
13-th IEEE International Conference on Peer-to-Peer Computing

RECODE: Reconfigurable, Consistent and
Decentralized Data Services

Mikael Högqvist
Peerialism AB

mikael@peerialism.com

Alexander Reinefeld
Zuse Institute Berlin

ar@zib.de

Abstract—Key-based routing schemes, where a message is
forwarded towards a server responsible for a partition in a large
name space, does not provide strong delivery guarantees when
the network is reconfigured with servers joining and leaving. This
best-effort behavior is sufficient for eventually consistent data
services such as key-value stores, content distribution networks
or publish/subscribe systems. However, such schemes are not able
to provide stronger consistency guarantees as required by, for
example, metadata services and databases.

We present RECODE, a framework for reconfigurable, con-
sistent and decentralized data services. RECODE simplifies the
implementation of strongly consistent data services, and continues
to provide strong guarantees even during reconfiguration. More
specifically, we introduce the routecast primitive which delivers
messages for a key in the same total order, independent of the
servers responsible for the key. We demonstrate the expressiveness
and practical usability of RECODE by presenting three applica-
tions: a map of atomic registers, a set of distributed counters,
and a lease management system. We evaluate the performance
and elasticity of RECODE executing in a cluster.

I. INTRODUCTION

Distributed storage systems such as file systems [1], [2],
key/value stores [3], [4] and partition and lease management
services [5] all use a coordination service to keep track of
metadata such as file locations, servers or data partitions. The
coordination service is the authoritative source for performing
updates to metadata. It avoids data inconsistencies by making
all accesses atomic. For fault-tolerance and scalability, dis-
tributed coordination services replicate their state over a set
of servers. To guarantee consistent or linearizable1 access they
coordinate all operations among the servers to make sure that
they are executed in a total order. These type of guarantees
can be implemented with replicated state machines (RSM) [6]
or group communication systems (GCS) [7].

Partitioned data services provide storage and access to data
associated with an identifier from a large name space. The
identifiers and data are mapped to the servers contributing
resources to the service. Each server or set of servers are
responsible for a partition of the name space. Distributed Hash
Tables (DHTs) is one way to implement a partitioned data
service. A DHT is fully decentralized by using algorithms for
adding and removing servers that only affect a small set of
servers. Thus, while reconfiguration in a coordination service
is global (affects all members), a reconfiguration in a DHT or
partitioned service is local. This is the fundamental property

1Intuitively, linearizability means that a read always returns the last value
written.

that makes partitioned services scalable, all operations are
local.

In order to access data, partitioned data services use
key-based routing [8], [9]. An execution of route(key,msg),
forwards a message msg towards some server that is respon-
sible for the partition covering key in the name space. This
routing method in combination with the DHTs partitioning
and server management has been used to build, for example,
key-value stores, publish/subscribe systems and distributed file
systems. However, the semantics of route is often best-effort,
meaning that two different servers can deliver a message for
the same key. This occurs when the servers think that they
are responsible for partitions that overlap in the name space.
Overlapping responsibilities can happen after, for example, a
perceived failure, based on inaccurate failure detectors, leading
to reconfiguration [10], [11], [12]. Thus, a partitioned data
service based on DHTs cannot provide strong consistency
without modifications.

We propose RECODE2, a fully decentralized system with a
routing primitive that provides linearizable consistency even
during run-time reconfiguration, i.e. when adding/removing
servers or re-partitioning the name space. To achieve this, we
combine the ability of RSMs to execute operations in a total
order with consistent management of a global name space.

Our model of a partitioned data service differs from DHTs
in that the name space partitioning does not change when
servers join, leave or fail. Instead they join or leave a dynamic
process group that implements an RSM3. We provide three op-
erations for name space management: split (divide a partition),
merge (combine two partitions) and handover (move a partition
between servers). By making the name space management
explicit, the group membership is separated from partition
management. Thus, we can rely on well-known methods for
dynamic process groups, e.g. [13] and [14].

To ensure consistent access to data items we introduce the
key-based routing primitive routecast. Informally, the seman-
tics of routecast guarantees that routed messages are delivered
in a total order at each distinct name space key. This is
valid even during split, merge and handover operations. We
demonstrate how to use routecast to implement three high-
level services: a map of atomic registers, distributed counters
and a scalable lease management service [5].

In the remaining sections of this paper we present the

2Reconfigurable, Consistent and Decentralized
3Each server represents a process

978-1-4799-0521-8/13/$31.00 c©2013 IEEE

13-th IEEE International Conference on Peer-to-Peer Computing

related work before we discuss the system model and present
the semantics of the partition management operations and the
routecast primitive. This is followed by an implementation,
with algorithms for the routecast primitive and the handover
operation. In particular, we describe how the handover, split
and merge can guarantee total order delivery of routed mes-
sages during reconfiguration. Finally, we evaluate the system
in a proof-of-concept implementation in a cluster environment
and demonstrate the implementation of three services on top
of routecast.

II. RELATED WORK

For DHTs, Shafaat et al. [10] showed that incorrect failure
detectors may result in nodes believing that they are respon-
sible for overlapping partitions. This conflict is eventually
resolved by the maintenance algorithm, but even the short-
est period of overlapping responsibilities may lead to data
inconsistencies. A DHT does not correctly provide atomic
data access, where clients must read the latest write, without
significant modifications to the join and leave algorithms or
the system model.

In order to provide data access with stricter consistency,
the system must guarantee that each partition has an exclusive
owner. That is, when a node delivers a routed message to
the application, it must be the exclusive owner of the range
containing the key. It was shown by both Ghodsi [12] and
Risson [11], using the CAP theorem [15], that it is impossible
to perform atomic changes to a ring topology without blocking
while providing data consistency.

Lynch et al. [16] were first to suggest a solution to this
problem by introducing a Replicated State Machine (RSM) as a
fault-tolerant process (DHT node). With non-failing processes,
there is no need for failure detectors and it is assumed that a
process eventually responds to a request.

Both Ghodsi and Lynch et al. [12], [16] introduce proto-
cols which assume that nodes are fault-tolerant. Lynch et al.
propose an algorithm for join and leave similar to the approach
in Chord [8]. Ghodsi’s algorithm provides atomic change of a
double-linked ring topology with fault-tolerant nodes. If nodes
may fail, the algorithm becomes eventually consistent through
a stabilization mechanism. The algorithm uses locks to indicate
when a node is taking part in a topology change. Similar to
Risson’s approach, during a change, the successor node cannot
deliver any requests to the application for the partition between
the joining/leaving node’s id and the successor’s id.

Scatter [17] is a novel approach inspired by Lynch’s RSM-
based solution. This system has overlapping goals with RE-
CODE, it provides clients with linearizable consistency per key
and it scales with the number of groups/servers while allowing
run-time reconfiguration. RSMs are created dynamically by
splitting an RSM into two or merging two consecutive RSMs
into one while maintaining the successor and predecessor
pointers for the ring structure. This is an interesting approach,
however, merging and splitting RSMs leads to complex corner
cases where RSMs must be initialized and shut-down on-the-
fly as part of name space changes. Additionall, Scatter still
suffers from the disadvantages of maintaining a ring structure.
Modifications to the ring are done using a modified two-phase
commit (2PC) requiring coordination between three RMSs.

Process Groups

Processes

Partitions
⊤⊥ b f h m u

Fig. 1. System model overview with partitions, process groups and processes.

Unlike the previous approaches we do not maintain a ring.
This simplifies the reconfiguration of the name space since
there are no successor or predecessor pointers that must be
updated atomically between groups. Also, node membership
changes do not affect the partitioning of the name space.
Instead, responsibility is decided based on an explicit range-
to-server assignment. To change the assignment we introduce
the handover algorithm, a bilateral agreement between two
nodes in the system. Additionally, none of these approaches
introduces well-defined semantics for delivery of a routed
message.

The separation of the name space management and rout-
ing is also part of the design of key-value stores such as
PNUTS [4] and BigTable [3]. However, consistency of name
space operations are guaranteed through a single coordination
service. Our algorithms enable this service to be partitioned at
run-time.

III. RECODE OVERVIEW

A. System Model

The basic elements of the RECODE model is a partitioned
name space maintained by a set of process groups (Fig. 1).
A partition is a range [a, b) of identifiers in the name space.
Each group mimics a single process by executing algorithms
for a reconfigurable replicated state machine (RSM) [6], [14].
When a new process joins a RECODE system it joins a process
group using the mechanisms provided by the group. Similarily,
when a process leaves or fails it is handled by the group.

A process group is exclusively responsible for a partition
(or key/identifier) if the RSM maintains the state of the
partition, i.e. both the metadata describing the partition and
the data itself. Process groups may be responsible for zero or
more partitions, but all partitions must be assigned to exactly
one group. Thus, there are no two groups responsible for
overlapping partitions and all partitions are assigned to some
group (no gaps). We represent a partition as a ((a, b],k,G)-
tuple, where (a, b] is the range of keys, k a version incremented
on partition change and G the responsible (or owner) of
the partition. The initial system state is a single partition
covering the entire name space assigned to some process
group, ((⊥,>],1,G).

A significant difference in RECODE compared to a DHT is
that process membership is decoupled from the management of
the name space partitions. In a DHT, each individual process
is responsible for a partition. If a process becomes slow or
the network drops messages, another process automatically
takes over this process’ partition through the DHT maintenance
protocol. However, detecting a failure using a failure detector
or through a periodic monitoring message may return an
incorrect answer, e.g. a process may still answer requests from

2

13-th IEEE International Conference on Peer-to-Peer Computing

other processes without receiving the monitor request [10]. In
the DHT model, this error may lead to the re-assignment of the
responsibility for a partition from a still correct process without
it even knowing that it is not responsible anymore. Thus, the
system ends up in an incorrect state where two processes
are responsible for an overlapping partition. Decoupling the
responsibility revocation and assignment of partitions from
the membership decision makes it possible to avoid this
inconsistency.

Furthermore, this decoupling has three additional advan-
tages. First, process groups may be responsible for more
than one partition. This makes it possible to balance the
load more fairly between groups as shown in [18], [8]. A
fair load is necessary to efficiently use the system resources.
Second, each group can have a different number of member
processes. This can for example be useful if some partitions
reside on more unreliable servers where higher reliability is
required. Finally, when partitions are associated with state, the
data movement between groups becomes an explicit decision
instead of occurring each time a process fails, joins or leaves
the system.

B. Modules and Interfaces

The main goal of RECODE is to provide three properties:
reconfiguration, consistency and full decentralization. For this
purpose we use four different modules: the process group, a
routing service, partition management and routecast (Fig. 2).
By clearly separating the modules with well-defined interfaces
we can compose a system with different properties. For exam-
ple, RECODE contains a module for routing messages towards
a key in the partitioned name space. The cost of routing a
message can be implemented to take, for example, O(1) or
O(logN)-hops depending on network requirements.

Application

Network

send receive

routecast rc-deliver

Process

split/merge/handover

route-recv

rc-deliver

P
ro
ce
ss

G
ro
u
p

to-multicast

to-deliver

Routing
Service

Routecast

route

Pa
rtitio

n
M
a
n
a
g
e
m
e
n
t

Fig. 2. Overview of the RECODE architecture.

An application implemented on top of RECODE uses route-
cast to send messages towards a key in the name space. Each
event has a corresponding handler which is executed when
the event is delivered at some process group responsible for
the key. This allows us to implement both read and write

operations unique to each key. Section 6 introduces three
different applications built on top of RECODE.

Since routecast and the partition management module are
the novel parts of RECODE, we introduce their interfaces and
properties with further detail in this section. Assume for now
that the process group exports an operation to-multicast(m)
which, informally, guarantees that all processes in a process
group eventually delivers m and that two messages are de-
livered in the same total order to all processes. A completed
to-multicast triggers a to-deliver-event. The routing service
provides a route(x,m)-method which forwards a message m
towards the process group responsible for a partition covering
the key x. When route is invoked it eventually results in the
execution of route-receive at a process in the responsible
process group. Unlike routecast, the routing functionality only
requires the routing topology to converge eventually.

a) Routecast: The routing service enables key-based
routing: given a key, a message is forwarded towards a process
responsible for a partition covering the key. In a system with
replicas where several processes are responsible for the same
partition, a request requires coordination to provide consistent
access. We introduce the routecast primitive which is based on
the route-abstraction, but provides stronger guarantees. This
module exports a routecast and the corresponding rc-deliver-
primitives. routecast(x,m) forwards a message m towards the
process group responsible for x. Executing routecast results in
rc-deliver(x,m, p) being invoked with a message m at each
member of a process group A responsible for the partition
covering the key x.

Intuitively, the routecast primitive ensures that messages
for a given key x are delivered in a total order at the process
group currently responsible for the partition covering x. With
a total order of messages for a single key, an application can
apply messages atomically to the value (or state) associated
with this key. Furthermore, and unlike to-multicast, the
routecast primitive must ensure that messages are delivered
in a total order even during changes of the partitioned name
space. We call this property partitioned total order delivery.
Below we specify all properties for rc-deliver. Note that pk
is partition p at version k.

• PTO1 Partitioned Validity If a correct process exe-
cutes routecast(x,m), then some process group A
eventually executes rc-deliver(x,m,p) for a partition
([a, b), k, A) such that x ∈ [a, b).

• PTO2 Partitioned Integrity A routed message (x,m)
is only rc-delivered if some process executed
routecast(x,m) and it is rc-delivered at most once.

• PTO3 Same Partition Total Order For any pair of
routed messages (x,m) and (y,m′) that are rc-delivered
in a partition p, there exist a total order ≺p such that if
(x,m) ≺p (y,m′), then rc-deliver(x,m,p) is executed
before rc-deliver(y,m′,p).

• PTO4 Last Partition Delivery If a process group
invokes rc-deliver(x,m,pk), then there exists no par-
tition qk

′
, where x ∈ qk

′
and k′ > k.

• PTO5 Partitioned Total Order For any pair of
routed messages (x,m) and (x,m′), there ex-
ist a total order ≺x such that if (x,m) ≺x

3

13-th IEEE International Conference on Peer-to-Peer Computing

(x,m′) then rc-deliver(x,m,pk) is executed before
rc-deliver(x,m′,qk

′
), where x is covered by p, q and

k ≤ k′.

These properties define that there is a total order on the
partitions that cover x. That is, if pk and qk+1 both cover x,
than any routed message for x is delivered to the owner of the
partition according to a total order. Furthermore, if two routed
messages for x and y are delivered within the same partition,
then they are also delivered in a total order. Because of
PTO3, the delivery to elements in the same partition becomes
dependent. A weaker specification that replaces this property
with one that makes delivery to different elements independent
would allow for more parallelism.

b) Partition Management: The partition management
module maintains the state of local partitions that a process
is responsible for. It provides three operations on this state:
split(x, p), merge(p, q) and handover(x, k). A split divides
a partition into two non-overlapping partitions and a merge
combines two adjacent partitions into one. The handover
changes the ownership from one process group to another,
which makes it possible to increase or decrease the set of
groups responsible for partitions at system run-time.

The partition management operations must guarantee that
two different groups are never responsible for the same parti-
tion or an overlapping partition. Furthermore, for partitioned
total order, any element in the name space must be covered by
a partition (no gaps). We define the properties of the partition
management operations as follows:

• P1 Exclusive Assignment No two process groups are
responsible for the same element x in the name space.

• P2 Handover Validity For any handover, it is initial-
ized by some process and it terminates at most once.

• P3 Handover Termination A handover of a partition
p between two process groups A,B, eventually termi-
nates with either A or B responsible for p.

Property P1 defines that a successful assignment change
for a partition cannot lead to two different groups being
responsible for an overlapping name space range. The change
itself must be atomic, but the new owner only needs to be
responsible for the partition p at the time of termination, P2.
P3 avoids that a handover is decided on twice, effectively,
re-assigning a partition to the same owner. Since P3 allows
either A or B to be responsible after termination, this property
enables the current owner to reject a handover request.

IV. IMPLEMENTATION

We describe the distributed system model followed by
the algorithms necessary to implement both routecast and
the management operations: split, merge and handover of
partitions.

A. Distributed System Model

Processes execute in a partially synchronous model such
as the timed-asynchronous model [19], where it is possible to
solve the consensus problem (and consequently TO-multicast).
A message is sent by a process using send(m) and received

with receive(m). Communication between processes is quasi-
reliable [20] and we expect that unless the communicating
processes are faulty, a message eventually arrives, and is
received at most once, even though the underlying channel
may lose, delay or re-order messages.

B. Reliable Process Groups

There are essentially two main techniques used to imple-
ment reliable process groups with gap-free total order broad-
cast (RSM): destination agreement and primary sequencer [21].
In destination agreement, a set of processes uses consensus to
agree on the message in an instance and then on the order
of the instances. Any process in the group can propose a
message in an instance and if a majority agrees, the message
can be delivered. A popular approach to implement destination
agreement is Paxos [22].

Primary sequencer enforces the message order through a
designated primary process. To reliably store the operations,
the primary writes to at least a majority of backups. However,
this approach requires additional protocols for primary fail-
over and catch-up of backups that have fallen behind. A recent
primary/backup protocol is Zab [23] which is used in the
ZooKeeper coordination service [24].

Both approaches provide the same semantics, but with
different failure and performance characteristics. With desti-
nation agreement, any process can initiate an operation while
with a primary sequencer, the primary must be available.
However, the benefit of the primary approach is that in the
failure-free case, a write only requires a single round-trip
plus a non-blocking notification, and a read can be replied
to without communication with the backups. In destination
agreement, both read and writes require two round-trips in
the non-optimized case. By introducing master leases as in
Chubby [25], the two approaches become identical. Our proof-
of-concept implementation is based on primary/backup, since
routecast requests require consistent access to the partition
state. Dynamic group membership for reconfiguration of the
group is achievable through complementary protocols such as
SMART [14] or [13].

In addition to adding and removing processes to an existing
group, we assume that there is functionality to initialize new
groups and disband existing groups. This is necessary to scale
up or down the system. After a group has disbanded it does
not reply to any more requests. Disbanding a group is only
allowed if the group is not responsible for any partitions, since
this would otherwise lead to a gap in the partition name space.

C. Routing Service

The routing service exports the route(k,m) primitive which
is used to locate the process group currently responsible for
a partition covering a given key. That is, by forwarding a
message towards the key it will eventually be received by a
process part of the responsible process group. An advantage
from this abstraction is that the routing implementation does
not need to know about process groups. Messages forwarded
using the route function are sent directly between processes
based on the topology.

4

13-th IEEE International Conference on Peer-to-Peer Computing

When the system is reconfigured by moving partitions
between process groups, the topology must be adapted ac-
cordingly. Unlike the partition management, the topology can
be updated to eventually reflect the most current partition
assignment. Each process part of a process group has access to
the current partition state of that group and uses this to update
the routing service. The routing function can be implemented
as a library at the application clients, as a separate service with
dedicated servers or as part of the processes in the process
group and the topology can be of any type, e.g. ring (DHT),
complete map (O(1) routing) or a tree (DNS), as long as a
routed message eventually arrives at the responsible group.

D. Routecast

To implement the routecast primitive, we use the functions
exported by the routing service, route, and the process group,
to-multicast. Based on these abstractions and the partition state
maintained by each process group, the algorithms presented in
Alg. 1 are straight-forward. We assumed that the system is
initialized with a partition covering the entire name space at
some process group.

Algorithm 1: The algorithm used to execute routecast.
1 procedure routecast(x,msg) do
2 route(x, RCREQ(x,msg))

3 on route-receive RCREQ(x,msg) for x
4 to-multicast(RCREQ(x,msg))

5 on to-deliver RCREQ(x,msg) do
. Are we responsible for the partition covering x?

6 if x ∈ p ∈ partitions then
7 rc-deliver(x,msg,p)

To execute a routecast operation, we route a
RCREQ(k,msg) message towards the owner by using
the routing service. When route-receive executes for this
message a to-multicast is invoked with the request (line
4). On the execution of to-deliver, the partitions variable
is used to check if the process group is still responsible for
the partition, and in that case, rc-deliver executes with the
wrapped message, the key and the partition the message is
delivered in.

E. Partition Management

Managing the partition name space is done using three
operations: split, merge and handover. With these operations,
the system can grow and shrink both the name space as
well as the set of process groups responsible for partitions.
In order to provide the guarantees of routecast all name
space changes must be perceived atomic. Moreover, partitioned
total order delivery requires that operations performed to an
element in the name space are totally ordered, independent
from which process group is responsible for the covering
partition. To this end, the main idea behind the partition
management operations is to ensure causality of any changes.
Practically this is done by associating each partition with a
version that is always increasing and inherited from parent
partitions, i.e. partitions with an overlapping range and lower
version number. When a group is responsible for a partition it
has the exclusive right to increase its version and modify the

partition’s range and owner. Atomicity is achieved by using the
groups to-multicast-primitive, which interleaves any partition
management operations with routecast requests.

1) Split and Merge: Initially, the system starts with a
single group storing a partition covering the entire name
space in a partitions variable and partitions are represented
with ([a, b),version,group)-tuples. A split-operation divides a
partition into two new partitions with consecutive ranges and
increased versions. Similarly, a merge combines two partitions
with consecutive ranges into a single partition and a version
which is larger than both of the parents. Both operations
assumes that the partitions involved are stored in the local
partitions variable at the same process group. We thereby
avoid any coordination across process groups when splitting
and merging partitions.

After a successful split or merge, the parent partitions
are removed from the partition variable while the new
partitions are added. Since both operations are atomic (with
to-multicast, several updates to the local state can be per-
formed in a single to-deliver invocation) and applied to
consecutive ranges at the same process group, they cannot
produce a name space with gaps or overlaps.

2) Handover Algorithm: A process group responsible for
a partition has exclusive access to perform any modifications
to that partition. A handover transfers the exclusive access be-
tween process groups. The idea behind the handover algorithm
(fig. 3 and alg. 2) is to let the current owner update the partition
in its local state with the new owner and then telling the new
owner that it is responsible. Intuitively, the new owner steals
the partition from the current owner. Since the owner change
operation is executed within the process group, the change is
atomic.

There are two complications to the handover protocol. First,
we allow process groups to disband at any time as long as they
do not store any state. Second, we must handle concurrent
handover requests. The protocol has two phases: the handover
and the clean-up phase. The clean-up makes sure that all state
at the group responsible for the partition before the handover
is removed. Without local state, the group can disband and
leave the system. We describe the handover algorithm in detail
below.

A

B

Re
q(
x,
k)

rc-deliver(x,p,Req(x,k))
p' = p with A as owner
send Resp(x,k,p')

Resp(x,k,p') O
w
ne
rA
ck
()O

w
ner()

init cleanup of p
cleanup p

init(x,k)
send Req(x,k)

handle Resp(x,k,p')
become owner of p'

return owner

Fig. 3. Hand-over of a partition p to A.

The group maintains two sets for ongoing handovers: the
active set contains (x,k)-tuples, where x is a key and k is a
proposed partition version number for an ongoing handover.

5

13-th IEEE International Conference on Peer-to-Peer Computing

The role of active is to avoid that the same handover is con-
currently initialized and terminates more than once (property
P2) and to protect against group disbands. pending is a set of
partition-tuples with all partitions that can be garbage collected
in the clean-up phase.

In the protocol, a process group A tries to retain ownership
of a partition p owned by B, where x ∈ p. The handover phase
is started from A and the clean-up phase is initiated from the
responsible of x after a successful handover. The handover
phase ensures that the current owner of p, B, gives up the
responsibility of p and that A becomes the new owner.

The handover request contains x ∈ p and a proposed
new version k for p. Similar to an acceptor in Paxos [26], a
process group delivering a valid handover request must always
accept the request if k is higher than the current version of p,
pversion (line 10). An accepted handover results in an atomic
change of owner when executing rc-deliver (line 11-14). After
this change, the group will not deliver any more messages
within the partition. Thus, for concurrent handover requests the
first request delivered and accepted “wins” the partition. Note
that rc-deliver will not execute for p again after it has been
removed from partitions. This atomic change of ownership
guarantees the exclusive assignment property P1 and that either
A or B is responsible for p after termination P3.

In the clean-up phase, B tries to ensure that the handover
of p has terminated. That is, the handover phase has completed
when a new process group stores p in the partitions table,
and is thereby able to rc-deliver messages for p. This may
be another group than A, since A could have received a new
handover request in the mean time. When B has completed the
clean-up it is free to disband unless it is responsible for other
partitions or is part of another handover operation indicated
by the active or pending variables.

a) Avoiding Process Group Disband: Most of the com-
plexity of the protocol is due to the possibility that a process
group disbands concurrently with a handover. First, assume a
simple RPC-based protocol where B tries to handover a parti-
tion to A by sending a HANDOVERREQUEST directly to A and
waiting for a HANDOVERREPLY. Once the HANDOVERINIT
that was invoked to send the HANDOVERREQUEST has fin-
ished executing at B, a HANDOVERREPLY must eventually
be received by B in order to terminate the protocol at B.
However, if A decides to disband before it has received the
HANDOVERREQUEST from B, then B will wait indefinitely
for a HANDOVERREPLY. B can not try to handover the
partition to another process group, C, after a time-out since
A could be temporarily unavailable or the routed message or
the reply can be delayed. Thus, B cannot deterministically
terminate the protocol. Initiating the handover from A to a
fixed process group B suffers from the same problem.

To solve this issue, we 1) introduce the active-set and the
clean-up phase to avoid that a group disbands while being
responsible for system state and 2) use a routecast request
to initialize the handover. With routecast, the execution of
rc-deliver always occurs at the group currently responsible
for p, which must be in the system since it has state. This
effectively avoids that B will wait indefinitely for a HAN-
DOVERREPLY.

Algorithm 2: Handover algorithm for a partition p

1 active← ∅ . Active (not terminated) handovers.
2 pending ← ∅ . Pending handover verification

3 procedure handover(x,k) do
4 to-multicast(HANDOVERINIT(x,k)) . Handover with key

x and version k.

5 on to-deliver HANDOVERINIT(x,k) do
6 if (x, k) /∈ active then
7 active← active ∪ {(x, k)}
8 routecast HANDOVERREQUEST(x,k,self) towards x
9 on rc-deliver HANDOVERREQUEST(x,k,group) for x ∈ p do

10 if k > pversion then . Always accept a higher proposed
version

11 p′ ← (pstart, pend, k, group)
12 pending ← pending ∪ {p′}
13 delete partitions[prange]
14 send HANDOVERREPLY(x,k,p′) to group
15 else . k is less than the latest partition version
16 send HANDOVERREPLY(x,k,p) to group
17 on receive HANDOVERREPLY(x,k,p) do
18 to-multicast(HANDOVERREPLY(x,k,p))

19 on to-deliver HANDOVERREPLY(x,k,p) do
20 if (x, k) ∈ active and selfid = pgroupid and

pversion = k then
21 partitions[prange]← p
22 active← active \ {(x, k)} . Handover has finished.

b) Partition Availability: The presented algorithm
trades availability for consistency. Messages for x ∈ p
can continue to be rc-delivered at an owner B until the
HANDOVERREQUEST has been delivered. At this point, the
ownership of the partition is either changed to A or stays with
B depending on the value of the proposed version k. For a
successful handover, in the time between the delivery of the
HANDOVERREQUEST at B and the to-deliver of the HAN-
DOVERREPLY message at A, no group can deliver messages
for the partition. This means that any message is delayed until
the HANDOVERREPLY has been to-delivered. In the failure-
free case, this time is the latency of a single message send
and a to-multicast execution at A.

V. EVALUATION

The handover algorithm is the only operation that requires
coordination outside the process group. We analyze the dif-
ferent costs and the fault-tolerance of a handover compared
with three other approaches, Risson’s [11], Ghodsi’s [12]
and Scatter [17]. We follow that with two proof-of-concept
experiments that evaluates 1) the scalability of the routecast
primitive and 2) the run-time reconfiguration of the name
space.

A. Handover Costs

Table I compares the handover protocol with Risson’s
protocol called FTAR which uses Fast Paxos Commit, Ghodsi’s
optimized version of atomic ring maintenance and Scatter. We
look at five different costs: 1) the total number of messages,
2) the number of message delays, 3) the number of message
delays for which a partition is unavailable for the delivery

6

13-th IEEE International Conference on Peer-to-Peer Computing

1) Messages 2) Delays 3) Delays unavailable 4) Processes 5) Process failures
RECODE 2rm + 2 + 3gm 2rd + 2 + 2gd 1 + gd 2 groups 2F + 1
FTAR 10 4 4 3 processes 1
Atomic join 5(1 + gm) 5(1 + gd) 4(1 + gd) 3 groups 2F + 1
Atomic leave 6(1 + gm) 6(1 + gd) 6(1 + gd) 3 groups 2F + 1
Scatter 3gm + 2gm 4 + 3gd + 2gd 2 + 2 + gd 3 groups 2F + 1

TABLE I. COST COMPARISON BETWEEN THE HANDOVER PROTOCOL, FTAR, ATOMIC RING (JOIN/LEAVE) MAINTENANCE AND SCATTER.

of routed messages, 4) the number of processes (or process
groups) involved in a name space reconfiguration and, finally,
5) max processes that can fail. RECODE, Atomic Ring and
Scatter require fault-tolerant processes (RMSs) for correctness
in case of failure, we denote the cost of an operation in an
RSM by gm and the message delays by gd.

Both phases in the handover protocol include a routing
step. The cost of routing varies depending on which routing
algorithm and topology is used, we denote the number of
messages as rm and rd as the message delays. The total
number of messages for the handover phase and the clean-up
phase is 2rm+2, one routing step and the corresponding reply.
Similarly, the message delays are 2rd +2. During a handover,
requests to a partition are delayed with one message delay (the
reply to the handover request) and one to-multicast, before
the new owner is responsible and can start answering requests.
Finally, there are only two participants involved in the protocol
if we ignore the processes executing the route-requests.

Atomic Ring, RECODE and Scatter depend on fault-tolerant
process groups, which incurs significantly more messages and
message delays when compared to FTAR. However, FTAR
only allows one failure. Atomic Ring, Scatter and RECODE
can handle F failures in a group with 2F + 1 processes. We
also note that in an efficient state machine implementation,
for example with primary/backup, only 2 message delays
are necessary to execute an operation [27]. Thus, with an
efficient implementation a handover in RECODE only delay
data operations for 3 message delays.

B. Implementation and Experiment Setup

We have implemented a proof-of-concept of RECODE using
Scala. Each process group member runs in a single JVM
and receives messages from the network layer (NIO + Netty)
with a single thread. A process group exports a to-multicast
primitive using a primary/backup-based implementation. New
members can be added and existing members removed using
the group membership protocol. Primary fail-over uses a lease
mechanism as described in [28]. All state is in memory, which
makes the system correct as long as there are no power
failures affecting a majority of processes in a group4. The
primary executes one to-multicast request at a time and new
requests are placed in a FIFO queue. The rate of to-multicast
requests is bounded by the network latency, a majority of
group members must ack each multicast request from the
primary before the next is executed. Thus, an operation is
stable after a single round-trip (2 message delays). We note
that there are several techniques to improve the performance
of a single process group, such as pipelining and batching of
messages [29], [27]. However, we keep the group simple to
make the analysis of the systems performance easier.

4There were no power outages during the experiments.

For each of the experiments presented below, we have
clients issuing requests synchronously. We measure the
throughput of each client as the completed number of requests
per second. The latency is the time from the start of the request
until it returns (i.e. the time the client blocks).

We have implemented a simple routing service where each
router has a full mapping from partition to process group.
On any change: group view change, partition handover, split
or merge, the primary in the process group sends an update
message to the routing service which broadcasts the update
internally to all routers. Although this approach is not scalable
to 1000s of servers, it works well for smaller systems. Clients
are routing messages iteratively, that is they send a request for
a key and wait for a reply with the process group responsible
for the partition covering the key. Requests to a non-primary
are forwarded to the primary without contacting the client.
When using the router a client request needs three message
delays before reaching the process group responsible for a key.
To avoid re-doing look-ups for a known key or partition, the
client keeps a cache of partitions. An entry is invalidated when
the process group no longer is responsible for the partition due
to a handover.

The experiments are executed on a cluster with 32 ma-
chines connected with a 1Gbps Ethernet switch. The average
latency between any two machines is 0.15 ms. We use the
64-bit OpenJDK JVM build 14.0-b16 and Scala 2.9.0-1.

C. Scalability

With a partitioned name space as in RECODE, it is possible
to spread the load evenly across both partitions and process
groups and thereby servers. With even load over the groups and
partition boundaries corresponding to the workload pattern,
the system should scale linearly. We evaluate this claim by
comparing our implementation throughput with the expected
speedup. The speedup is calculated as speedup(n) = tput(n)

tput(1) ,
where n is the number of groups and tput(n) is the average
throughput for n groups. A single group handles around 1000
operations/second with the current implementation.

We have two different client workloads, fixed or randomly
generated keys. In the fixed strategy, one or more clients send
routecast requests for the same key as fast as possible. Thus,
each request always ends up at the same group responsible
for the key. At the group a TO-request is generated for each
request and it is sufficient with five (because of round-trip
time) clients to always have one in-flight request within the
group (pending requests are queued). Thus, with two groups
we need 10 clients and so on. Using a random workload we
emulate equally balanced partitions, however, all clients send
requests to all process groups unlike in the fixed case.

7

13-th IEEE International Conference on Peer-to-Peer Computing

(a) Latency (b) Throughput

Fig. 4. Throughput and latency with an increasing number of groups and clients for routecast and multicast.

The clients, groups and routers are all executing on dif-
ferent machines. Members of the same group are always on
different machines, but the same machine may have several
processes. 21 machines are used for hosting group member
processes, 5 for clients and 2 for routers. We measure the
latency (50th, 95th and 99th percentile) and throughput of
requests at the clients.

Figure 4 shows the latency and speedup for an increasing
number of groups with the different workload strategies. We
observe that for the fixed cases, the latency for all percentiles is
stable with an increasing number of groups and the throughput
increases linearly initially. The overhead in both the latency
and speedup comes from the increased number of clients
necessary to saturate the queue. The decrease in speedup for
8 and 16 groups is attributed to that multiple processes are
using the same physical machine. Each process uses the same
network card and sends many small packets. Additionally, the
networking library, netty, has a thread pool for managing con-
nections. With two or more processes per machine we observe
a super-linear increase in context switches, which is likely
to explain the performance reduction. Since the throughput
is latency-bound, variations when accessing the underlying
hardware have a larger effect on the overall throughput.

With random requests there is a higher chance that the
queues at the primaries are unbalanced. This causes two things,
first, the variation of latency increases since requests may stay
in a long queue. Second, the probability of an empty queue
increases which leads to a sub-linear speedup. An increasing
number clients also leads to more variation and does not
guarantee that all queues are busy. A solution to this problem
is to introduce pipelining, where several requests are executed
concurrently.

D. Elasticity

The mechanisms for partition management enables the
application to allocate and de-allocate resources at run-time by
splitting, merging and moving partitions between groups. We
evaluate this mechanism in a single experiment by measuring
the throughput and latency over time. The system runs with
a fixed number of clients (74), groups (4) and partitions (16),
after 180 seconds we add 4 more groups and start balancing. A

balancing operation uses the handover mechanism to transfer a
partition from the group with the most partitions to the group
with the least number of partitions. We execute 8 balance
operations with a 60 second interval between each operation.

Figure 5 contains two plots with the latency and throughput
of the system during 15 minutes. From the latency graph in
fig. 5a, we can see that the system is overloaded initially.
With four groups and 74 clients, the queue of TO-multicast
operations at each group has a high variance due to the random
client requests. After the balancing has finished (around 600s),
the requests are more evenly distributed and have more queues
to choose from which results in reduced latency, variance and
higher throughput (c.f. fig. 5b). The sudden drop in throughput
and increased variance in latency when balancing starts is an
effect from the redistribution of requests. Before balancing,
each group has four equally sized partitions. The first balance
operations places one partition at each new group, this leads
to a higher unbalance in the group queues and temporarily
increased variation and reduced throughput. However, after
all 8 balance operations (around 600s) the system quickly
stabilizes.

VI. USING RECODE

In this section we introduce three example applications and
their implementation on top of the routecast primitive. The
first application is a map with atomic registers, the second a
distributed counter service and the third is a lease management
service.

Since routecast is based on total order broadcast, it has
the same guarantees as ZooKeeper [24] or Chubby [25]. It
is therefore possible to implement the more general coordi-
nation service interface they are providing. However, unlike
when using ZooKeeper and Chubby, RECODE is used as a
library with the application code implementing handlers for
rc-deliver events and using routecast to send messages with
strong guarantees.

A. A Map of Atomic Registers

In this section we describe how to implement a map
of atomic read/write objects or registers. A map of atomic

8

13-th IEEE International Conference on Peer-to-Peer Computing

(a) Latency (b) Throughput

Fig. 5. Latency and throughput when partitions are re-allocated to new process groups.

registers is the basic data structure for building a distributed
key/value-store. Each register is referenced using a key and
is accessed atomically using the routecast primitive. A single
atomic register has the following semantics [30]. Termination,
every operation eventually completes. Validity, every read
returns the last value written and Ordering, if a read returns
v2 after a read that precedes it has returned v1, then v1 cannot
be written after v2.

Algorithm 3: Read/write register implemented with
routecast.
1 registers← {} . Register id 7→ register value

2 on rc-deliver READ(x) for x ∈ p do
3 return registers[x] orElse ⊥
4 on rc-deliver WRITE(x,v) for x ∈ p do
5 oldval← registers[x] orElse ⊥
6 registers[x]← v
7 return oldval

A map with atomic registers is straight-forward to im-
plement with a READ(x) and WRITE(x,v)-operation on
top of routecast. Algorithm 3 presents the implementa-
tion of a read/write-register. The correctness depends on
rc-deliver which guarantees total order delivery for each
element in the name space (PTO5 Partitioned Total Order).
The efficiency of this implementation depends on the cost of
achieving total order since each read/write is ordered through
to-multicast. A primary/backup-based implementation can, for
example, return a read directly from the primary and the perfor-
mance is then depending on the read/write ratio. Partitioning
of the register map does not have any dependencies at the
data level since the resources are independent. An appropriate
partitioning is likely to take into account the access frequency
of the registers and the size of each value.

B. Distributed Counters

A distributed counter service is used to maintain statis-
tics or aggregates for different resources. Such statistics is
commonly used at, for example, web-based application that
keep track of link clicks, played videos or songs. Each request
increments an integer. Note that this cannot be implemented
with a read/write register in a single operation (see section
VI-A), since the increment first need to read the value to know
what to increases, then adds one and finally overwrites the
value. To handle this type of read-modify-write operations, we

would need to extend a read/write register to somehow handle
concurrency. However, with routecast the rc-deliver execution
is atomic for the delivered message and the increment can
therefore execute without handling concurrency explicitly. It
is already done through the ordering of operations by the TO-
multicast implementation.

Algorithm 4: A service for distributed counters.
1 counters← {} . Resource 7→ count

2 on rc-deliver INCREMENT(x) for x ∈ p do
3 count← counters[x] orElse 0
4 counters[x]← count+ 1
5 return count

6 on rc-deliver COUNTFOR(x) for x ∈ p do
7 return counters[x] orElse 0

Algorithm 4 presents the implementation of a distributed
counter service using the routecast primitive. The service
increments the counter for a resource k when executing
rc-deliver(INCREMENT(k)). The increment returns the old
value of the counter to the client. To read the value of counter
k, the client executes routecast(COUNTFOR(k)).

C. Lease Management Service

A lease is a time-based lock, that is, it grants exclusive
access to some resource for a defined time. A lease manage-
ment service such as Chubby [25], issues leases to clients that
needs to access some resource in the system. A lease-request
always returns the current valid lease, this lease can be held
by the client making the access or another client. Internally,
the service must first test if there exists a lease and return it,
or issue a new lease. As the counter service, this also requires
a read-modify-write-operation (test-and-set).

Algorithm 5 presents the lease management service imple-
mentation. To try to become the lease holder, a client executes
routecast with GETLEASE(k,client), where k identifies the
lease and client the process trying to acquire the lease.
Concurrent clients will be arbitrated depending on the total
ordering of the TO-multicast used by rc-deliver. A client
already holding a lease can renew it by trying to get the lease
before the lease time expires.

VII. CONCLUSION

We have introduced RECODE, a system for total order
delivery of messages in a run-time reconfigurable name space.

9

13-th IEEE International Conference on Peer-to-Peer Computing

Algorithm 5: A Lease Management Service imple-
mented with routecast.
1 leases← {} . Lease id 7→ (timestamp, owner)
2 tlease . Time a lease is valid.

3 on rc-deliver GETLEASE(x, client) for x ∈ p do
4 λ← leases[x]
5 if λ = ⊥ or λtimestamp ≥ now() then

. Invalid or non-existing lease, create a new lease.
6 λ← (now() + tlease, client)
7 else if λtimestamp < now() and λowner = client then

. Lease renewal by the current owner.
8 λ← (now() + tlease, client)
9 leases[x]← λ

10 return λ

We provide clear semantics of the routecast primitive and al-
gorithms for reconfiguration and routing. The proof-of-concept
implementation shows that the system is both scalable and
can handle addition and removal of resources while still being
available for requests. To exemplify the simplicity of the
routecast abstraction, three applications were designed on top
of RECODE with varying complexity. First, we implemented
a map of atomic registers which can be used as a basis for a
scalable and consistent key/value-store. Second, we presented
a distributed counter service, which addresses a common
problem for web-sites keeping aggregate statistics. Finally, we
gave an implementation of a lease management service. Leases
are often used to guarantee exclusive access to items in storage
systems such as files or blocks. The lease service becomes a
bottleneck when serving many small files [31], [28]. However,
with RECODE it is possible to dynamically add more resources
and perform the name space partitioning, which is necessary
to scale the application at run-time.

ACKNOWLEDGMENTS

The authors would like to thank the reviewers for thorough
and useful comments. We also thank Thorsten Schütt, Björn
Kolbeck and Seif Haridi for fruitful discussions. Part of this
work was supported by the EU projects Contrail, Harness and
iSocial.

REFERENCES

[1] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
in SOSP. ACM, 2003, pp. 29–43.

[2] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess,
J. Malo, J. Martı́, and E. Cesario, “The XtreemFS architecture - a case
for object-based file systems in Grids,” Concurrency and Computation:
Practice and Experience, vol. 20, no. 17, pp. 2049–2060, 2008.

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, 2008.

[4] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS:
Yahoo!’s hosted data serving platform,” PVLDB, vol. 1, no. 2, pp. 1277–
1288, 2008.

[5] A. Adya, J. Dunagan, and A. Wolman, “Centrifuge: Integrated lease
management and partitioning for cloud services,” in NSDI. USENIX
Association, 2010, pp. 1–16.

[6] F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4, pp.
299–319, 1990.

[7] K. P. Birman, “The process group approach to reliable distributed
computing,” Commun. ACM, vol. 36, no. 12, pp. 36–53, 1993.

[8] I. Stoica, R. Morris, D. R. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in SIGCOMM, 2001, pp. 149–160.

[9] T. Schütt, F. Schintke, and A. Reinefeld, “Range queries on structured
overlay networks,” Computer Communications, vol. 31, no. 2, pp. 280–
291, 2008.

[10] T. M. Shafaat, T. Schütt, M. Moser, S. Haridi, A. Ghodsi, and
A. Reinefeld, “Key-based consistency and availability in structured
overlay networks,” in HPDC. ACM, 2008, pp. 235–236.

[11] J. Risson, “Reliable Key-Based Routing Topologies,” Ph.D. dissertation,
The University of New South Wales, 2007.

[12] A. Ghodsi, “Distributed k-ary System: Algorithms for distributed hash
tables,” PhD Dissertation, KTH—Royal Institute of Technology, Stock-
holm, Sweden, Oct. 2006.

[13] A. Schiper, “Dynamic group communication,” Distributed Computing,
vol. 18, no. 5, pp. 359–374, 2006.

[14] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and
J. Howell, “The SMART way to migrate replicated stateful services,”
in EuroSys. ACM, 2006, pp. 103–115.

[15] S. Gilbert and N. A. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” SIGACT News,
vol. 33, no. 2, pp. 51–59, 2002.

[16] N. A. Lynch, D. Malkhi, and D. Ratajczak, “Atomic data access in
distributed hash tables,” in IPTPS, vol. 2429, 2002, pp. 295–305.

[17] L. Glendenning, I. Beschastnikh, A. Krishnamurthy, and T. E. Anderson,
“Scalable consistency in scatter,” in SOSP. ACM, 2011, pp. 15–28.

[18] J. Ledlie and M. I. Seltzer, “Distributed, secure load balancing with
skew, heterogeneity and churn,” in INFOCOM. IEEE, 2005, pp. 1419–
1430.

[19] F. Cristian and C. Fetzer, “The timed asynchronous distributed system
model,” IEEE Trans. Parallel Distrib. Syst., vol. 10, no. 6, pp. 642–657,
1999.

[20] M. K. Aguilera, W. Chen, and S. Toueg, “Using the heartbeat failure
detector for quiescent reliable communication and consensus in par-
titionable networks,” Theor. Comput. Sci., vol. 220, no. 1, pp. 3–30,
1999.

[21] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and
multicast algorithms: Taxonomy and survey,” ACM Comput. Surv.,
vol. 36, no. 4, pp. 372–421, 2004.

[22] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, 1998.

[23] F. Junqueira, B. Reed, and M. Serafini, “Zab: High-performance broad-
cast for primary-backup systems,” in IEEE DSN, June 2011.

[24] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “Zookeeper: wait-free
coordination for internet-scale systems,” in Proceedings of the 2010
USENIX ATC Conference. Berkeley, CA, USA: USENIX Association,
2010, pp. 11–11.

[25] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in OSDI. USENIX Association, 2006, pp. 335–350.

[26] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, 2001.

[27] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an
engineering perspective,” in PODC. ACM, 2007, pp. 398–407.

[28] B. Kolbeck, M. Högqvist, J. Stender, and F. Hupfeld, “Flease - Lease
Coordination without a Lock Server,” in 25th IEEE International
Parallel and Distributed Processing Symposium, IPDPS, 2011.

[29] P. J. Marandi, M. Primi, and F. Pedone, “High performance state-
machine replication,” in IEEE Int’l Conf. on Dependable Systems and
Networks, June 2011.

[30] R. Guerraoui and L. Rodrigues, Introduction to reliable distributed
programming. Springer, 2006.

[31] M. K. McKusick and S. Quinlan, “Case study: GFS: Evolution on fast-
forward,” ACM Queue: Tomorrow’s Computing Today, vol. 7, no. 7,
p. 10, Aug. 2009.

10

