
On HTTP Live Streaming in Large Enterprises

Roberto Roverso
Peerialism AB

KTH - Royal Institute of
Technology

Stockholm, Sweden
roberto@peerialism.com

Sameh El-Ansary
Peerialism AB

Stockholm, Sweden
sameh@peerialism.com

Mikael Högqvist
Peerialism AB

Stockholm, Sweden
mikael@peerialism.com

ABSTRACT
In this work, we present a distributed caching solution which
addresses the problem of efficient delivery of HTTP live
streams in large private networks. With our system, we
have conducted tests on a number of pilot deployments. The
largest of them, with 3000 concurrent viewers, consistently
showed that our system saves more than 90% of traffic to-
wards the source of the stream while providing the same
quality of user experience of a CDN. Another result is that
our solution was able to reduce the load on the bottlenecks
in the network by an average of 91.6%.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.4 [Computer-Communication Networks]:
Distributed Systems

General Terms
Algorithms, Performance

Keywords
HTTP live, private networks, distributed caching, content
delivery network

1. INTRODUCTION
In the last years, the streaming industry has witnessed a

shift from the RTP/RTSP standard towards HTTP live, a
set of protocols which all utilize HTTP for delivery of live
and on-demand content in IP networks [1]. Microsoft, Adobe
and Apple have developed players which embrace HTTP-
streaming and the concept of adaptive bitrate switching as
the main approach for broadcasting. HTTP live has been
adopted by content services and creators like Netflix, Hulu
and the BBC with support across all platforms and OSs,
including computers, tablets and smart phones.

The main challange of delivering HTTP-based live streams
is the unicast nature of the HTTP protocol. This creates a

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SIGCOMM’13, August 12–16, 2013, Hong Kong, China.
ACM 978-1-4503-2056-6/13/08.

potential bottleneck at the source of the stream with a lin-
ear increase in bandwidth demand as the number of viewers
increases. A natural approach, which is also the primary
solution to handle capacity issues for normal HTTP traf-
fic, is to introduce caching. For HTTP live this is the only
alternative since there is no multicast support.

While caching of HTTP live via Content Distribution Net-
works (CDNs) is common for the open Internet, it is chal-
lenging to deploy efficiently within private networks such as
those operated by corporations or other entities. Larger pri-
vate networks interconnect multiple network segments rep-
resenting geographically distributed offices with fixed VPN
links. Inside an office, the network is constructed with high
capacity links and switches. Traffic from and to the public
Internet is routed through a gateway link of fixed capacity
or through one or more segments until a gateway link is
reached.

The main bottlenecks in private networks are the VPN
and gateway links which are typically not dimensioned to
sustain the load of delivering one or more streams to a large
amount of viewers at the same time. While a private CDN
would dramatically improve the efficiency of HTTP live per-
formance, it is hard to deploy and manage since it requires
i) new or upgraded caching hardware to support HTTP live
ii) that each network segment is covered to handle the band-
width load of all potential viewers, iii) handling of heteroge-
neous network infrastructure resulting from network changes
such as company acquisitions and mergers.

In this work, we are exploring a software-based CDN for
HTTP live in private networks. We leverage the experience
acquired in our previous research on improving the efficiency
of delivery of HTTP streams over the Internet, where we
proposed a peer-to-peer distributed caching approach [4].
Based on the same principles, we design an overlay which
minimizes inter-segment traffic. In doing so, we enable ef-
ficient HTTP live streaming without the need of deploying
and managing expensive and specialized hardware. In addi-
tion, we evaluate our solution in real-world deployments in
private networks which allows us to present unique insights
into the problem at hand.

2. CHALLENGES
In this section, we identify a set of challenges and require-

ments which a distributed caching system must satisfy to
be a viable solution for HTTP live streaming in a private
network.

Locality and structure awareness. The overlay must
be constructed to follow the physical structure of the private



network in order to keep traffic within local segments and
offload gateway and VPN links.

Bitrate switching. An HTTP live player dynamically
switches between different bitrates for the same stream de-
pending on the available bandwidth and host rendering ca-
pabilities. Our solution must therefore be able to quickly
handle bitrate changes.

Vendor neutrality. Support different players and proto-
cols such as Microsoft’s Smooth Streaming, Adobe’s HTTP
Dynamic Streaming and the upcoming standard MPEG-
DASH.

Politeness. The delivery and relaying of content should
not interfere with other activities of the user or network
traffic generated by critical services.

Finally, in our industrial experience, we have found that
quality of experience (QoE) is a feature that content
owners are not willing to compromise on. Our service should
then strive to improve efficiency of distribution while pro-
viding QoE which matches the one of private CDNs.

3. SYSTEM OVERVIEW
In HTTP live streaming protocol every fragment is fetched

as an independent HTTP request that could be scheduled
on caching servers. The difference in our solution is that the
caching is done at desktop machines instead of dedicated
servers. The HTTP player is directed to a local caching
agent which acts as an HTTP proxy. All traffic to/from the
source of the stream as well as other peers passes by the
agent. Upon a content fragment request, the caching agent
tries to timely retrieve the data requested by the player from
other peers in the overlay. If a fragment cannot be retrieved
from any other peer on time, the agent downloads the miss-
ing portion of the fragment from the source of the stream,
e.g. a public CDN. By falling back to the source, we guaran-
tee that all fragments are delivered on time even if the over-
lay network cannot retrieve such fragments, thereby guar-
anteeing the desired level of QoE. This process is engineered
to make the agent totally transparent to the player and the
streaming infrastructure. In this manner, our platform can
support all HTTP-based live streaming protocols.

Overlay Construction. Our distributed caching system
is implemented as a self-organizing system based on a mesh
overlay network. When joining the system, peers are intro-
duced to other participants by a tracker. After that, they
build a random overlay which is used for dissemination of
live peer information, e.g. throughput and playback qual-
ity. A network segment id is provided by a central registry,
with a mapping provided by the network’s owner. Peers
choose their neighbours by sampling their local view and by
ranking peers according to the aforementioned information.
Peers make sure to partner with nodes which are retrieving
different bitrates, in order to adapt quickly to player bitrate
switches.

One or more peers in a segment are promoted to act as live
caches for all others in the same segment. The promotion
process is implemented either with the help of a locality-
aware central service or by means of a distributed K-leader
election algorithm similar to [2]. In order to determine the
peers to be promoted, we utilize an absolute ranking based
on metrics such as computational load, bandwidth and con-
nectivity.

Delivery. Promoted peers are tasked with pre-fetching
content ahead of all other peers in the same segment. The

Figure 1: HTTP live delivery in a private network
with our solution

pre-fetching happens either from the source of the stream
or from other nodes outside their segment. We manipulate
the pre-fetching in a way that promoted peers retrieve the
stream from the CDN only if their segment has a gateway
link, as the content is typically provided by a source external
to the private network.

As soon as a fragment is pre-fetched, other nodes in the
segment start to retrieve it from the promoted peer using
lower-than-best effort priority [3], as not to interfere with
other critical traffic in the network.

A sample delivery overlay is shown in Figure 1, promoted
peers are highlighted in black, while the others in orange.
Arrows denote the traffic’s flow across the gateway (GTW)
and VPN links, as well as across the network segments.

4. PRELIMINARY RESULTS AND DEMO
We have conducted a number of pilot deployments of our

system in large corporations located in the US and in Swe-
den. The largest deployment comprised of 48.000 peers on
89 network segments. Tests conducted with 3000 concurrent
viewers consistently showed that our system saves more than
90% of traffic towards the source of the stream. Another re-
sult is that our system was able to reduce the traffic on the
bottlenecks in the network by an average of 91.6%.

In the demo, we will provide extensive and interactive vi-
sualisation of the aforementioned data and we will showcase
a live stream distributed with our system to a number of on-
site desktop machines and mobile devices. More information
about our system can be found at [5].

5. REFERENCES
[1] S. Akhshabi, A. C. Begen, and C. Dovrolis. An

experimental evaluation of rate-adaptation algorithms
in adaptive streaming over HTTP. In Proc. of ACM
MMSys, 2011.

[2] V. Raychoudhury, J. Cao, and W. Wu. Top k-leader
election in wireless ad hoc networks. In Proc. of IEEE
ICCCN, 2008.

[3] R. Reale, R. Roverso, S. El-Ansary, and S. Haridi.
DTL: Dynamic Transport Library for Peer-To-Peer
Applications. In Proc. of ICDCN, 2012.

[4] R. Roverso, S. El-Ansary, and S. Haridi. Smoothcache:
Http-live streaming goes peer-to-peer. In Proc. of IFIP
NETWORKING, 2012.

[5] Peerialism AB. http://www.peerialism.com.


