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Abstract—In peer-to-peer applications deployed on the Inter-
net, it is common to assign greater responsibility to supernodes,
which are usually peers with high computational power, large
amount of memory, or high network bandwidth capacity. In
this paper, we describe a practical solution to the problem of
supernode selection, that is the process of discovering the best
peers in the network by some application-specific metric. We
provide a distributed heuristic that allows to identify the best
K nodes in the P2P overlay, by taking into consideration the
realities of actual deployments, such as the presence of NATs.
Our approach consists of an epidemic protocol which does not
require new connections to be established, but rather relies on
established connections, such as the ones provided by a NAT-
resilient peer sampling framework. We support our claims with
a thorough evaluation of our solution in simulation and in a real
deployment on thousands of consumer machines.

I. INTRODUCTION

In peer-to-peer applications deployed on the Internet, it is
common to assign greater responsibility to the “best” peers,
where the notion of “best” is based on metrics such as com-
putational power, amount of memory and network bandwidth
capacity. Such peers are usually referred as supernodes. In
distributed storage applications, for instance, peers with large
persistent memory and longer lifetime are likely to become
supernodes and therefore host replicas of content [14]. Supern-
odes are also used to work around connectivity issues [12] by
either relaying NAT traversal messages or even actual content
when no direct connectivity can be established [1]. In P2P live
streaming, supernodes with high upload capacity are tasked
to retrieve the streaming data directly from the source of the
stream and distribute it to a large number of neighbors [13]

In this work, we tackle the supernode selection problem,
that is the decision of which peers, among all nodes in the
overlay, should become supernodes. This effort is motivated
by the needs of a commercial peer-assisted live streaming
platform called Hive Streaming [19]1, which utilizes supern-
odes to efficiently deliver content to the viewers. Peer-assisted
streaming applications strive to provide the same quality of
user experience as CDNs in terms of throughput and latency,
while keeping the load on the source of the stream to a
minimum. There are two main requirements for supernode
selection. The first is that the supernodes must be the peers
with the highest upload capacity. It has been shown that
this can significantly decrease the average number of hops
the content has to traverse and therefore also lower latency,

1www.hivestreaming.com

significantly improving the quality of user experience [3]. The
second requirement is that the size of the supernode set has
to be kept – as much as possible – fixed over time and equal
to a design parameter K. The value K is a system parameter
that depends on the particular application; e.g., in P2P live
streaming applications [5] [10], K can be derived from the
number of peers and their upload bandwidth distribution.
In such case, the rationale behind limiting the amount of
supernodes is to provide bounds on the load and distribution
costs of the streaming source, while keeping a good level of
the quality of user experience.

Supernode selection can be simply achieved by having
nodes promote themselves as supernodes if their resources
are above a certain threshold [17] [1]. With this type of
solution, however, the supernode set can become arbitrarily
large and change drastically in size because of churn. A better
alternative for supernode selection is to use a distributed slicing
algorithm [4] that allows the identification of a slice, i.e. a
group of nodes in the overlay that again meet a minimum
threshold on available resources. Nodes in a slice can then be
promoted to supernodes by the application.

In the literature, two types of distributed slicing algorithms
can be found: absolute slicing [11] and ordered slicing [6].
However, none of the two approaches address our requirements
of finding the best K peers in the overlay network, but rather
either choose any K peers among the potential supernodes
(absolute slicing) or the best X percentage of nodes among
all nodes in the system (ordered slicing).

Another issue with the state of the art is that all distributed
slicing algorithms assume that peers can at all times establish
direct connections between themselves because they are based
on gossip. This is a rather unrealistic assumption in real de-
ployments where most of the peers are behind network address
translator (NAT) and cannot achieve direct connectivity, even
using NAT traversal mechanisms [8].

The contribution of this paper is a practical solution to the
problem of supernode selection called RANKSLICING. Beside
allowing the identification of the best K nodes in the system
under realistic deployments characterized by the presence of
NATs, RANKSLICING has been designed while keeping the
following additional set of informal requirements in mind:

• The stability of the supernode set is of paramount impor-
tance. The motivation for providing a supernode selection
algorithm, in the first place, is that the application needs to
delegate a certain role to the supernodes. Frequent and/or
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abrupt changes of the supernode set tend to disrupt the
application. Therefore, it is important that the supernode
set remains stable over time if no node better than any of
the existing supernodes joins the network or one of the
current supernodes leaves the overlay.

• All nodes should be aware of which peer nodes belong to
the supernode set; e.g., in live streaming, this is to easily
locate supernodes and request content from them.

• Each node should have an estimate about the stability of
its supernode set. This is to avoid executing expensive
operations if a supernode set if not stable.

RANKSLICING is based on an epidemic protocol for
supernode selection, where each peer maintains a view of
the supernode set and keeps that up-to-date over time by
continuously exchanging information with its neighbors. Our
approach is NAT-aware, that is it does not require the estab-
lishment of new connections but rather rely on a NAT-aware
topology management system such as the one provided by
NAT-resilient peer sampling protocols, such as WPSS [18] or
Croupier [2]. We evaluate our approach both in simulation and
in a real network on thousands of consumer machines. In our
experiments, we show that our approach is highly resilient to
churn and that meets all of the requirements described above.

The rest of the paper is organized as follows. Section II
introduces the work related to distributed slicing. Section III
describes the details of the problem to be solved, while Sec-
tion IV discusses our solution. Experimental results are shown
in Section V, while the paper is concluded by Section VI.

II. RELATED WORK

Absolute slicing, mentioned in the introduction, constitutes
in our opinion the most closely related work to RANKSLICING
since it aims at identifying a slice of the overlay network of
size K. Absolute slicing achieves supernode selection using
a three-layered overlay network. The outermost layer is a
random overlay that contains all peers and is built using News-
cast [7]. The second overlay is constructed in the same way
but only eligible nodes are allowed to participate. Eligibility
is determined by a threshold on an application-specific metric.
The last layer, called slice, is composed of K peers on average
and it is constructed by having peers probabilistically decide if
to join the layer according to the number of peers already in the
layer and the value of K. The approach is particularly suited
for churn as it is based on gossip and it can maintain an average
number of nodes in the third layer that is equal to K over time.
However, the set of nodes in the slice changes continuously
even without churn, which is unreasonable for our requirement
of stability of the supernode set. Besides that, absolute slicing
does not promote the best K peers in the overlay to the slice
layer but rather any K number of the eligible nodes.

Sacha et al. [20] propose a distributed ranking method
called Gradient, similar to [7]. The approach is based on
having nodes periodically measure their utility value through
a utility metric and gossip about the measured value with their
neighbors. Each peer then maintains a set of similar neighbors,
with respect to the utility value, along with a set of randomly
selected ones. The main application of the distributed ranking
in this case is search. Peers can issue queries for identifying
which peers have higher or same rank as specified in the query.

This can be used to find supernodes with high utility values,
however queries cannot be instrumented to return the top-K
peers according to those values.

Raychoudhury et al. [16] propose a strategy for identifying
the top K nodes in the context of wireless ad-hoc networks.
Each peer locally finds the directly reachable nodes and then
all peers proceed with the election of a leader supernode. The
leader supernode later in turn selects the remaining K − 1
super-peers. The protocol however does not tackle the problem
of continuously adapting the supernode set according to the
changes in the overlay network. The only way to address
churn is for the application to expressly restart the supernode
selection process.

A recent paper from Liu et al. [9] proposes an algorithm
for supernode selection based on gossip. Nodes start as regular
peers, to later build the set of candidate supernodes by evaluat-
ing the utility values of their neighbors. After that, peers make
a local decision, based on an application-defined threshold on
available resources, if to act as superpeers or not. Although
churn is expressly addressed as a problem, the number of
selected supernodes in the system cannot be specified by the
application in the proposed solution.

Finally, supernode selection can be achieved with struc-
tured overlay networks rather than gossip. The SPiDeR [21]
framework implements Web discovery services through a
structured overlay in which only the most powerful nodes join
a structured overlay network based on Chord [22]. In this case,
peers become supernodes if their identifiers occupy specific
positions in the ring. The same supernode selection technique
is used by a distributed filesystem designed by Kovendhan
el al. [14]. In our case, we concentrate on an unstructured
overlay approach given that it provides better resiliency to
churn compared to structured overlay approaches [15].

III. PROBLEM DEFINITION

In this paper, we aim at solving the problem of choosing a
supernode set that includes the best nodes in the overlay based
on a utility function provided by the application and has fixed
size K. As in absolute slicing, we limit the number of peers
that can become supernodes by setting a threshold on the utility
values of peers. Nodes having an utility value greater than the
threshold are considered eligible to become supernodes. This
is in line with our application of the algorithm, that is as part
of a live streaming system, where we set a threshold on, for
instance, computation power in order to avoid weak peers to
serve as supernodes. We design our approach considering that
the view of the supernode set at a peer should adapt as quickly
as possible to changes in the overlay, namely churn, such that
peers have, at all times, the best view of the top K peers. Due
to dynamism in the network and latency however, the view of
the supernode set at each peer might slightly differ. We have
designed our live streaming application to take into account
this limitation. However, the performance of the system as a
whole is directly proportional to how correct is the supernode
set estimation at peers.

We now define our problem in a more formal manner.

Let Πt = { p1, . . . , pn } be the set of nodes in the network
at any given time t. Each node pi is characterized by a time-
varying tuple Ct(pi) ∈ Rm that is our utility value. Ct(pi)
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contains m numerical values that measure the capabilities of
pi, in terms of software and hardware resources, at time t. A
node can obtain an up-to-date version of such tuple at any time,
by calling the capability function cf(). The eligibility predicate
ep : Rm → Boolean returns true if a given set of capabilities
is sufficient to become a supernode. A node pi is eligible at
time t if ep(Ct(pi)) is true.

Both the values that are reported by the capability function
and the definition of the eligibility predicate are application-
dependent. For example, nodes may be associated with a triple
〈x1, x2, x3〉, identifying machines with x1 CPUs, x2 GB of
available storage space and x3 KB/s of available bandwidth.
We could for instance consider eligible any node having at
least 16 GB of available storage and 2 CPUs.

We denote the set of eligible nodes at time t as Et ⊆ Πt.
Both the set of nodes and the set of eligible nodes may vary
over time: Πt may differ from Πt+1 because of churn, i.e.
nodes joining and/or leaving the system at any time. Et, besides
being affected by churn, may also change because of variations
in the system state: e.g., in the case of storage media, eligibility
may change as storage is allocated or deallocated.

We do not consider byzantine failures related to neither
nodes nor communication: security aspects are assumed to be
covered transparently by the framework underneath.

Under the aforementioned assumptions, the desired output
at any node pi at time t is the supernode set Lti such that
|Lti| = min{K, |Et|}. We call such set the supernode set of
pi at time t. Ideally, such sets should be characterized by the
following properties:

• Consistency: If no variations occur in the eligible set for
a sufficiently long time, the supernode sets of any pair of
node must eventually converge to the same set.

∃t0,∀t ≥ t0 : Et = Et+1 ⇒
∃t1 ≥ t0,∀t ≥ t1,∀p, q ∈ Πt : Ltp = Ltq

• Adaptiveness: If no variations occur in the eligible set
for a sufficiently long time, each of the supernode sets
must eventually be contained in Et. In other words, nodes
that lose their eligible status must eventually leave the
supernodes set.

∃t0,∀t ≥ t0 : Et = Et+1 ⇒
∃t1 ≥ t0,∀t ≥ t1,∀p ∈ Πt : Ltp ⊆ Et

IV. ALGORITHM

The design of RANKSLICING is inspired by the follow-
ing observation: given that the eligibility and selection as
supernode of a node depends strictly on its capabilities, such
values can be used to reduce supernode selection to a ranking
problem. So, we first rank eligible nodes based on their utility
value and solving the tie-breaks, if any; second, we select the
first K items in such ranking to become supernodes.

In our approach, we assume that nodes are already con-
nected through a random overlay topology provided by another
service, such as a NAT-resilient peer sampling service. Besides
that, in our protocol we strictly avoid creating new connections
in order to prevent running into connectivity limitations caused
by the presence of NATs. That is because, in gossip algorithms,

those limitations have been shown to cause significant biasing
towards nodes that are easily reachable [8].

For our implementation, we choose WPSS [18] to provide a
NAT-resilient overlay. In WPSS, every peer maintains a slowly
changing and fixed set of connections with its neighbors.
NATed nodes are connected only to public nodes and public
nodes are connected among themselves. Using this type of
overlay has a number of advantages. First, the system does not
incur in the cost of executing expensive NAT-to-NAT connec-
tion establishments. Second, the constructed overlay is random
and is not subjected to biasing introduced by the presence of
NATs. Finally, WPSS is resilient to churn, that means that
failed overlay connections are replaced with new ones such
that every peer maintains a constant number of connections
to neighbours. Layering our protocol over WPSS allows us to
design a protocol that is oblivious to connectivity limitations
caused by firewalls and NATs and where churn-related overlay
maintenance is greatly simplified.

A. Gossip-based algorithm

The distributed selection of the supernodes set is achieved
through a push-pull gossip protocol.

Each node pi maintains a set called view, which is the
local approximation of the supernode set, containing up to K
node descriptors. Each descriptor 〈i, lc, age, cap〉 is associated
to the identifier i of the node pi that created it, and contains
a monotonically increasing logical clock lc, an age parameter
age , and the evaluation of node capabilities cap as reported by
pi itself when the descriptor has been created. Two descriptors
contained in a view cannot be associated to the same process.

Periodically, each node pi obtains the identifier of a random
peer pj from the underlying peer sampling protocol and sends
a random sample S of the local view to it, adding a freshly
emitted process descriptor for itself pi.

Upon reception of the sample S, the node pj merges it
together with the local view as follows: 1) A merge list M
is built by concatenating S and the view Vj ; 2) Duplicated
descriptors (i.e., descriptors referring to the same process)
are removed, by keeping the one with the freshest logical
clock. 3) The merge list M is sorted in descending order of
capabilities, according to a pre-defined total ordering; 4) M
gets truncated to the first K elements; 5) The local view of j
gets replaced with the set of descriptors in M .

It should be noticed that this is not a peer sampling
protocol: the fact that a descriptor of pk is contained in the
view of pi does not imply a connected neighbourhood relation
between pi and pk. Consequently, each process is allowed to
know the identity of the K supernodes, without creating a new
topology (as in absolute slicing [11]) and without affecting the
existing one.

On every gossip exchange, the duplication removal phase
discards superseded descriptors, that is those that are older
than the ones which have been received in the last exchange
(for the same nodes). As a result of the sorting and truncation
phases, all but the best K descriptors get discarded, while the
descriptors of the strongest nodes keep being propagated in
the system. In the absence of churn, the eligible set becomes
static and all the nodes will eventually share the same set of
descriptors, thus satisfying the Consistency requirement.
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B. Adaptiveness and churn handling

The effects of churn on the overlay structure are assumed
to be handled by the underlying topology management service.
However, we still need to remove faulty nodes from the
supernode set, as they are no longer available for providing
their services. Descriptors referring to faulty nodes must be
removed from the views of every process. In the same way,
we need to address fluctuations of the supernodes set due to
evolutions in the node capabilities.

The descriptor field age is used to purge stale pieces
of information from views. Intuitively, this field reports the
cumulative time spent by a descriptor inside the view of each
process. When a fresh descriptor 〈pi, lc, age, cap〉 is emitted
by process pi, its age field is 0. As the process pj accepts
a descriptor into its view, a time-stamp ta is associated to it.
When a copy of the descriptor is re-propagated by pj , at time
tg , its age gets incremented by δ = tg − ta. Finally, a global
parameter of the algorithm named propagation age limit (PAL)
defines an age threshold after which descriptors get discarded
from the views of the nodes.

The age of a descriptor does not take into account the
network delay time. This fact might affect the system perfor-
mance if the network delay is not negligible with respect to δ,
which in turn depends on the gossip period. Intuitively, a small
PAL ensures therefore quick reaction to churn. On the other
hand, it slows down convergence by reducing the lifetime of
descriptors, regardless if they refer to faulty or alive processes.

This behavior can be partially mitigated through a sensible
choice among equivalent descriptors during the merging phase.
Equivalent descriptors refer to the same node and have the
same logical clock, but since the age is monotonically increas-
ing, a descriptor with higher age contains a more up-to-date
approximation of the real utility value of the node. Naturally,
this consideration holds under the assumption of a reasonable
drift between clocks of different nodes.

Changes in the utility value of nodes in the eligible set E
can be regarded as a mitigated form of churn: when a node
becomes eligible, it starts emitting descriptors, while a node
leaving E stops doing that. From the RANKSLICING protocol
perspective, these events correspond to nodes appearing and
disappearing respectively, although the underlying overlay is
not affected.

If a node pi leaves the E set, all the previously emitted
descriptors (if any) are no longer replaced by fresh ones. If
pi was a supernode, the descriptors stored in the views will
be eventually removed, as their age exceed the PAL threshold.
Descriptors from the top eligible nodes will take their place
during the following merge operations. This behavior matches
the Adaptiveness requirement.

C. Algorithm improvements

Once received the first transmission from pi, node pj
partially knows the content of the view of pi. The answer
sample can give priority to the locally stored descriptors known
to be more up to date with respect to the corresponding ones
owned by pi. All the remaining empty slots of the answer
sample are filled by taking random elements from the view,
yet avoiding the items which are known to be owned by the

initiator. The gossip session is terminated with the process pi
merging the answer as pj did before. This is more effective
than doubling the gossip frequency, as it takes advantage of
the context provided by the inbound sample.

D. Algorithmic definition

We will refer to pi as the local node (executing the algo-
rithm). The internal state of pi is defined by two dictionaries:
view represents the view of the node pi mapping nodes to
their descriptors, while tstamps maps each key of view into
the timestamp registered when the view entry was created.

For this purpose we define a set of methods for accessing
a dictionary: Put(), Get(), Del(), KeysOf() and ValuesOf().
With the function EmitDescriptor() we represent the action of
creating a fresh descriptor, characterized by an incremental
logical clock value and age equal to 0. IsEligible() is a short-
hand for ep(Ct(pi)), while the Now() function yields the
current time-stamp. Methods Age() and UpdateAge() read and
write the age field of a descriptor, respectively, while method
ID() reads its identifier.

Each gossip session is characterized by the following steps:

1) The initiator queries the underlying topology management
system for a random sample from the local neighborhood;

2) A sample of the view of size size is prepared by call-
ing function PrepareSample(∅, size) (Algorithm 1) The
output of the function is sent to the selected neighbor.

3) The neighbor receives a sample which is first passed as
parameter to the Merge() function (Algorithm 2), then it
generates an answer by passing the received sample S
as the actual parameter for the PrepareSample(S, size)
function.

4) Finally the initiator receives the answer sample, and runs
the Merge() function on it.

Algorithm 1 shows the PrepareSample() function. The first
part of the algorithm (lines 1 to 12) manages the emission
of a local descriptor: eligibility gets verified and a descriptor
is possibly inserted into the outbound sample. The view is
maintained consistent accordingly, either updating or removing
the local identifier stored in it, if any. The central part (lines
13 to 26) is executed only if a non-empty sample from the
initiator is passed as parameter: prioritized elements of the
local view, according to the logic described in Subsection IV-A
are added to the outbound sample. Finally, the last part of the
algorithm (lines 27 to 38) fills the remaining available space
in the outbound sample with randomly taken elements. Only
descriptors that have not expired are inserted into the sample.

Algorithm 2 shows the Merge() function. The mergeMap
dictionary is filled with a fresh local descriptor (lines 4-
5) and with all elements of the view (lines 6-11). All the
elements from the inbound sample to be merged are added
through the PutFresh() procedure (line 14 and Algorithm 3),
which ensures that the most up-to-date descriptor is maintained
for each referenced node. The descriptors are sorted with
the SortByRanking() function (line 16), which implements a
sorting of a set of descriptors based on the defined total
ordering. Finally the state of the local node is rebuilt (lines
17-24).
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Algorithm 1: PrepareSample(neighborSample, size)

1 ids← view.Keys();
2 now← Now();
3 if IsEligible(pi) then
4 D ← EmitDescriptor();
5 sample← {D};
6 if i ∈ ids then
7 view.Put(i,D);

8 else
9 sample← ∅;

10 if i ∈ ids then
11 view.Remove(i);

12 ids← ids \ {i};
13 if neighborSample 6= NIL then
14 foreach D ∈ neighborSample do
15 j ← D.getID();
16 if j ∈ ids then
17 D′ ← view.Get(j);
18 age← D′.Age() + now− tstamps.Get(j);
19 if D′.lc() > D.lc() and age ≤ PAL then
20 D′.UpdateAge(age);
21 tstamps.Put(j, now);
22 sample← sample ∪ {D′};
23 else
24 tstamps.Del(j);
25 view.Del(j);

26 ids← ids \ {j};

27 while |sample| < size & ids 6= ∅ do
28 j ← RandomSample(ids);
29 ids← ids \ {j};
30 D ← view.Get(j);
31 age← AgeOf(D) + now− tstamps.Get(j);
32 if age ≤ PAL then
33 D.UpdateAge(age);
34 tstamps.Put(j, now);
35 sample← sample ∪ {D(l)

j };
36 else
37 tstamps.Del(j);
38 view.Del(j);

39 return sample;

E. Pragmatic Aspects

During the experimentation phase, a behavioral difference
between nodes in the open Internet and NATed nodes emerged
from the dataset. We noticed that the former group show a
much quicker convergence with respect to the latter one. The
effect of this phenomenon is captured in Figure 7.

This phenomenon is associated to how WPSS [18], that is
the peer sampling system we used for both the simulations and
the real deployment, constructs the NAT-resilient overlay net-
work. Specifically, in WPSS public nodes have higher number
of neighbors with respect to NATed ones. As consequence, a
NATed node has fewer possible candidates for gossiping.

This is not a structural problem, as private nodes are still
able to converge to the correct supernode set. However, we
provide a modification of the algorithm to let private peers
converge as quick as the open Internet ones, we call that
overriding procedure.

Algorithm 2: Merge(neigborSample)

1 mergeMap← new Map();
2 now← Now();
3 if IsEligible(pi) then
4 D ← EmitDescriptor();
5 Put(mergeMap, D);

6 foreach D ∈ view.Values() s.t. D.getID( 6=)i do
7 j ← D.getID();
8 age← D.AgeOf() + now− tstamps.Get(j);
9 if age ≤ PAL then

10 D.UpdateAge(age);
11 mergeMap.Put(D);

12 foreach D ∈ neighborSample do
13 if j 6= i then
14 PutFresh(mergeMap, D);

15 candidates← mergeMap.Values();
16 sorted← candidates.SortByRanking();
17 nextView← new Map();
18 nextTstamps← new Map();
19 for idx ∈ [1 · · ·Min(K, |sorted|)] do
20 D ← sorted[idx];
21 nextView.Put(j,D);
22 nextTstamps.Put(j, now);

23 view← nextView;
24 tstamps← nextTstamps;

Algorithm 3: PutFresh(mergeMap, D)

1 if j ∈ mergeMap.Keys() then
2 D′ ← Get(mergeMap, j);
3 if D.lc() > D′.lc() then
4 mergeMap.Put(j,D);

5 else
6 mergeMap.Put(j,D);

This procedure works in the following manner: once the
perceived quality measure of an open Internet node reaches
a certain threshold value, reasonably close to 1, an override
request containing its view and perceived quality is sent to
the subset of neighbors behind a NAT. A node receiving an
override request executes a merge operation as for a normal
gossip session, although no answer is generated. This strategy
introduces a new parameter, called OQT (Overriding Quality
Threshold).

F. Supernode set estimation quality

The view maintained by each node corresponds to an
approximation of the supernode set that the application can
access locally both on the supernodes and on the other peers.

We define a quality measure q of the approximated supern-
ode set with values in the [0, 1] interval. A value of q close
to 1 means that the view of a node is equal to the optimal
supernode set of size K.

We define then the actual quality of the system, which
represents a general measure of the quality of the supernode
set estimation in the whole system. The actual quality is an
average computed by retrieving the view Vi of each node pi,
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and comparing it with an ideal supernode set L in the following
way:

q =
1

N

∑
pi∈Π

|Vi ∩ L|
k

Such computation can be easily achieved when having
global knowledge of the system, such as in simulation, by
accessing the view of the nodes and comparing it with the
optimal set of supernodes L. This is however not feasible in a
real deployment. For that reason, we emulate global knowledge
by letting peers report their current state to a central server and
then we compute the quality there.

We define also another measure of quality of the supernode
set that is estimated in a distributed manner: the perceived
quality. This measure of quality is made available to the
application using our protocol, to determine how good is the
approximation of the supernode set in order to avoid executing
expensive operations whenever the quality is low.

The estimation of the perceived quality is based on the
assumption that the local view of each node increases in
accuracy at every gossip session and it is executed each time
a node pi obtains a new view V ′i from merging an incoming
sample with its current view Vi. The first step of the calculation
by comparing the current view with the view obtained by
merging the received sample:

qi,0 =
|Vi ∩ V ′i |

K

The resulting quality value qi,0 is subject to quick fluc-
tuations, as it changes at every gossip round according to
how similar the local view is to the view of the neighbor. A
second quality evaluation qi,1 is therefore estimated through
an iterative moving average:

q
(0)
i,1 = 0

q
(n)
i,1 = α · q(n−1)

i,1 + (1− α) · qi,0 α ∈ [0, 1]

The base of the iterative computation q(0)
i,1 is zero because

initially each view is empty, hence the intersection with the
ideal supernodes set would be empty. Intuitively, the perceived
quality is an optimistic measure, as the quality values are
based on pieces of information which come from the direct
neighborhood.

V. EXPERIMENTAL RESULTS

In this section, we delve into the experimental evaluation
of RANKSLICING, at first in a simulated environment, then on
an actual deployment.

A. Experimental setup

We implemented our protocol in a production-quality de-
velopment framework used also for our commercial prod-
ucts. That is an event-driven and component-based framework
which enables code to be executed both in simulation and in
a real deployment. The tool allows to emulate a number of

network characteristics in simulation such as delays, connectiv-
ity limitations given by the presence of NATs, and bandwidth
allocation dynamics. Every experiment in simulation was run
at least 20 times for statistical significance, and in four different
churn scenarios:

C00 No churn;
C03 Churn 0.003 (meaning that 0.3% of the nodes

leave the system and get replaced within 10s);
C05 Churn 0.005 (0.5% every 10s);
C10 Churn 0.010 (1.0% every 10s);

In real deployment, we deploy our protocol on around 6500
of consumer machines. Those are provided by users of our
commercial live streaming application who allowed us to run
experiments on their computers. These hosts are located mostly
in Sweden (80%) but also in Europe (12%) and in the US (7%).
The ratio of open-Internet nodes is 20% while the rest of the
hosts are behind NAT.

All experiments were conducted using an agent installed in
our volunteers’ machine which can be instrumented remotely
to run parameters study. Peer-to-peer communication in this
setting was provided by the framework using UDP-based net-
work library which features the same reliability, congestion and
flow control as TCP, plus it offers NAT traversal capabilities.

As NAT-aware topology management of choice, we use
WPSS both in simulation and in the real world scenario [18].

B. Methodology

We first study the system behavior in simulation, where we
strive to identify the best set of values for the aforementioned
parameters by recreating similar conditions to the ones of
our real deployment. For that, we configure the simulator to
emulate the same estimated delay, bandwidth and connectivity
success probability observed in our consumer test network.

After that, in deployment, we configure our protocol with
the best set of values obtained in simulation, always for the
parameters described above, and assert the correct functioning
of the protocol.

In all our experiments, both in simulation and deployment,
we used an overlay size of N = 1, 000 peers and a gossip
session period T of 1 second. Regarding the ranking of peers,
we chose to let the utility function assign each node a random
value in the [0, 1] range. That value is kept constant for the
whole execution of the test. We do not explore variations of
the utility value of a peer over time but instead we concentrate
on churn given that it produces the same kind of phenomena
on our algorithm.

In simulation, we use both perceived and actual quality
as main performance metrics for our protocol, as we defined
in Subsection IV-F. In order to compute the actual quality,
we compare the supernode set of each node with a “perfect”
supernode set built from the global view of the system. After
that, we average the actual quality values of all nodes for
obtaining a single measure of actual quality.

In deployment, we also provide both perceived and actual
quality. The former is reported by the peers to a snapshot server
over time. The second instead is calculated by having peers
send the totality of their supernode set to the snapshot server

6
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and then comparing that set with the ideal set of nodes derived
from a central ranking of nodes constructed at the snapshot
server.

C. Evaluation in simulation

In this section, we evaluate the performance of our protocol
in simulation.

1) Sampling size: We start by studying the behavior of our
protocol with different values of the sampling size, identified
by the parameter H . In the same set of experiments, we assert
whether the behavior of the protocol remains consistent for
different values of K. The H parameter defines the maximum
number of elements transmitted for each sample. Values valid
for H are [1..K]. In general, we expect that for values of H
that are closer to K to obtain faster convergence since most
or all of the supernode set will be transferred between peers.
As we will see, that will come at a higher network bandwidth
usage.

In order to assess the performance of the protocol, we
observe the evolution of the absolute quality in 20 different
experiments from the following parameter space:

• K ∈ { 50, 10 }
• H/K ∈ { 0.1, 0.2, 0.3, 0.4, 0.5, 1 }
• PAL = 9500ms (chosen arbitrarily)

Besides the actual quality, we monitor the evolution of the
perceived quality in presence of churn and for all churn classes
mentioned earlier. Table I reports the analysis of the time
required to converge to the 90% of the steady state quality.
This yields a first estimation of the convergence time. We
choose 90% because, according to our experience in P2P live
streaming, it is a reasonable performance level for our system
to behave correctly.

We can observe that the best performance on both actual
and perceived quality is achieved when H/K = 1, namely
when the initiator of a gossip session shares all its view.
From the analysis we can also see that we are still able to
reach convergence in a reasonable amount of time for H/K
in the [0.3, 1) range. However, convergence time significantly
increases as values of H/K get closer to zero. This can be
seen graphically in Figure 1, which shows the reported result
for the C03 churn class.

In Table II, we report an analysis of the bandwidth utilized
by our algorithm, in bytes per second, in the same set of ex-
periments described above. Considering that the H parameter
defines the size of the sample, we obtain a linear decrease
of bandwidth utilization when the H/K ratio also decreases.
From the table we can also see that bandwidth utilization is
also partially influenced by both the churn and the parameter
K.

2) Refinement of the perceived quality: As mentioned in
Section IV-F, the perceived quality metric yields a less accurate
estimation than the actual quality metric.

The α parameter represents the smoothing factor for the
perceived quality computation. The valid range for it is in the
[0, 1) interval: as the value of α is set closer to 1 we obtain
a higher hysteresis. By increasing α, we obtain that nodes
perceive a slower convergence to the optimal value 1, which
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Fig. 2. Identification of the best value for the α parameter: the process
consists in computing, for each experiment, the integral of the absolute
difference between perceived and actual quality (corresponding to the grey
area on the inner graph). By minimizing the value of the integral we identify
the configuration of α which maximizes the precision of the perceived quality.

corresponds to the actual quality of the system. All peers start
in a situation where peers have perceived quality q = 0 then
the quality increases until it converges to a stable value, this in
case of absence of churn. However, in the presence of churn,
high values of α reduces the capacity of the protocol to detect
the changes in the supernode set introduced by the churn.

In this set of experiments, shown in Figure 2, we strive
to find the value of the α parameter which yields the best
estimation of the actual quality.

For each experiment, we compute the difference between
the actual quality and perceived quality measures in time,
and integrate the results to observe the speed of the changes:
smaller integral corresponds to a smaller difference area be-
tween the two measures, hence a minimization of the integral
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K 10 50

Churn h/K 1 0.5 0.4 0.3 1 0.5 0.4 0.3

C00 (0.0 %) µ 18.0792 22.3065 26.0538 32.0598 17.8289 20.7665 23.0508 26.5543
σ 1.5378 1.8242 1.4640 1.9527 0.8055 0.9344 0.6879 0.4719

C03 (0.3 %) µ 17.8289 22.6915 26.0538 33.7282 17.9791 20.7280 22.3835 27.2217
σ 1.2043 1.5953 1.0683 1.8653 0.8315 0.9078 0.5005 0.7461

C05 (0.5 %) µ 18.2294 22.4220 26.7212 33.3945 17.8790 20.5740 23.0508 27.2217
σ 1.1090 1.4751 2.2692 2.2196 0.7078 0.7223 0.6879 0.9438

C10 (1.0 %) µ 19.3805 24.5010 29.5573 36.2307 18.0291 20.7280 23.3845 28.7232
σ 5.8153 5.5808 5.1906 6.1886 0.7929 0.8643 2.1430 1.9527

TABLE I. DIFFERENT CHOICES OF K AND H/K INFLUENCE THE CONVERGENCE TIME OF THE SYSTEM. THE REPORTED MEASURE REFERS TO THE
AVERAGE TIME REQUIRED TO REACH THE 90% OF THE STEADY STATE QUALITY.

K = 50 K = 10
Inbound µ Inbound Outbound µ Outbound Inbound µ Inbound Outbound µ Outbound

Churn h/k (bytes/sec) (ratio) (bytes/sec) (ratio) (bytes/sec) (ratio) (bytes/sec) (ratio)

C00 (0.0%)

1 227.5421 1.0000 100.4379 1.0000 54.2266 1.0000 24.0302 1.0000
0.5 120.5770 0.5299 52.7411 0.5251 31.4794 0.5805 14.4576 0.6016
0.4 98.8093 0.4342 43.1918 0.4300 26.8249 0.4947 12.5427 0.5220
0.3 76.7182 0.3372 33.6207 0.3347 22.1346 0.4082 10.6246 0.4421

C03 (0.3%)

1 226.2513 1.0000 96.7191 1.0000 53.6728 1.0000 23.2650 1.0000
0.5 119.7833 0.5294 50.8883 0.5261 31.0439 0.5784 14.0683 0.6047
0.4 98.1803 0.4339 41.7576 0.4317 26.4386 0.4926 12.2446 0.5263
0.3 76.1631 0.3366 32.5417 0.3365 21.7685 0.4056 10.3974 0.4469

C05 (0.5%)

1 225.4849 1.0000 94.3091 1.0000 53.3811 1.0000 22.7784 1.0000
0.5 119.2337 0.5288 49.6770 0.5267 30.7802 0.5766 13.8182 0.6066
0.4 97.5229 0.4325 40.7761 0.4324 26.1177 0.4893 12.0296 0.5281
0.3 75.5962 0.3353 31.7993 0.3372 21.4730 0.4023 10.2305 0.4491

C10 (1.0%)

1 223.5101 1.0000 87.8138 1.0000 52.5535 1.0000 21.4467 1.0000
0.5 117.8882 0.5274 46.3856 0.5282 30.0637 0.5721 13.1227 0.6119
0.4 96.0894 0.4299 38.0657 0.4335 25.3695 0.4827 11.4365 0.5332
0.3 74.3708 0.3327 29.7503 0.3388 20.7698 0.3952 9.7697 0.4555

TABLE II. AVERAGE BANDWIDTH USAGE IN 4-MINUTES LONG EXPERIMENTS. THE Inbound ratio AND Outbound ratio COLUMNS SHOW THE
BANDWIDTH USAGE NORMALIZED OVER H/K = 1.

gives the best value for the α parameter.

We set the values of K = 50, H/K = 0.5 which are
the best values identified in the previous experiments and
PAL = 9500ms, which will see is also the best value for that
metric. We ran 20 tests for α ∈ [0, 1), analyzing the behavior
in the four churn classes. After a preliminary study we realized
that the perceived quality measure works better for values in
the [0.95, 0.98] range, while it abruptly worsens as values get
closer to 1. This fact is depicted in Figure 2, which focuses
on the behavior in the best range: we can see that the system
follows similar dynamics for all the churn classes we took in
account.

3) Identification of Propagation Age Limit (PAL): The
Propagation Age Limit defines the maximum age threshold for
descriptors. Intuitively, the value of PAL should be greater than
T , otherwise node descriptors would not be propagated at all.
Small values translate into a faster elimination of descriptors
of potentially failed nodes, but also in a slower convergence
time, since good descriptors are also quickly removed from the
system. Here we show the results obtained from the analysis
of this trade-off.

We ran two sets of experiments, the first consisted in
running the algorithm with the various churn classes, while
in the second set of experiments the scenario scheduled a
catastrophic churn effect, with the 20% of the nodes leaving
the network simultaneously, after the supernodes set is built.
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Fig. 3. Relation between the PAL parameter and the average time required to
converge to a steady state quality. Higher values of PAL allow the descriptors
of the super-nodes to survive and get propagated for more time.

In both settings, we started from a base configuration of
K = 50, H/K = 0.5, α = 0.95, varying the PAL parameter
in the [9000, 15000] (milliseconds) range.

In the first experiment, we identify how the PAL parameter
influences the convergence time. The analysis involved two
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Fig. 4. Relation between the PAL parameter and the time to recover from
a catastrophic churn event (shown in the subgraph). High values result in a
slower recover from failure, as all descriptors, including the ones referring
disappeared supernodes, remain in the system for a longer time.

steps: the isolation of a target quality threshold for each churn
class (achieved by measuring the minimum quality value when
the system has reached a stable quality) and the aggregation by
churn class of the convergence times to the defined threshold
(average and standard deviation). In Figure 3 we can see that,
for this setting, a PAL value greater than 12 seconds results in
better convergence performance.

The second set of experiments aims at measuring the effects
of the PAL parameter on the recovery from churn effects. The
analysis has been achieved in the same way as the first set of
experiments, but measuring the time required to recover to a
stable quality value after a catastrophic churn event. We can
see in Figure 4 that the recovery time grows linearly with the
PAL. This because the descriptors referring to faulty nodes get
removed and replaced only when their age reach the value of
PAL.

The picture also highlights a non-linear behavior for values
of PAL smaller than 6 seconds. This is due to the fact that, for
those values, descriptors referring to working supernode get
removed from the views before they can be refreshed.

D. Evaluation in deployment

The experiments executed on the real deployment involved
a 1 000 nodes sample out of around 6 500 available hosts.
Note that the network was subject to natural churn, that
is the number of nodes was decreasing in time during any
given experiment because of users turning off their machines.
Besides that, the experiment could not be started on around
8% of the hosts due to firewall limitations and congestion in
the network.

For deployment experiments, we set H = K and K = 10.
As a consequence, the actual quality can only assume 10 values
in the range [0,1]. Based on the simulation results, we select
a value for α of 0.95 and a value for the PAL of 12s. The
overriding quality threshold, OQT, was set to 0.975. We let all
peers join uniformly at random in the first minute of the test,
the algorithm is started on the node 30 seconds after the join
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such to allow time for the underlying topology, provided by
WPSS, to be set up.

Figure 5 shows the evolution of the average perceived
quality in deployment. The same experiment is reported in
Figure 6 from the point of view of quality distribution among
nodes over time. In the Figure, the upper line represents the
total number of peers. The colored areas beneath that line
indicate how many of those peers experience a specific value
of actual capacity. As we can see, almost all nodes achieve an
actual quality value close or above 90% after 20 seconds that
all peers have joined.

We record also the time required to reach the steady state of
the perceived quality values of 90% and 97.5%. The measure
was taken for each node, relative to the time that it first
reported to the snapshot server. Table III shows the related
statistics.

In Figure 7, we show the difference between the actual and
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Quality Threshold Quality Threshold Convergence Time (seconds)
Percent Value µ σ

90% 0.874442513738 56.4706454741 11.4602132189
97.5% 0.947312723216 62.2236587216 12.1045159194

TABLE III. CONVERGENCE TIME OF A SET OF 1 000 NODES AS
EXPERIMENTED IN A REAL DEPLOYMENT. THE REPORTED VALUE IS

RELATIVE TO SINGLE NODES AND REFERS TO THE TIME REQUIRED TO
REACH 90% AND 97.5% OF THE STEADY-STATE ACTUAL QUALITY.
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Fig. 7. Comparison of convergence time for open Internet and NATed
nodes, in actual deployment. The graph on the top highlights the difference in
performance for one normal execution of 100 nodes. The graph on the bottom
shows a second execution, in which the overriding procedure is triggered on
the open Internet nodes, with an Overriding Quality Threshold of 0.97.

perceived quality measurements at NATed and open-Internet
nodes. As we can see, thanks to the variant of the algorithm
described in Section IV-E, both set of nodes reach the same
quality values over time.

VI. CONCLUSIONS

In this paper, we proposed RANKSLICING, a decentralized
algorithm for supernode selection that allows to identify the
best K nodes in the overlay. Our approach consists of an
epidemic protocol that is highly resilient to churn and does not
require new connections to be established, but rather relies on
established connections, such as the ones provided by a NAT-
resilient peer sampling framework. Thorough experimental
analysis both in simulation and on a deployment of thousands
of consumer machines shows that the solution is practical and
meets the requirements of consistency and stability imposed
by our use-case, that is a P2P live streaming application.

As future work, we will be incorporating RANKSLICING
into our application and study its behavior together with the
rest of the system.
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