at
each step, i t processes the next node T in the priority
list. If T has not already been assigned to a processor,
the algorithm performs the following tasks:

1 . Choose a processor i , such that, the merging of
clusters p r o c , (T) and pblock[i] will result in a
parallel time shorter than the one derived from
the merging of p r o c (T) with any other cluster
p b l o c q j] .

2. Merge clusters proc , and pblock[i] , and assign
the result to p6lock[i \TI

3. Assign all task-nodes of cluster proc [T] to proces-
sor i.

4. Reduce the number of clusters by one.

The algorithm completes when the total number of
clusters in the graph becomes equal to P. It is not
difficult to see that its computational complexity is
O(P Iprocl . (]VI + IEI)), where]procl is the initial
number of clusters.

algo&hm with No Communication Costs.
5.3 Yang and Gerasoulis’ Algorithm

In [22], Yang and Gerasoulis introduced a fast
heuristic for mapping a clustered graph to the pro-
cessors of a parallel system. This algorithm seeks to
optimize the load-balancing of the available proces-
sors. It is comprised of four steps:

1 . Estimate the average processing time, A , of the
processors, as the sum of the processing times of
all clusters, over the number P of processors.

2. Sort the clusters in an increasing order of their
loads.

3. Assign each cluster with a processing time higher
than the average A to a different processor.

4. Use a wrap mapping for the remaining clusters,
that is, number these clusters from 1 to their total
number; then, assign each of them on the proces-
sor whose number is equal to the number of the
cluster modulo P .

The complexity of this method is O(IV(.log IVI + IEI).
5.4 Priority List Scheduling Heuristics

We also implemented two versions of Priority List
Scheduling [3], which apply directly to non-clustered
graphs. In Priority List Scheduling, each task is as-
signed a priority. The tasks are inserted in a priority
list according to the descending order of their prior-
ities. Subsequently, they are assigned to processors
following the order defined by the priority list. Be-
fore presenting the scheduling heuristics implemented,
we introduce some useful notation. Given a directed-
acyclic graph G = G(V, E) , we denote by E the set of
“input” nodes, that is, nodes in V with no incoming
edges. With V,, we denote the set of “exit” nodes,
that is, nodes in V with no outgoing edges. We de-
fine ptime(u) as the total weight of the longest path
from node U to the nodes of V,. Similarly, we define
stime(u) as the total weight of the longest path, among
all possible paths going from the nodes of V, to U , not
including T(u) . Finally, we define the level of a node
in the graph as follows: fewel (u) = max,en(v,,u) Ilnll,
where II(E, U) represents the set of all possible paths
in G from the nodes in V, to node U , and llxll repre-
sents the number of edges in path T , that is, the length
of 7F.

The first heuristic orders nodes of the graph ac-
cording to the Topological Sorl/Earliest Task First
(T S / E T F) approach [15]. It performs a topological
sort of the parallel-execution graph and assigns level
values to its nodes. If node U precedes node w in

438

the topological-sort order, that is, l eve l (u) < l e v e l (v) ,
then U will be assigned a hi her priority than U. If,
however, level(u) equals level fv), then TS/ETF assigns
a higher priority to the node with the smaller st ime
value. The relative priorities of nodes with equal level
and d i m e values, is assigned by TS/ETF randomly.

The second heuristic implements the CP/MISF
principle [13]. It uses topological sort and critical-
path information to construct a priority list of nodes.
Nodes are introduced in the priority list according to
the descending order of their pt ime values. For nodes
with the same pt ime value, CP/MISF assigns a higher
priority to the ones with the larger number of imme-
diate successors, that is, with the larger number of
outgoing edges.

After constructing the priority lists, the heuristics
traverse them and map each task to the processor that
will start executing i t a t the earliest possible time.

6 Scheduling
The scheduling problem arises during the merg-

ing of two clusters, when their tasks have to be or-
dered according to some sequential order of execu-
tion. A scheduling algorithm should specify an or-
dering of tasks that achieves the shortest parallel
time and, a t the same time, complies to existing
precedence constraints. For general directed-acyclic
parallel-execution graphs, the problem of finding the
optimal task sequences that minimize overall parallel
time is NP-complete [20]. Consequently, for our ex-
periments, we implemented the CP/MISF scheduling
heuristic, which is based on the principles of Priority
List Scheduling. The results do not change when using
TS/ETF.

7 Experimental Results
In this section we present experimental results us-

ing the clustering, scheduling, and mapping presented
in the previous sections. We give data derived when
using these heuristics on parallel-execution graphs rep-
resentative of two algorithms solving the N-Body prob-
lem. The first graph has 1445 task-nodes and 12,860
message-edges. I t corresponds to the parallel compu-
tation of one time-step of the Fast Multipole Method
(FMM) on 1000 bodies [12, 61. The second graph has
2532 task-nodes and 12,918 message-edges. It repre-
sents the parallel computation of one time-step of the
Barnes-Hut (BH) algorithm on 1000 bodies [2,6]. Fur-
ther experiments, performed on task-graphs represent-
ing other instances of the two algorithms, corroborate
the results presented in the following sections.

The clustering algorithms used the CP/MISF
heuristic for scheduling. For the annotation of the
task-graphs we used values representative of Intel’s
iPSCl860 multiprocessor, which has very high So,
and R,, values [7].
7.1 Clustering

Figure 4 shows the ratio of the parallel time of the
clustered parallel-execution graphs over the parallel
time of the unclustered graphs, for a number of differ-
ent clustering techniques and for two message-passing
interface paradigms (blocking or non-blocking Send’s):
Sarkar’s method; Greedy-Linear algorithm (GL); Kim

I--- ---- -----*
I--- -

Figure 4: Effects of clustering to parallel time.

and Browne’s method (K&B); running Greedy-Linear
on the graph and then applying Sarkar’s heuristic for
only the 20% of the edges (GL&S-20!%), and Greedy
Dominant Sequence approach. In most cases, the clus-
tering heuristics do not improve the parallel time of
the clustered graph with respect to the parallel time of
the unclustered graph. Only when applying GDS and
Sarkar’s heuristics to the task-graph of the Barnes-Hut
algorithm, do we get improvements larger than 20%
and 50% (respectively). This remark holds for both
message-passing interface paradigms adopted (block-
ing or non-blocking Send’s).

The diagrams in Figure 5 present the numbers
of the clusters produced by the different clustering
heuristics. This is an interesting metric, since the per-
formance of mapping algorithms depends on the num-
ber of clusters generated by the clustering heuristics
which precede mapping; clearly, mapping is faster for
clustered graphs with fewer clusters. As expected, ap-
plying Sarkar’s heuristic results in the smallest number
of tasks. The reason is that the algorithm considers
all the edges in the graph for “zeroing.”

In contrast, the Greedy Dominant Sequence
method results in a number of clusters almost identical
to the initial number of tasks. GDS eliminates only
edges belonging to the Dominant Sequence (that is,
the critical path of the parallel-execution graph) and,
thus, clusters few of the tasks belonging to the DS. Un-
der the realistic model used here, however, clustering
these tasks does not necessarily alter the DS. Hence,
the algorithm can complete without further clustering.

The Greedy-Linear (GL) and Kim&Browne’s
heuristics do not check the Dominant Sequence only.
Instead, after performing clustering on the DS, they
proceed by clustering tasks belonging to the critical
paths of the subgraphs formed when deleting edges
adjacent to the initial DS. The GL method results
in a larger number of clusters in the case of block-
ing Send’s than in the case of non-blocking Send’s.
This is due to the fact that “zeroing” an edge on the
critical path of a parallel-execution graph, will always
result in a smaller cumulative weight for this path, if
the message-passing interface paradigm provides for
non-blocking Send’s. This is not always the case with
blocking Send’s and, thus, there are fewer opportu-
nities for the clustering heuristic to perform effective
clusterings.

439

GDSIS
GL/ S
S / YG

GDSI YG
GLI Y G

GDSISNC

SNC
CP/MISF
TS/ETF

Ad-hoc

S /SNC

GLISNC

Figure 5 : Number of clusters.

Greixly Dominant Seq. Sarkar's
Sarkar's

Sarkar's Yang& G erasoulis
Yang& G erasoulis

Greedy-Linear Yang&Gerasoulis

Greedy-Linear

Greedy Dominant Seq.

Sarkar's Sarker's - NO CO". Cost
Greedy Dominant Seq. Sarkar's - N o CO". Cost

Greedy-Linear S & ~ S - NO CO". Cost
none SNC
none Priority List Sch., CP/MISF
none Priority List Sch., TS/ETF
none none

Figure 6: Execution times of clustering heuristics.

Kim and Browne's method performs the cluster-
ing of linear chains of tasks, even if such an alter-
ation results in a larger parallel time. Therefore,
the cluster-numbers reported for this algorithm are
relatively small, both for the blocking and the non-
blocking paradigms.

Finally, GL&S-ZO% reports cluster numbers which
are proportional to the numbers reported by Sarkar's
algorithm. This is expected since, in its first pass, the
method applies GI, to the graph. This does not de-
crease the number of clusters substantially. The sec-
ond pass applies Sarkar's heuristic, but only for the
20% heaviest edges.

In Figure 6 , we present a plot of execution-time
measurements for the various clustering heuristics ex-
amined. The execution times represent measurements
on FAST simulations of the FMM running on a DEC-
Alpha workstation. As expected, Sarkar's algorithm
is substantially slower than the other heuristics.
7.2 Mapping

To compare the mapping algorithms implemented
in FAST, we applied them to the clustered parallel-
execution graphs derived from the examples of the
previous section, and mapped the clusters t o 16 pro-
cessors connected in a clique topology. Experiments
with different numbers of processors resulted in simi-
lar conclusions. In Figure 7, we present speedups for
twelve different combinations of clustering and map-
ping algorithms. The speedup is defined as the ratio of
the sequential time of the task-graph, that is, the sum
of the weights of all the tasks, over its parallel-time.
It represents a measure of the efficiency of the par-
allel computation described by the parallel-execution
graph. Therefore, it can be used as a metric for the

Figure 7: Speedups for different clustering-mapping
strategies (16 processors).

Mapping Algorithm Notation 1 Clustering Algorithm I
I Sarkar's sarkar's s/s I

effectiveness of the mapping techniques applied.
Table 1 explains the notation used in the plot of

Figure 7. In addition to the results corresponding to
combinations of clustering and mapping heuristics, we
present speedups obtained with an ad-hoc approach
for partitioning and parallelizing the problems un-
der consideration. From Figure 7, we can see that
the various combinations of heuristics perform differ-
ently for the two task-graphs examined. This differ-
ence is due to the different characteristics of the task-
graphs: the computation-to-communication ratio (av-
erage task execution time over the average message de-
lay) is much higher in the task-graph that corresponds
to the Fast Multipole Method than in the task-graph
corresponding to the Barnes-Hut algorithm.

In the case of the task-graph representing a parallel
execution of an instance of the Fast Multipole Method
(Figure 7, left) the measured speedup depends primar-
ily on the choice of the mapping heuristic. More specif-
ically, Sarkar's mapping method achieves the best re-
sults regardless of the clustering heuristic adopted.
The SNCapproach performs almost as well as Sarkar's
method, although it disregards communication costs
in the parallel-execution graph. Therefore, the reason
that the measured speedups are lower than the ideal
linear speedups is not communication overhead but
lack of load-balancing and the data-dependences in the

440

task-graph that result in almost sequential portions of
the execution. The Yang and Gerasoulis mapping al-
gorithm reports smaller speedups, which are on the
average less than 15% below the speedups reported
by Sarkar’s method. Using SNC on the parallel-
execution graph of our example, with no prior cluster-
ing, gives speedups comparable to those derived when
running SNCon the clustered graph. The Priority List
Scheduling algorithms with no clustering (CP/MISF
and TS/ETF) report the lowest speedups.

In the case of the task-graph representing an in-
stance of the modified Barnes-Hut algorithm, our ex-
periments show that the speedups depend more on the
choice of the clustering than on the mapping heuris-
tic. More specifically, speedups derived from mapping
the graph clustered with Sarkar’s heuristic, are higher
than speedups derived from mapping graphs clustered
with other heuristics. (see Figure 7, right). Moreover,
Priority List Scheduling with no clustering performs
poorly.

Another observation that can be drawn from Fig-
ure 7, is that the speedups reported from simulations
of the non-blocking Sendlblocking Receive primitives
are 20% to 50% higher than the speedups reported
for blocking Send/blocking Receive primitives. This is
expected since the non-blocking Send’s incur smaller
communication overhead to the processors of a par-
allel system. The speedup improvement is higher in
the case of Barnes-Hut task-graphs than in the case of
Fast Multipole Method graphs, since the former have
a lower computation-to-communication ratio.

In Figure 8, we present a diagram of execution time
measurements for the various mapping algorithms.
These measurements were extracted from FAST sim-
ulations of the Fast Multipole Method. Sarkar’s algo-
rithm is the slowest. SNC, which performs the map-
ping without taking into consideration communication
delays and overhead, has a moderate execution time.
Therefore, the high running-time of Sarkar’s approach
is partly a result of the overhead for estimating com-
munication costs while testing the different mapping
choices at each step of the method. For the cases
where Sarkar’s clustering algorithm was used before
the mapping, the running-time of the mapping was
smaller. This is because Sarkar’s clustering heuristic
results in low numbers of clusters.

8 Conclusions
In this paper we examined popular clustering and

mapping heuristics used for assigning task-graphs
to message-passing multiprocessors. We used task-
graphs representative of the two most popular algo-
rithms for the N-Body problem and employed a realis-
tic scheme for annotating these graphs and accurately
modeling task-processing time and communication de-
lay.

Our experiments reveal interesting aspects of the
effectiveness of clustering heuristics. We conclude
that for graphs of coarsegranularity (Fast Multipole
Method graphs), with a high ratio of average task ex-
ecution time to average message delay, clustering does
not improve the parallel time of the graph substan-
tially.

MappinglScheduling Heuristics

Figure 8: Execution times for the Mapping heuristics.

In contrast, for graphs with average task execu-
tion time comparable to the average message delay
(Barnes-Hut graphs), clustering does improve the par-
allel time of the task-graph. The greatest improve-
ment is achieved with Sarkar’s algorithm (more than
50% for both blocking and non-blocking Send’s). The
next biggest improvement is achieved with the GDS
algorithm (more than 20%). In contrast, Kim and
Browne’s method results in an increase of parallel time
after clustering, in the case of blocking Send’s; this is
a side-effect of the realistic scheme we employed to an-
notate the task-graph. The GL heuristic introduced
in this paper, which is based on a principle similar
to that of Kim and Browne’s, takes into consideration
the realistic modeling of computation and communica-
tion costs and improves parallel time by approximately
10%.

All the clustering heuristics examined, except GDS,
result in numbers of clusters which are significantly
smaller than the number of tasks; partitioning a task-
graph into a small number of clusters expedites the
mapping process that follows clustering.

Data from mapping experiments show that, in the
case of coarse-grain task-graphs, all mapping heuris-
tics that are used in conjunction with some clustering
heuristic have similar effectiveness, regardless of the
clustering heuristic used. For fine-grain task-graphs,
however, the mapping heuristics examined report very
low speedups, except in the case where the task-
graphs were previously clustered with Sarkar’s cluster-
ing method. Finally, it is clear that combining clus-
tering and mapping heuristics gives consistently bet-
ter results than one-phase mapping algorithms, such
as Priority List Scheduling.

Our experiments reveal a critical tradeoff between
the effectiveness and the running time of clustering
and mapping heuristics. Best results, in terms of num-
ber of clusters and speedup, are achieved when us-
ing Sarkar’s clustering and mapping heuristics. Their
running time, however, is prohibitively high for task-

441

graphs of medium to lar e size. Another remark is
that communication overlead does not play an im-
portant role in the mapping of clustered task-graphs
to processors - the mapping heuristic SNC does not
take into consideration communication costs. Never-
theless, it reports speedup figures which are close to
the ones reported by Sarkar‘s heuristic, which does
account for communication overhead.

We conclude that, mapping task-graphs to
message-passing multiprocessors effectively and effi-
ciently requires a clustering heuristic that will min-
imize communication overhead and decrease parallel
time under the practical communication-cost model
presented earlier, and for task-graphs of various gran-
ularities. Such a clustering heuristic can then be com-
bined with a fast, “communication-cost insensitive”
method, such as SNC, for mapping the clustered task-
graphs to the limited number of available processors,
and achieving load-balancing of the processors.

9 Acknowledgements
This work was supported by NSF Grants MP-8912100 and

MIP-9201484.

References
[I] S.B. Shukla and D.P. Agrawal. Scheduling Pipelined

Communication in Distributed Memory Multiproces-
sors for Real-time Applications. In The f8th Annual
International Symposium on Computer Architecture,
pages 222-231, May 1991.

[2] Josh Barnes and Piet Hut. A hierarchical O (N log N)
force-calculation algorithm. Nature, 324:446-449, De-
cember 1986.

[3] E.G. Coffman.

[4] Robert Cypher. Message-Passing Models for Block-
ing and Nonblocking Communication. In DIMA CS
Workshop on Models, Architectures, and Technologies
for Parallel Computation, Technical Report 93-87. DI-
MACS Center, Rutgers University, September 1993.

[5] M. Dikaiakos, A. Rogers, and K. Steiglitz. Functional
algorithm simulation: A new approach for modeling
the parallel execution of scientific applications. In DI-
MACS Workshop on Models, Architectures, and Tech-
nologies for Pamllel Computation, Technical Report
93-87. DIMACS Center, Rutgers University, Septem-
ber 1993.

Computer and Job-Shop Scheduling
Theory. Wiley, 1976.

[6] M. Dikaiakos, A. Rogers, and K. Steiglitz. Functional
algorithm simulation: Implementation and experi-
ments. Technical Report TR-429-93, Department of
Computer Science, Princeton University, June 1993.

[7] M. Dikaiakos, K. Steiglitz, and A. Rogers. A com-
parison of techniques used for mapping parallel algo-
rithms to message-passing multiprocessors. Technical
report, Department of Computer Science, Princeton
University, January 1994.

[8] M.D. Dikaiakos, A. Rogers, and K. Steiglitz. FAST: A
Functional Algorithm Simulation Testbed. In Inter-
national Workshop on Modeling, Analysis and Simu-
lation of Computer and Telecommunications Systems
- MASCOTS’94. IEEEPress, 1994.

[9] H. El-Rewini and T.G. Lewis. Scheduling Par-
allel Program Tasks onto Arbitrary Target Ma-
chines. Journal of Parallel and Distributed Comput-
ing, (9):138-153, 1990.

[lo] A. Gerasoulis, S. Venugopal, and T. Yang. Cluster-
ing Task Graphs for Message Passing Architectures.
In 1990 International Conference on Supercomputing,
pages 447457, 1990.

[ll] A. Gerasoulis and T. Yang. A Comparison of Cluster-
ing Heuristics for Scheduling DAGs on Multiproces-
sors. Journal of Parallel and Distributed Computing,

[12] L. Greengard and W. Gropp. A Parallel Version of the
Fast Multipole Method. In Garry Rodrigue, editor,
Parallel Processing for Scientific Computing, pages

[13] H. Kasahara and S. Narita. Practical Multi-processor
IEEE Transactions on Computers, C-

[14] S.J. Kim and J.C. Browne. A General Approach to
Mapping of Parallel Computations upon Multipro-
cessor Architectures. In International Conference on
Parallel Processing, volume 3, pages 1-8, 1988.

[15] S. Manoharan and P. Tranish. Assigning Dependency
Graphs onto Processor Networks. Parallel Computing,

[16] M.G. Norman and P. Thanisch. Mapping in Multi-
computers. ACM Computing Surveys, 25(3):264-302,
September 1993.

[17] C . Polychronopoulos. Parallel Programming and
Compilers. Kluwer Academic Publishers, 1988.

[18] M. Rinard, D. Scales, and M. Lam. Jade: A
High-Level Machine-Independent Language for Par-
allel Processing. Computer, 26(6):28-38, June 1993.

[19] V. Sarkar. Partitioning and Scheduling Parallel Pro-
grams for Multiprocessors. M I T Press, 1989.

[20] V. Sarkar and J. Hennessy. Compile-time partition-
ing and scheduling of parallel programs. SIGPLAN
Notices, 21(7):17-26, July 1986.

[21] T. Yang and A. Gerasoulis. A Fast Static Scheduling
Algorithm for DAGs on an Unbounded Number of
Processors. In Supercomputing 91, 1991.

16~276-291, 1992.

213-222. SIAM, 1987.

Scheduling.
33~1023-1029, 1984.

17~63-73, 1991.

[22] T. Yang and A. Gerasoulis. PYRROS: Static schedul-
ing and code generation for message passing multi-
processors. In 6th ACM Internotional Conference on
Supercomput ing, pages 428-437, July 1 992.

442

