
Gossip-based Partitioning and Replication
for Online Social Networks

Muhammad Anis Uddin Nasir ∗, Fatemeh Rahimian†, Sarunas Girdzijauskas ∗
∗ KTH, Royal Institute of Technology, Sweden

{anisu, sarunasg}@kth.se
† Swedish Institute of Computer Science (SICS), Sweden

fatemeh@sics.se

Abstract—Online Social Networks (OSNs) have been
gaining tremendous growth and popularity in the
last decade, as they have been attracting billions of
users from all over the world. Such networks generate
petabytes of data from the social interactions among
their users and create many management and scala-
bility challenges. OSN users share common interests
and exhibit strong community structures, which cre-
ate complex dependability patterns within OSN data,
thus, make it difficult to partition and distribute in a
data center environment. Existing solutions, such as,
distributed databases, key-value stores and auto scaling
services use random partitioning to distribute the data
across a cluster, which breaks existing dependencies
of the OSN data and may generate huge inter-server
traffic. Therefore, there is a need for intelligent data
allocation strategy that can reduce the network cost
for various OSN operations. In this paper, we present
a gossip-based partitioning and replication scheme that
efficiently splits OSN data and distributes the data
across a cluster. We achieve fault tolerance and data
locality, for one-hop neighbors, through replication.
Our main contribution is a social graph placement
strategy that divides the social graph into predefined
size partitions and periodically updates the partitions
to place socially connected users together. To evaluate
our algorithm, we compare it with random partitioning
and a state-of-the-art solution SPAR. Results show that
our algorithm generates up to four times less replication
overhead compared to random partitioning and half the
replication overhead compared to SPAR.

Keywords-scalability, online social networks, replica-
tion, partitioning.

I. Introduction

Recently, there has been an increase in use of Online
Social Networks (OSNs) and social applications. The most
popular OSNs, e.g., Facebook, Youtube and Twitter, at-
tract millions of users and generate petabytes of data
every day [1], [15], [28]. In order for OSN services to run
smoothly under such high workloads, the OSN providers
are required to employ large geo-distributed data centers.
Data distribution in a data center environment requires
a sharding technique to split OSN data and distribute
it across the cluster. A naive way of data distribution is
using random partitioning, where each user (node), in a
social graph, is assigned randomly to a machine in the

system. Historically, such solutions work fine for tradi-
tional web/database applications. However, OSNs differ
from traditional web applications due to the access pattern
of their users. For example, a typical query by an OSN user
is to gather a news feed, which requires the system to ag-
gregate the information related to multiple users. Random
assignment of OSN data may place the socially connected
users on different machines and generate high network
traffic and increase the response time for execution of such
queries.

Users in social networks often form groups based on
common interests and exhibit strong community structure
[23], [13]. The existence of community structure may
facilitate OSN providers to identify and place the data of
connected users on geographically close servers, in order
to utilize the network bandwidth efficiently and improve
overall performance. However, community detection in
OSN graphs is an NP-Hard problem, which requires a
heuristic to estimate a solution and no mainstream OSN
provider employs such a solution.

Most of the modern enterprises leverage various frame-
works, like Relational databases and noSQL databases [6].
Cassandra [12] and Amazon Dynamo [4], are among the
most prominent key-value stores that are used by various
enterprises. However, most of such systems use random
partitioning for data distribution, which makes them inef-
ficient for OSNs, as they generate high network traffic.
To mitigate this problem, replication can be employed
by creating snapshots of one-hop neighborhood of users.
However, creating local copies for randomly distributed
OSN data can end up in full replication. Figure 1 illus-
trates how random assignment can lead to full replication.
In particular, Figure 1 (a) shows a social graph, which
is distributed randomly across two servers in Figure 1
(b). The colors of the nodes reflect the servers having
the master copy of the users, e.g., node 2 has master
copy on Server 1, and so it takes the color of Server 1.
To enforce data locality, we need to make sure that each
connected user can be accessed locally from all its friends.
For instance, user 9 has four friends, but among its friends
user 5 and 10 reside on a different server. In this scenario,
replicas of user 5 and 10 are created on server B to enforce
data locality. Similarly enforcing data locality for every

Fig. 1. (a) Sketch of a social graph with nodes (users) and edges
(connections), (b) users randomly distributed across two servers and
(c) enforcing data locality within one-hop neighborhood by creating
local copies (replicas) of user data leads to full replication.

user will end up in full replication, as shown in Figure 1
(c).

Although not yet widely adopted, researchers have also
contributed in development of efficient storage and pro-
cessing systems for OSNs [2], [25]. In one of the first at-
tempts to exploit the interlinked nature of OSN data, Pu-
jol et al. [19] proposed SPAR, which addresses the problem
of partitioning and replication of OSNs by enforcing data
locality within one-hop neighborhood. It uses a heuristic
based on greedy optimization for placement of users and
its replicas. However, as we show in the following example
their greedy placement heuristic is prone to getting stuck
in local optima and is unable to make data allocation
decisions based on the more global view on the data
connectivity graph. Hence, it may become inefficient for
huge networks, dealing with millions of nodes and billions
of edges (e.g., Facebook, Twitter). Figure 2 (a) shows a
social graph, which is partitioned between two servers.
Consider that subsequently node 9 joins the network and
creates link with nodes 2, 3, 4 and 5. Figure 2 (b) shows
how SPAR places the new user in the existing graph. An
optimal placement of user 9, would be to place it with all
its friends on Server 1. However, SPAR places the user 9
on Server 2 and ends up creating 5 additional replicas to

maintain data locality.
In this paper, we propose the first partitioning and repli-

cation technique which is explicitly tuned to exploit the
interlinked nature of OSN data, while successfully avoiding
the shortcomings of aforementioned SPAR algorithm. In
particular our algorithm radically improves the replica
allocation strategy and avoids getting stuck in trivial local
optima, as described in the example above (Figure 2). We
propose a gossip based heuristic to solve the optimization
problem of minimizing the number of replicas across the
servers. Our work is inspired by JA-BE-JA [20], which is a
distributed graph partitioning algorithm that uses a gossip
protocol to partition a graph into equal size components.
Our algorithm follows a node centric approach, where
each node periodically gossip with other nodes using its
local information and continuously tries to reduce the
number of replicas in the system. In contrast to SPAR,
the heuristics behind our algorithm contains mechanisms
to explicitly prevent the algorithm getting stuck in local
optima. In order to achieve this we employ two techniques:
a) continuous gossiping among peers on their current state
and position, which constantly explores and tries to find
locally the best data assignments in each and every part
of the network, and b) the simulated annealing technique
[24], which allows the algorithm to discover more favorable
regions for exploration within the solution landscape. The
combination of the above techniques in effect enables our
algorithm to take into account the wider view of the
social graph, and dramatically improves the performance
of the system. Figure 2 (c) shows the expected outcome of
our algorithm and illustrates that our proposed algorithm
requires lower number of replicas compared to SPAR. We
implement our algorithm and compared its performance
with de-facto random partitioning and a state-of-the-art
solution SPAR. Results show that our approach reduces
the replication overhead four times as compared to random
partitioning and by factor of two compared to SPAR.
Moreover, we demonstrate that our algorithm in capable
of handling dynamic nature of OSNs and provides better
scalability using a distributed design instead of a central-
ized one.

II. Partitioning and Replication

In this section, we discuss our heuristic algorithm that
is based on a gossip protocol and solves the minimum
replica problem addressed by SPAR [19]. Throughout this
paper, we use the terms node and user interchangeably
to represent a single user. Users’ information is stored
in the system, which contains set of servers, either as a
consistent master copy or as a set of eventually consistent
replicas. Our algorithm partitions a social graph into equal
size components and stores these components on different
servers. The algorithm ensures data locality for each user,
i.e., data related to all one-hop neighbors resides on the
local server of the user. To provide locality, it creates copies
of the user data across the servers. The system guarantees

Fig. 2. (a) Sketch of an initial graph distributed across two servers, figure (b) and (c) shows the distribution of nodes and replicas after node
addition and link creation using SPAR and the proposed algorithm respectively, i.e., SPAR requires 5 additional replicas and our algorithm
requires 3 additional replicas.

the consistency for single master copy and updates all the
replicas using the master copy. Our algorithm exploits the
social connectivity of users of OSNs and creates as few
replicas as possible. Below, we discuss the system design
and operations that are used to solve the optimization
problem.

A. System Design

We propose a gossip-based local search algorithm that
can be used to efficiently store the OSN graphs on a set of
servers. The algorithm is capable of running both in offline
and online mode. In our work, we concentrate on running
the algorithm in offline mode, where we take the snapshot
of the social graph and run the algorithm to find an
efficient placement of OSN users. Hence the algorithm does
not add any overhead into the production system and can
be executed on periodic basis, i.e., every month or every
three months. Our algorithm runs on set of machines,
where each machine is responsible for group of nodes in
the social graph, e.g., in case of 100,000 users and 10
servers, each server will act on behalf of 10,000 users. The
algorithm is capable of executing in both distributed and
central environment and is capable of handling millions of
users and connections.

B. System Operations

The algorithm follows a node centric approach, where
each node periodically selects a peer from the social graph
and tries to position itself on a server where it requires
minimum number of replicas. For gossiping, the algorithm
requires a peer selection scheme that can be used, by a
node, to select another peer from the social graph. At the

heart of the algorithm is the cost function, which facilitates
in achieving the goal of minimizing global number of
replicas by purely local decisions. Each node in the social
graph periodically select a peer and use the cost function
to evaluate their positioning decision and exchange their
servers if it results in reducing number of replicas in the
system. As our algorithm is a heuristic based solution, it
is probable to produce a solution that is local optima. We
used simulated annealing technique for our algorithm to
escape from the local optima and find a solution closer
to a global optima. Below, we discuss aforementioned
operations in detail.

1) Cost Function: The algorithm uses a cost function to
calculate the cost of a node on a server. This function helps
the algorithm to evaluate the decision for server exchange,
i.e., nodes exchange their servers, if the server exchange
reduces the combined cost of both the nodes. The cost of a
user on any server is represented by the number of replicas
that a node requires to maintain data locality. We have two
different cost functions to calculate the cost, i.e., 1) cost for
the existing server and 2) cost for the new server. Suppose
we have a graph G = (V,E), and the algorithm randomly
selects a node p ∈ V . Node p has multiple copies across
the servers (0...k -1), i.e., master copy sp and set of replicas
S′p. As graph G represents a social graph, node p may have
a set of neighbors Np. Below mentioned functions are used
to calculate the cost of a node on its existing server.

L(s) =
∑
i∈Np

1 (si = s) (1)

ai(s) =

{
0 if si = s
1 otherwise

}
(2)

bi(s) =

{
0 if L(s) > 1
1 otherwise

}
(3)

X(s) =
∑
i∈Np

ai(s) ∗ bi(s) (4)

L(s) represents the sum of neighbors of a node that exists
as a master on a server s. a(i) denotes a decision variable,
which is equal to 1 if a user i exists on server s as a replica.
b(i) denotes a decision variable, which is equal to 1 if no
neighbor of user i has more than one master on server
s (master other than the gossip node). X(s) denotes the
cost function that is the sum of all the neighbors that exist
as a replica and has no other neighbor as master on the
same server. For the cost of a node on a new server, the
algorithm counts the neighbors that do not exist on a new
server, either as master or as a replica.

2) Peer Selection: As discussed above, each node in the
social graph requires selecting a peer to perform gossip.
For peer selection, we borrow the insight from hybrid peer
selection technique [20]. In hybrid peer selection, each
node initially tries to selects one of its direct neighbors
uniformly at random and evaluates the combined benefit,
using the cost function. Both the node and its selected
neighbor exchange their servers, if it results in better
positioning of nodes, in the system, i.e., reducing the total
number of replicas. In case, if algorithm does not able to
reduce any replicas using a direct neighbor, it performs
a random walk to select a distant neighbor and again
evaluates the collective benefit for the server exchange that
can reduce the number of replicas in the system.

3) Simulated Annealing: As our algorithm is a gossip
based solution, it explores the global solution space utiliz-
ing local moves at every node and produces result better
than one-shot SPAR solution. However, as our algorithm is
a heuristic based solution, it is prone to getting stuck in a
local optima. We can further improve the solution utilizing
the simulated annealing technique [24] that helps the al-
gorithm to avoid getting stuck in local optima and achieve
results closer to global optima. Simulated annealing is a
metaheuristic that is used to solve the global optimization
problem of finding global optima in a large search space.
It introduces a noise, analogous to temperature, into the
system and allows system to perform moves that are not
allowed in the normal condition (see equation 7). These
moves allow algorithm to move away from local optima.
The noise eventually fades out from the system depending
on the cooling rate (δ) and the algorithm converges to
a value, which is more likely to be close to the global
optima. We perform experiments (see section 3) to set up
parameters for simulated annealing, i.e., cooling rate (δ)
and initial temperature (To).

C. Algorithm

1) Greedy Algorithm: We initialize the system by plac-
ing the user and its replicas, randomly in the network.
When a new node joins the network, the algorithm assigns
it to the server with minimum number of masters and
creates the required replicas across the servers, for fault
tolerance. In case of edge creation, between two nodes, the
algorithm checks if both nodes exist on the same server.
In case of different servers algorithm creates their replicas
to maintain data locality, e.g., suppose node A resides on
server 1 and node B resides on server 2, in this case we
need to create replica of node B on server 1 and vice versa.

2) Server Exchange: After the peer selection, both the
user and its selected neighbor calculate their cost. For
example, suppose node A, which has its master on server 1
and node B, which has its master on server 2, are two nodes
in the graph and node A selects node B for the server
exchange. The algorithm utilizes the aforementioned cost
function to calculate the number of replicas for both nodes
A and B to exist on both the servers 1 and 2. The nodes
only exchange their servers, if it reduces the number of
replicas in the system. Our algorithm uses equation 7 to
decide if it has to perform the server exchange between
node p and q. The equation calculates the cost of both
the nodes on their existing and new servers. Moreover, the
equation contains an additional parameter (adjust), which
accounts for their own replicas, on existing servers in case
of their movement to the new server and Tr is a simulated
annealing parameter.

adjust(p, q) =

{
0 if e(p, q) ∈ E

t(p, sp, sq) + t(q, sq, sp) otherwise

}
(5)

t(i, sp, sq) =

{
0 L(sp) > 0 and L(sq) > 0
1 L(sp) > 0 and L(sp) = 0

}
(6)

(Xp(sp)+Xq(sq)+adjust(p, q))×Tr > Xp(sq)+Xq(sp) p, q ∈ N
(7)

III. Discussion

In our work, we propose a gossip-based approach for par-
titioning OSNs. Since our algorithm is capable of running
in both offline and online modes, the most efficient way for
OSN service providers to manage their system is to execute
our algorithm in the offline mode on periodic basis (e.g.,
every day, week or month, depending on the workloads).
In this way, the algorithm will avoid the network and
processing cost on the production machines. The actual
data transfer corresponding to OSN users can be made
only when the algorithm converges to certain placement,
which means that we only deal with the metadata of a so-
cial graph in the algorithm and avoid data inconsistencies
during the transition phase of the algorithm. Furthermore,
the incremental nature of our algorithm ensures that if

there are no drastic changes in the workloads, there will
be no massive data transfers in the subsequent execution
rounds.

As we use gossip-based approach to solve the opti-
mization problem, our algorithm introduces an extra cost
on processing OSN metadata during gossiping, as com-
pared to a single shot approach, like SPAR. This allows
our algorithm to explore the larger state space and end
up reducing the replication overhead by factor of two
compared to SPAR. This directly results in real traffic
savings for avoiding expensive maintenance of unnecessary
replicas, which for all practical reasons completely offsets
the cost of seldom execution of our gossiping algorithm on
OSN metadata. Moreover, it is not necessary to execute
the algorithm for longer time period. Rather, it can be
executed on periodic basis by taking the snapshot of the
OSN graph, which reduces the communication cost of the
system.

IV. Tuning Parameters

A. Datasets

We used three different type of datasets in our experi-
ments, i.e., 1) Facebook Graphs, 2) Twitter Graph and 3)
Synthetic Graphs.

1) Facebook Graph: Facebook is among the top most
OSNs, with user base of 1,110 million [5]. Facebook
users are more connected than Orkut users, e.g., 37% of
Facebook users have more than 100 friends, compared to
20% for Orkut [28]. However, both these networks show
small world properties and follow power-law social degree
distribution. For our experiments we used two different
facebook graphs. We took the first graph from Stanford
Large Network Dataset Collection [14], which contains
4,039 nodes and 88,234 edges. We took the second graph
from Online Social Networks Research at The Max Planck
Institute of Software Systems [26], which contains 60,290
nodes and 1,545,686 edges.

2) Twitter Graph: Twitter differs from other OSNs in
network topology. Instead of relationship twitter users
follow each other. Twitter social graph does not show
power-law distribution for social degrees, have a short
effective diameter and show very low reciprocity [11]. For
our experiments, we took the twitter graph from Stanford
Large Network Dataset Collection [14], which contains
81,306 nodes and 1,768,149 edges.

3) Synthetic Graph: We have generated three different
synthetic graphs, which are described below.

• clustered graph (Synth-C): This graph contains of
2000 nodes, indexed from 1 to 2000. Each nodes has
10 different neighbors and the graph is divided into
sixteen clusters, where each node connects to a node
inside its cluster with 75% probability.

• highly clustered graph (Synth-HC): This graph
is similar to Synth-C, in terms of number of nodes,
clusters and node degree. However, in this graph each

node connects with a node inside its cluster with 95%
probability.

• power-law graph (Synth-PL): we generated a
power-law graph using Python Web Graph Generator
[22]. Power Law graphs are random graphs with power
law degree distribution, in which nodes connects to
other nodes uniformly at random, while maintaining
the power law degree distribution.

Table I summarizes all the graphs that we use in our
experiments.

Dataset Nodes Edges
Synth-C 2,000 20,000
Synth-HC 2,000 20,000
Synth-PL 2,000 20,000
Snap-Facebook 4,039 88,234
WSON-Facebook 60,290 1,545,686
Snap-Twitter 81,306 1,768,149

TABLE I
Description of Datasets

B. Length of Random Walk

As discussed in section II, our algorithm requires to per-
form random walk for peer selection. In this experiment,
we perform random walks for a different number of steps
(m) and tune the length of random walks that can give
us optimal results. We have used three different datasets
(from the graphs mentioned above), and distributed the
graphs on sixteen servers with replication factor of two.
This experiment was performed without simulated anneal-
ing. Figure 3 shows the replication overhead for different
size of random walks. As can be seen, random walk for
length greater than four yields optimal results for peer
selection. We can observe the replication overhead for
three different datasets. The power law graph generates
the maximum replication overhead compared to other
graphs due to existence of randomness in the graph. The
synthetic clusterized graph generates high replication over-
head, as the graph lacks small world properties. Facebook
graph generates the minimum replication overhead due to
existence of small world properties within the real world
graphs, i.e., short average diameter and high clustering
coefficient. We used (m=6) as length of random walk for
rest of the experiments.

C. Simulated Annealing

In this section, we discuss experiments that were per-
formed to tune parameters for simulated annealing, i.e.,
(1) the cooling rate (δ) and (2) Initial Temperature (To).

1) Cooling Rate: This experiment was performed to cal-
culate cooling rate (δ) [18], which can be used during the
simulated annealing process. Initially, a noise is introduced
in the system, which is removed from the system at a
constant rate (δ), as described in the equation 8. In this
experiment, we used different cooling rates (δ) and com-
pute the replication overhead and number of swaps that

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14 16 18 20

N
u

m
b

e
r

o
f

R
e

p
lic

a
s

Length of Random Walk

Synth-C
Synth-PL

Snap-Facebook

Fig. 3. replication overhead for different length of random walks for
random peer selection with k=16 and f =2.

are required in order to minimize the replication overhead.
Swap count is directly proportional to the time required
for algorithm to reach the global optima. Figures 4 shows
graphs for three different datasets, i.e., Synth-C, Synth-
PL and Snap-Facebook. In this experiment, social graphs
were distributed on sixteen servers with replication factor
of two. As can be seen, low cooling rate generate lesser
replication overhead, but take longer time to converge,
whereas higher cooling rate make the algorithm converge
faster but generate higher replication overhead. For our
experiments, we choose cooling rate equals to (δ=0.03), as
it generate feasible results.

T (t) = T (t− 1)− δ (8)

2) Initial Temperature: In this experiment, we used
constant rate of change of temperature with constant
cooling rate (δ=0.003) and varied the initial temperature
for simulated annealing. Figures 5 shows the results for
different initial temperature for three different datasets,
i.e., Synth-C, Synth-PL and Snap Facebook. As can be
seen, the synthetic graphs do not show much deviation
in replication overhead with change initial temperature.
However, Facebook graph shows improvements in results
for different initial temperature. Based on experiments we
used (To=2) in further experiments.

D. Number of Iterations

In this experiment, we fix simulated annealing parame-
ters, i.e., cooling rate (δ=0.003) and initial temperature
(To=2), and vary the number of iterations. Figures 6
and 7 show the ratio of replication overhead for our
algorithm and random partitioning for different number of
iterations. As can be seen, the algorithm converges after
200 iterations for all the graphs. We achieved more gain in
replication overhead in real world graphs as compared to
synthetic graphs. This behavior can be attributed to the
lack of small world properties in the synthetic graphs.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d
 r

a
ti
o
 (

g
o
s
s
ip

/r
a
n
d
o
m

)

number of iterations

Synthetic Graphs

Synth-PL
Synth-C

Synth-HC

Fig. 6. ratio of replication overhead for our algorithm and random
partitioning for different number of iterations using synthetic graphs
with k=16 and f =2.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d
 r

a
ti
o
 (

g
o
s
s
ip

/r
a
n
d
o
m

)

number of iterations

Real OSN Graphs

Snap Facebook
WSON Facebook

Snap Twitter

Fig. 7. ratio of replication overhead for our algorithm and random
partitioning for different number of iterations using real world graphs
with k=16 and f =2.

V. Evaluation

We have implemented a prototype of our algorithm
and SPAR in Python. Additionally, we compared our
algorithms with de-facto random partitioning technique.
We used replication overhead as a metric for comparison
between algorithms. Table II shows values for different
parameters that were used during experiments.

Parameter Value
Initial Temperature (To) 2
Final Temperature (Tf) 1

Cooling Factor (δ) 0.003
Length of Random Walk (m) 6

TABLE II
Parameters for our algorithm

We designed three different experiments to compare
the replication overhead of our proposed algorithm with
random paritioning and SPAR, i.e., (a) with different
datasets, (b) with different number of servers, and (c)
dynamic behavior.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 0.001 0.003 0.005 0.01 0.03 0.05
 0

 5000

 10000

 15000

 20000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

noise delta

Synth-C

swap count
replication overheard

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+006

 0.001 0.003 0.005 0.01 0.03 0.05
 14000

 14500

 15000

 15500

 16000

 16500

 17000

 17500

 18000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

noise delta

Synth-PL

swap count
replication overheard

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.001 0.003 0.005 0.01 0.03 0.05
 10000

 15000

 20000

 25000

 30000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

noise delta

Snap-Facebook

swap count
replication overheard

Fig. 4. swap count and replication overhead for different values of cooling rate for Synth-C, Synth-PL and Snap-Facebook graphs with
k=16 and f =2.

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1 1.5 2 2.5 3 3.5
 0

 5000

 10000

 15000

 20000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

Initial Temperature

Synth-C

swap count
replication overheard

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1 1.5 2 2.5 3 3.5
 10000

 12000

 14000

 16000

 18000

 20000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

Initial Temperature

Synth-PL

swap count
replication overheard

 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1 1.5 2 2.5 3 3.5
 10000

 12000

 14000

 16000

 18000

 20000

s
w

a
p

 c
o

u
n

t

re
p

lic
a

ti
o

n
 o

v
e

rh
e

a
d

Initial Temperature

Snap-Facebook

swap count
replication overheard

Fig. 5. swap count and replication overhead for different values of Initial Temperature with Synth-C, Synth-PL and Snap-Facebook graphs
with k=16 and f =2.

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Synth-C

Random
SPAR

Gossip

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Synth-HC

Random
SPAR

Gossip

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Synth-PL

Random
SPAR

Gossip

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Snap-Facebook

Random
SPAR

Gossip

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

WSON-Facebook

Random
SPAR

Gossip

 0

 5

 10

 15

 20

 25

 30

8 16 32 64

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Snap-Twitter

Random
SPAR

Gossip

Fig. 9. Replication overhead for different datasets and different number of servers with f = 2.

A. Evaluation with Datasets

Figure 8 shows the graph comparing replication over-
head of our algorithm with random partitioning and SPAR
for different datasets. The experiment was performed on 16
servers (k = 16) with replication factor of two (f = 2). As
can be seen, our algorithm generates minimum replication
overhead compared to all the other algorithms. Specially,
the gain compared to random partitioning, which is the de-
facto standard, is more than 3x for some of the datasets.
Our algorithm reduces the replication overhead by factor

of two compared to SPAR in case of high clusterization in
the graph. This behavior was expected, as our algorithm
takes into account the global picture of the graph and
avoids the load balancing constraint that is the bottleneck
in SPAR algorithm.

B. Evaluation with Servers

In this experiment, we measure the performance of our
algorithm, random partitioning and SPAR for different
number of servers, such as, k = 8, 16, 32, and 64, with
replication factor of two. Figure 9 shows multiple graphs

 0

 2

 4

 6

 8

 10

 12

 14

Synth-C

Synth-H
C

Synth-PL

Snap Facebook

W
SO

N
-Facebook

Snap-Tw
itter

re
p
lic

a
ti
o
n
 o

v
e
rh

e
a
d

Random
SPAR

Gossip

Fig. 8. Comparison of replication overhead of our algorithm, random
partitioning and SPAR for different datasets with k = 16 and f = 2.

for different datasets, where each graph is generated by
varying the number of servers. As shown, our algorithm
performs better than all the other algorithms in most of
the cases. We achieve reduction up to four times in case of
random partitioning in the real world graphs. This trend
can be due to the fact that our algorithm takes benefit
from the social structure of the graph. Our algorithm
generates lower replication overhead compared to SPAR,
as SPAR is a sequential algorithm, which does not take
into account the global picture of the graph and contains
the load balancing constraint which results into high
replication overhead. Additionally, we can observe that
the replication overhead is not linearly proportional to the
number of servers and replication overhead reduces with
the increase of servers. Hence, our algorithm scales with
the increase of the number of servers and generates lower
replication overhead compared to the other algorithms.

C. Dynamic Behavior

In this experiment, we evaluate the performance of
our algorithm when new edges are continuously created
among nodes in the social network. We use real world
graphs to perform this experiment using sixteen servers
with replication factor of two, i.e., k=16 and f =2. We
divide the social graphs into small components, where
edges are created between nodes periodically to simulate
the dynamic behavior of OSNs. For example, if we have
100,000 edges we divide it into 10 components and add
10,000 edges in the graph periodically until it covers the
complete graph. Figure 10, 11 and 12 show the replication
overhead for the social graphs. We add new edges in the
graph after every 50 cycles, which create a spike in the
graph in terms of replication overhead. Our algorithm runs
periodically and tries to adjust the partition, whenever
new edges are added to the graph. It takes benefits from
the distributed nature of algorithm and adjusts efficiently
with dynamic behavior of the graph without affecting the
existing structure of the graph. Further, we can observe

that algorithm converges rapidly after the addition of new
edges and achieve the minimum replication overhead after
very few iterations.

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800 900 1000
 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

R
e

p
lic

a
ti
o

n
 O

v
e

rh
e

a
d

N
u

m
b

e
r

o
f

E
d

g
e

s

Number of Iterations

Snap Facebook

Replication overhead
Number of edges

Fig. 10. Replication overhead versus number of iterations for SNAP
Facbook graph with f = 2 and k=16.

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0 200 400 600 800 1000 1200 1400 1600
 0

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 3e+006

 3.5e+006
R

e
p

lic
a

ti
o

n
 O

v
e

rh
e

a
d

N
u

m
b

e
r

o
f

E
d

g
e

s

Number of Iterations

WSON Facebook

Replication overhead
Number of edges

Fig. 11. Replication overhead versus number of iterations for WSON
Facbook graph with f = 2 and k=16.

 100000

 120000

 140000

 160000

 180000

 200000

 220000

 240000

 0 100 200 300 400 500 600 700 800 900
 0

 200000

 400000

 600000

 800000

 1e+006

 1.2e+006

 1.4e+006

 1.6e+006

 1.8e+006

 2e+006

R
e

p
lic

a
ti
o

n
 O

v
e

rh
e

a
d

N
u

m
b

e
r

o
f

E
d

g
e

s

Number of Iterations

Snap Twitter

Replication overhead
Number of edges

Fig. 12. Replication overhead versus number of iterations for SNAP
Twitter graph with f = 2 and k=16.

VI. Related Work

In this section, we discuss various solutions that we
considered for our problem. A naive way to deploy OSNs
on any data-store is to partition the data into disjoint
components and place the disconnected components on
different servers to reduce the communication overhead.
The existence of strong community structure in OSNs
makes it difficult to partition the data, as users usually
belong to more than one community [16]. Large amount of
research has been dedicated to graph partitioning during
the last decades [9], [8], [10]. However, most of these
algorithms work with offline graphs, and they are insuf-
ficient for OSNs, which exhibit a dynamic behavior [19].
Additionally, these algorithms require the global view of
the graph, hence making such algorithm not feasible for
large scale OSNs. Various incremental approaches also
exist for graph partitioning, like JA-BE-JA [20], but most
of the graph partitioning algorithms solve the optimization
problem of minimizing edge-cuts between the partitions,
which do not produce the optimal partitioning for OSNs,
which requires to minimize not the edge cut, but to
minimize the number of replicas [19].

Most of the modern OSN providers rely on Distributed
Hash Tables (DHTs) [21] and noSQL databases [6], which
provide horizontal scalability by randomly partitioning
and placing the data on multiple servers. Many companies
have implemented customized solutions to handle high
workload that is generated by OSNs. For example, Face-
book developed Cassandra [12], which provides high scal-
ability and good performance with tunable consistency.
Amazon implemented Dynamo [4], a highly available key-
value store, to store user shopping carts. Such data-stores
promise high scalability, due to their distributed design,
and randomly partition and distribute the data across the
network [6]. However, such solutions do not take care of
social structure in OSN graph and poorly partition the
data, which may place the connected users on different
servers. As a result, processing a single query may require
gathering data from multiple machines and utilize high
network bandwidth. Therefore, Key-Value stores can lead
to poor performance and may generate high inter-server
traffic [19].

Pujol et al. [19] proposed SPAR, which is a partitioning
and replication algorithm that can be used to distribute
an OSN graph on top of any storage systems, i.e., MySQL
cluster, Cassandra [12]. It solves an optimization problem
of partitioning and replication using a heuristic based on
greedy optimization. SPAR utilizes social graph structure
for placement of OSN users and provides fault tolerance
and data locality through replication. In SPAR, user infor-
mation is stored in the form of a single master copy and set
of eventually consistent replicas, for each user. It enforces
a constraint on data locality called local semantics, i.e.,
required information related to a user and its connected
neighbors are located on the server hosting the master

copy of the user. All the updates of the user are written
on the consistent master copy, which later propagates to
all the replicas across the network. Local semantics helps
in improving the network and CPU performance, as all
information required for a single query reside on the local
server.

Similar to SPAR, SCLONE [25] suggests socially-aware
replica placement for users across the cluster in order
to reduce the network traffic. It suggests placing user
replicas across the network, on the machines having most
of the socially connected neighbors. Unlike SPAR, which
provides data locality for all the socially connected users,
S-CLONE provides data locality for subset of connected
users. Similarly, Nguyen et al. [17] suggested to preserve
social locality in data replication for OSNs, as it helps in
improving the performance and data locality of the system.
In this paper, we follow the similar approach as SPAR and
solve the optimization problem of minimizing the number
of replicas in the system, while providing data locality for
all socially connected one-hop neighbors.

Yuan et al. [29] proposed to partition the network in
time domain. The proposed approach was influenced by
the study of Wilson et al. [28], that claims that users do
not interact with all of its friends or neighbors and for
majority of users, 20% of their friends account for 70%
for interactions. The proposed algorithm provides data
locality for frequent or active users, who have exchanged
messages recently. It uses activity prediction graph (APG)
that keeps the updated data in all the partitions that
are likely to be accessed by users. In the experiments
authors showed that partitioning on the two-hop provide
data locality for at least 19% of the queries. Chen et al.
[3] and Huang et al. [7] in their works also proposed a
similar strategy to use interaction graph instead of the
social graph for data replication for deployment of OSNs.
However, activity network evolves rapidly and to exploit
the strong time correlation, the algorithm needs to be
adaptive and dynamic, as the data is OSNs has strong time
dependence [27]. Such requirements make the algorithm
CPU intensive, as it has to maintain an updated APG at
very small time scale.

VII. Conclusion

We proposed a distributed partitioning and replication
algorithm, which efficiently places the OSN data across the
network in order to provide high availability and achieve
scalability for OSNs. We demonstrated that our algo-
rithm provides fault tolerance and guarantees data local-
ity within one-hop neighborhood through replication. We
designed and implemented our algorithm and compared
its performance with random partitioning and SPAR, for
three different types of datasets, i.e., Facbook graphs,
Twitter graphs, and Synthetic graphs. Results showed that
our algorithm outperformed random partitioning strategy
and generates four times less replication overhead. More-
over, our algorithm reduced the replication overhead by a

factor of two compared to SPAR in case of clusterization
in the social graph. We demonstrated that our algorithm
is able to scale on larger number of servers with lower
replication overhead, due to its distributed architecture.
Our algorithm is capable of handling the dynamic nature
of OSNs and is able to handle high churn rates that
are present in OSNs. Our experiments also showed that
random graphs are difficult to partition and generates
higher replication overhead as compared to OSN graphs.

References

[1] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida. Charac-
terizing user behavior in online social networks. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measure-
ment conference, pages 49–62. ACM, 2009.

[2] B. Carrasco, Y. Lu, and J. da Trindade. Partitioning social
networks for time-dependent queries. In Proceedings of the 4th
Workshop on Social Network Systems, page 2. ACM, 2011.

[3] H. Chen, H. Jin, N. Jin, and T. Gu. Minimizing inter-server
communications by exploiting self-similarity in online social
networks. In Network Protocols (ICNP), 2012 20th IEEE
International Conference on, pages 1–10, 2012.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lak-
shman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vo-
gels. Dynamo: amazon’s highly available key-value store.
SIGOPS Oper. Syst. Rev., 41(6):205–220, Oct. 2007.

[5] Facebook. Facebook Reports First Quarter 2013 Results, 2013.
[6] J. Han, E. Haihong, G. Le, and J. Du. Survey on nosql database.

In Pervasive Computing and Applications (ICPCA), 2011 6th
International Conference on, pages 363–366. IEEE, 2011.

[7] Y. Huang, Q. Deng, and Y. Zhu. Differentiating your friends for
scaling online social networks. In Cluster Computing (CLUS-
TER), 2012 IEEE International Conference on, pages 411–419.
IEEE, 2012.

[8] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1):359–392, 1998.

[9] G. Karypis and V. Kumar. Parallel multilevel series k-way par-
titioning scheme for irregular graphs. Siam Review, 41(2):278–
300, 1999.

[10] B. Kernighan and S. Lin. An eflicient heuristic procedure for
partitioning graphs. Bell system technical journal, 1970.

[11] H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter, a
social network or a news media? In Proceedings of the 19th
international conference on World wide web, pages 591–600.
ACM, 2010.

[12] A. Lakshman and P. Malik. Cassandra: a decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40,
Apr. 2010.

[13] J. Leskovec, K. Lang, A. Dasgupta, and M. Mahoney. Commu-
nity structure in large networks: Natural cluster sizes and the
absence of large well-defined clusters. Internet Mathematics,
6(1):29–123, 2009.

[14] J. McAuley and J. Leskovec. Learning to discover social circles
in ego networks. In Advances in Neural Information Processing
Systems 25, pages 548–556, 2012.

[15] A. Nazir, S. Raza, and C.-N. Chuah. Unveiling facebook: a
measurement study of social network based applications. 2008.

[16] M. Newman and J. Park. Why social networks are different from
other types of networks. Physical Review E, 68(3):036122, 2003.

[17] K. Nguyen, C. Pham, D. A. Tran, and F. Zhang. Preserving
social locality in data replication for online social networks. In
Distributed Computing Systems Workshops (ICDCSW), 2011
31st International Conference on, pages 129–133. IEEE, 2011.

[18] Y. Nourani and B. Andresen. A comparison of simulated an-
nealing cooling strategies. Journal of Physics A: Mathematical
and General, 31(41):8373, 1998.

[19] J. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez. The little engine (s) that could:
scaling online social networks. In ACM SIGCOMM Computer
Communication Review, volume 40, pages 375–386. ACM, 2010.

[20] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity, and
S. Haridi. Ja-be-ja: A distributed algorithm for balanced graph
partitioning. In Self-Adaptive and Self-Organizing Systems
(SASO), 2013 IEEE 7th International Conference on, 2013.

[21] S. Sarmady. A survey on peer-to-peer and dht. arXiv preprint
arXiv:1006.4708, 2010.

[22] S. Sathe. Python Web Graph Generator.
[23] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Will-

inger. Understanding online social network usage from a net-
work perspective. In Proceedings of the 9th ACM SIGCOMM
conference on Internet measurement conference, pages 35–48.
ACM, 2009.

[24] E. Talbi. Metaheuristics: from design to implementation. 2009.
[25] D. A. Tran, K. Nguyen, and C. Pham. S-clone: Socially-aware

data replication for social networks. Comput. Netw., 56(7):2001–
2013, May 2012.

[26] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Social Networks
(WOSN’09), August 2009.

[27] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi. On
the evolution of user interaction in facebook. In Proceedings of
the 2nd ACM workshop on Online social networks, pages 37–42.
ACM, 2009.

[28] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao.
User interactions in social networks and their implications. In
Proceedings of the 4th ACM European conference on Computer
systems, pages 205–218. Acm, 2009.

[29] M. Yuan, D. Stein, B. Carrasco, J. M. Trindade, and Y. Lu.
Partitioning social networks for fast retrieval of time-dependent
queries. In Data Engineering Workshops (ICDEW), 2012 IEEE
28th International Conference on, pages 205–212. IEEE, 2012.

