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The overwhelming success of Web 2.0, within which online social networks are key actors, has
induced a paradigm shift in the nature of human interactions. The user-driven character of Web 2.0
services has allowed researchers to quantify large-scale social patterns for the first time. However, the
mechanisms that determine the fate of networks at the system level are still poorly understood. For
instance, the simultaneous existence of multiple digital services naturally raises questions concerning
which conditions these services can coexist under. Analogously to the case of population dynamics,
the digital world forms a complex ecosystem of interacting networks. The fitness of each network
depends on its capacity to attract and maintain users’ attention, which constitutes a limited resource.
In this paper, we introduce an ecological theory of the digital world which exhibits stable coexistence
of several networks as well as the dominance of an individual one, in contrast to the competitive
exclusion principle. Interestingly, our theory also predicts that the most probable outcome is the
coexistence of a moderate number of services, in agreement with empirical observations.
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I. INTRODUCTION

The rapid growth of online social networks (OSNs),
such as Twitter or Facebook, has led to over two billion
active accounts in 2014 [I], and hence they can be said
to cover over one quarter of the world population and
72% of online U.S. adults [2]. Bridging the gap between
social sciences and information and communication tech-
nologies, OSNs constitute a crucial building block in the
development of innovative approaches to the challenges
our current society faces. OSNs have already changed
the nature of human interactions on a worldwide scale.
In contrast to the large-scale social patterns of individu-
als [3H7], the mechanisms underlying the fate of OSNs at
the system level are not at all well understood.

Real-world social networked systems exhibit a very
high level of complexity [8HI2]. In a recent study, we
were able to identify the main mechanisms responsible for
the evolution of quasi-isolated OSNs [13]. However, most
OSNs operate on a worldwide scale and are in constant
competition for users’ attention with numerous other ser-
vices; a fact that makes it extremely challenging to model
them. This competitive environment leads to the ex-
tinction of some networks, while others persist. This
phenomenon suggests an ecological perspective on the
interaction of multiple OSNs, from which networks are
considered to form a complex digital ecosystem of inter-
acting species that compete for the same resource: users’
networking time.

In standard ecology theory, Gause’s law of competitive
exclusion [I4] states that under constant environmental
conditions, two species in competition for the same re-
source cannot coexist. Competitive exclusion is predicted
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by many theoretical models [I5]. However, many obser-
vations of natural ecosystems seem to contradict Gause’s
law, as in the case of the famous plankton paradox [16].
Attempts to solve such paradoxes include the assump-
tion of different roles (competition—colonization trade
off [I7, [18]), the increase of the dimension of the systems,
the inclusion of further species properties, etc. (see [19]
and references within). However, such models allow for
an unlimited number of coexisting species, which thereby
creates a new paradox. Indeed, real ecosystems usually
consist of a moderate number of coexisting species. Here,
we show that the coexistence of networks that are in com-
petition for the same resource, namely our society’s net-
working time, is possible. Furthermore, our work predicts
that the most probable outcome is the coexistence of a
moderate number of networks.

Recent work [20] showed that the competition between
Facebook and its competitors such as MySpace in the mid
2000s led to the extinction of Facebook’s competitors and
its own prevalence. However, the current existence of a
large number of OSNs [2I] suggests that the coexistence
of multiple networks is indeed possible. This could be
explained by analogy with the competition—colonization
trade-off mentioned earlier, if we assume that different
networks compete for different peer groups and hence
one network can persist in each of these groups. Al-
though the existence of different peer groups is certainly
the case in reality, our aim in this paper is to introduce a
general and concise theory for competition between iden-
tical networks that are in competition for the same set
of potential users that allows either the coexistence of
any number of networks or the domination of a single
network.

We show that the coexistence of competing networks
can indeed be modeled by allowing for the interplay of
two very common mechanisms: preferential attachment
and diminishing returns. Preferential attachment [22H30)]
is a fundamental principle that can be applied to growing
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Figure 1: Multiplex layout of two online social network layers.
The bottom layer represents the underlying social structure
and the remaining layers represent each OSN.
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networks and which states that newborn nodes are most
likely to connect to the more popular nodes; this leads
to a rich-get-richer effect. The principle of diminishing
returns—or diminishing marginal returns—is widely used
in economic theories and refers to the negative curvature
of production functions. For example, suppose that sow-
ing 1 kilogram of seed in a certain place yields a crop of
one ton. However, 2 kilograms of seed produces only 1.5
tons of crop; and 3 kilograms of seed produces 1.75 tons
of crop. Thus, the marginal return per increment of seed
diminishes with the increasing amount of seed used.

In this paper, we demonstrate the following three
points. First, multiple networks can coexist in a certain
parameter region due to the interplay of a rich-get-richer
mechanism and diminishing returns in the dynamics of
the evolution of the networks. Second, we are most likely
to observe only a moderate number of coexisting services.
Finally, third, the influence of the mass media controls
the observed diversity in the digital ecosystem.

II. RESULTS

A. From quasi-isolated online social networks to
interacting networks

The fate of a single network within the digital ecosys-
tem depends crucially on the form of the interactions
between it and its competitors, and the fitness of each
of them. Nevertheless, without precise knowledge of the
evolution of a single network in the absence of competi-
tors, little insight can be gained into the fundamental in-
teraction mechanisms. A theory of interacting networks
must therefore be built on such precise understanding of
the evolution of individual networks in isolation. In a re-
cent study [I3], we were able to gauge precisely the fun-
damental mechanisms driving the evolution of isolated
networks, which we briefly summarize in what follows.

The evolution of an OSN is coupled to the underlying
social structure. The following four dynamical processes
drive the evolution of the system:

1. Viral activation: a susceptible node can be virally
activated and added to the OSN by contact with an
active neighbor in the traditional off-line network.
Such events happen at rate A for each active link.

2. Mass media effect: each susceptible individual be-
comes active spontaneously at rate p and may thus
be added to the OSN in response to the visibility
of the OSN.

3. Deactivation: active users become spontaneously
passive at rate 0 and no longer trigger viral activa-
tions or reactivate other passive nodes.

4. Viral reactivation: at rate A, active users can reac-
tivate their passive neighbors. The neighbor then
becomes active and can trigger both viral activa-
tions and viral reactivations.

The balance between the mass media influence, p, and
the viral effect, A\, can be estimated from the topological
evolution of the corresponding empirical network. This
estimation can be performed by making use of the net-
work exhibiting a dynamical percolation transition. The
critical point of the transition depends on the ratio be-
tween A and p. This is due to the complementary roles
the respective effects play in the topological evolution.
Matching the system size at the critical point then yields
a linear relationship between X and p (see [13] for further
details).

The macroscopic state of the system is characterized
by the density of active nodes, defined as the quotient
of active nodes over the total number of nodes, p®(¢),
and the density of passive nodes, pP(t). The density of
susceptible nodes can be evaluated as: p®(t) = 1—p°(t)—
pP(t). For a detailed discussion of the model we refer the
reader to Ref. [I3]. In the present context, we want to
emphasize that the model exhibits a threshold \. below
which the entire network eventually becomes passive.

Suppose now that, instead of a single network, there
are n; networks competing for the same set of potential
users. Each user can be active or passive in several net-
works simultaneously, as represented in Fig. [T} such that
the long-term evolution of the fraction of active users in
each layer determines the fate of the system: either sev-
eral networks coexist or only a single network prevails.
The first key point in the generalization of the model in-
troduced in [I3] concerns the role of the viral parameter
A. This parameter is a proxy for users’ engagement in on-
line activities, such as inviting their friends to participate
in the network, generating or forwarding content, etc.
However, such activities require users to spend a given
amount of their time on them and their time is, obvi-
ously, bounded. This implies that when users are simul-
taneously active in two or more different networks or ser-
vices, they are forced to decide the amount of time they
devote to each of them. We model this effect by assuming
that the viral parameter for each layer is \; = Aw;, where
w; a set of normalized weights (that is, Y. | w; = 1) that
quantify users’ engagement with each OSN. In this way,



ot A = Xis a conserved quantity related to the phys-
ical and cognitive limitations of users. The second key
point in our generalization concerns the dependence of
the share, \;, of the total amount of virality for individ-
ual networks on the state of activity of the whole system,
which is defined by the vector: p® = (pf, pg,---,p% )T
We assume that the weights w; are functions of p® that
obey the following two conditions:

1. Symmetry: All networks are considered intrinsi-
cally equal. Therefore, the weight functions must
satisfy the symmetry conditions:
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for any ¢, j, and k. This implies that when the
fraction of active users is the same in all of them,
the viral parameters \; must also be equal in each
network and, therefore, w; = 1/n; Vi.

2. Preferential attachment: We assume that users are
in general more likely to subscribe to and partic-
ipate in more active networks. Hence, the weight
of a given network ¢ must be a monotonically in-
creasing function of p¢. Following the same line of
reasoning, we also assume that a network with zero
activity is not functional, so that w;(p¢ = 0) = 0.

Finally, consistent with observations in [I3], we assume
a linear relation between u; and \;

i = 2o 2wile?) (1)
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where v denotes the relative strength of the viral effect
with respect to the mass media effect (in [I3], we found
v 4~5).

These conditions can be interpreted as coarse-grained
preferential attachment in the bipartite graph consisting
of users and networks. Users are in general more prone
to connect to networks which exhibit higher activity and,
once active in more than one network, they are also more
inclined to engage with the most active one more often.
Notice that we are introducing a feedback loop between
the global dynamics of the system and the microscopic
parameters \;. We are thus assuming that users are,
somehow, able to sense the global activity of the system.
This can be achieved in practice as a combination of the
amounts of information that users receive from: the net-
work itself [BIH33], global media, the traditional off-line
social network, etc. Although preferential attachment
induces a rich-get-richer mechanism, in what follows we
show that the interplay of this mechanism with the dy-
namics of the networks leads to the emergence of stable
coexistence of multiple networks across a certain param-
eter region.

B. Mean-field approximation

The effects of complex topologies on epidemic-like
spreading processes are well understood nowadays and
cannot be ignored. However, the dynamics of our model
is rich and complex enough on its own to be analyzed in
isolation. Therefore, in this section we perform a mean-
field analysis which provides important insight into the
emergence and stability of a state of coexistence of mul-
tiple networks. In particular, we replace the real social
contact network by a fully mixed population with an av-
erage number of contacts per user (k). Section con-
tains numerical simulations of our dynamics using a real
social network [I3], B4]. We can confirm in advance that
the general picture drawn in this section is also observed
in the real system.

For one network, the system is described by the fol-
lowing mean-field equations [13]
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The nontrivial steady-state solution is p° = 0 and p® =
1 — 6/M\(k), which is stable only when A\ > §/(k) = L.
This defines the critical value of A below which activity is
not possible, even in a single network. In the rest of the
paper, we assume that A > A so that, even if coexistence
is not possible, at least one network is always able to
survive. Likewise, we also fix the timescale of our model
by setting 4 = 1 from now on.

In the case of an arbitrary number of OSNs, the sys-
tem is characterized by the fraction of active and passive
users in each layer, p¢ and p!, and the fraction of indi-
viduals in the traditional off-line social network that are
susceptible to subscription in network ¢: pf. We assume
that the densities of active/passive/susceptible nodes are
not correlated between different OSNs. Thus, the evo-
lution equations in the mean-field approximation for the
i-th layer are

gt =t Ao - pt] = 1+ 2ot
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where we have used p! = 1— p? — p?. Note that the cou-
pling between different OSNs is encoded in the weights,
w;(p®). The stationary solution of Egs. that corre-
sponds to the complete coexistence of all the n; networks
is given by

n
k)

and pi* =0, Vi (4)
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Figure 2: a) Regions of maximal possible coexistence in the mean-field approximation as a function of A and o for 5 networks
evaluated from Eq. . b) Stability regions for the full stochastic model with a real underlying topology. For details see

appendix

The inset shows n. versus the inverse slope of linear fits to the respective lines.

c¢) The most probable

configuration reached from empty initial conditions for two networks. The dashed line corresponds to the empirical stability of
the two networks. The insets (z and y axes each denote the activity from 0 to 1) show the basins of attraction in the mean-field
approximation for ¢ = 0.8 and A/AL = 4 (left), A/AL = 6 (center), and A/\! = 8 (right).

for A > A\ = % This again defines a critical threshold
for A below which coexistence is impossible. At the op-
posite extreme, the stationary solution for the prevalence

of just one single network, j, is
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for A > ALl. It is easy to see that this last solution is
always stable when A > Al. However, the stability of the
coexistence solution depends, in general, on the partic-
ular form of the weights w;(p®). A detailed analysis of
the Jacobian matrix of the system of Egs. evaluated
at the coexistence point Eq. shows that this state is
stable only when

TL2 ax 8wi @
L= ppn) Sl

<1l. (6)

pax

P(pi*) =

nl—l

The emergence of stable coexistence can be understood as
the interplay between preferential attachment and dimin-
ishing returns. Preferential attachment affords an advan-
tage in terms of respective weight, w;, for networks which
already exhibit higher activity; inducing a rich-get-richer
effect. However, this is damped by the intrinsic dynam-
ics of the system, which exhibits diminishing returns in
terms of activity with respect to an enhancement of the
corresponding weight w;. As long as the preferential at-
tachment mechanism is not strong enough to overcome
this damping effect, any perturbation in the density of
active nodes near the coexistence point will eventually
decline. Hence, the coexistence is stable. From a mathe-
matical point of view, this is equivalent to showing that,
at the coexistence point, the function ¢(p?*) is propor-
tional to the dynamical return of the system when net-
work ¢ is perturbed. In other words, if the activity of

network ¢ is externally increased by a small amount Apf,
after some relaxation time, the dynamics brings the per-
turbation to the new value Ap? = ¢(p?*)Ap¢. Coexis-
tence is stable whenever the dynamical perturbation Ap¢
is smaller than the external one Ap¢ (see Appendix
for details). It is possible to see that ¢(p$*) diverges
at p?* = 0 and is zero when p{* = 1, and thus there
is always a value of A\ above which the inequality @ is
fulfilled (see Appendix |C| for details).

Interestingly, a series of states of partial coexistence ex-
ist between the complete coexistence state and the preva-
lence of a single network, such that only a number n, < n;
of OSNs coexist simultaneously. The symmetries of the
weights w;(p®) imply that any such case is exactly the
same as the complete coexistence state if we replace n;
by n. in Egs. and @ Finally, we note that the sta-
bility of the partial or complete coexistence solutions is
independent of the value of v (see Appendix |A]). There-
fore, we can discuss the stability in the limit v — oo,
which reduces the dimensionality of the dynamical sys-
tem.

The symmetry and preferential attachment conditions
of the weights w;(p®) combined with the normalization
condition imply that, without loss of generality, w;(p®)
can be written as

Y(p7)

wi(p®) = m7 (7)

where 1 can be any monotonically increasing function
bounded on [0, 1] with ¢(0) = 0. To gain further insight,
we consider the following form of function ¥(p%) = [p%]”.
By adjusting a single parameter this form allows us to
describe a system between a set of decoupled networks,
when o = 0, and very strongly coupled ones, when o >
0. In this particular case, the stability condition of the



coexistence state of n. networks is given by

Ne
a<% with n,=2,--- ,n;. (8)
This inequality defines a set of n; — 1 critical lines
oc(A;ne) in the plane (), o) that separate phases with
n. and n. — 1 maximally coexisting networks. This is
illustrated in Fig. 2h for the case of n; = 5 competing
networks.

However, the stability of the coexistence solution does
not guarantee that it is reached from arbitrary initial
conditions because, as we show above, there are several
other stable fixed points, each with its own basin of at-
traction. This is illustrated in Fig. where we show
the vector field in the plane (p{, p%) for the case of two
competing networks in the limit v — oo. For any fixed
value of A > A2 and o > .(\;2), the coexistence solu-
tion is an unstable saddle point. This implies that one of
the networks will eventually prevail, independently of the
initial conditions (Fig. 3| top right). At the critical point
0 = 0.(A;2), the system undergoes a subcritical pitchfork
bifurcation with the appearance of two unstable saddle
points moving away from the (now stable) coexistence
solution as o is decreased (Fig. |3|top left and bottom).
The subcritical character of the bifurcation is akin to
first-order phase transitions. Indeed, an infinitesimal in-
crease in the value of o near the critical point makes the
system jump from stable coexistence to the domination
of one of the networks. Decreasing the value of o after-
wards does not, however, bring the system back into the
coexistence state, as this type of bifurcation implies a
hysteresis effect, as shown in the inset of Fig. |3l The two
saddle points that emerge below the critical line deter-
mine the basin of attraction of the coexistence solution.
This basin (depicted in blue in the top left plot of Fig. [3)
is very narrow for low densities of active nodes, as found
at the beginning of the evolution. This makes the system
sensitive to stochastic fluctuations; a small perturbation
of the initial conditions may push the system into a state
of domination of one network.

C. Real-world topology

The analysis presented in the previous section is based
on two strong and unrealistic assumptions: the fully
mixed hypothesis of the underlying off-line social net-
work and the absence of fluctuations in the densities of
active users. The first assumption has a strong impact
on the value of the critical threshold A! and the frac-
tion of active users in a single network when A > AL
Fluctuations have an important impact mainly at the
beginning of the evolution, when the number of active
users is small. Such fluctuations can induce the system
to change stochastically from one basin of attraction to
another, leading the system to different steady states—
either coexistence or domination—even if it starts from
the same initial configuration with identical parameters.
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Figure 3: Top: Mean-field approximation in the limit

v — oo (this reduces the system dimension from 4 to 2 and al-
lows the diagram to be plotted, see appendix‘ Left: Stable
coexistence solution (A\/A\f = 4, o = 0.8). The basin of at-
traction for the coexistence solution is marked in blue. Right:
Only the domination solution is stable (A/A; = 4, o = 1.2).
Bottom: Bifurcation diagram for two OSN layers showing
subcritical pitchfork bifurcation at o = o for A/\L = 4. The
inset shows the hysteresis induced by this type of bifurcation.

To understand the effects of these assumptions within a
real scenario, we performed large-scale numerical simula-
tions of our model on a real social network, the Slovakian
friendship-oriented OSN Pokec [I3] in 2012. The size of
this network (1.2 x 10° users) represents 25% of the pop-
ulation of Slovakia but demographic analysis shows that
it covers a much larger fraction of the population suscep-
tible to ever participate in OSNs. This makes Pokec a
very good proxy of the underlying social structure.

We first study the coexistence space in the plane (o, \)
in the case n; = 5. To do so, for each value of A and o
we first set the system to the coexistence solution p®*.
We then apply a small positive perturbation to one of
the networks p{* — p}* + dp{. The evolution of the
system after this perturbation can be used to determine
the stability of the coexistence state (simulation details
can be found in Appendix . The results are shown in
Fig.2b. Even though the position of the critical point of
a single network A! of the real Pokec network is extremely
different from the mean-field prediction, the critical lines
as a function of the ratio A\/Al follow a linear trend, as
in the mean-field prediction. Interestingly, the slopes of
these lines (although they are different from those in the
mean-field case) scale with n; in the same way as in the
mean-field case (see the inset in Fig. [2b).
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Figure 4: Probability of reaching the coexistence state for two
networks for different values of v, for A/AL = 6 and o = 0.70.
The yellow area denotes one standard deviation (from top to
bottom).

However, the stability of the coexistence solution per
se does not guarantee that coexistence is reached from
any initial configuration. This is particularly relevant
when the evolution starts from empty networks, as fluc-
tuations in the number of active users at the beginning
of the evolution can induce the system to jump from one
basin of attraction to another. Therefore, to determine
the effective coexistence space in the plane (o, A), we eval-
uate the probability that a state of coexistence of a cer-
tain number of networks is reached when starting from
empty networks. In the case of two competing networks,
we define the effective critical line o¢//()\;2) as the line
below which the probability of the two networks reaching
coexistence is greater than 1/2.

Figure shows the results of this program for two
competing networks and v = 4. The effective critical
line follows the critical line in Fig. for low values of
A and saturates at a constant value when A\/Al > 1.
This result can be understood in terms of the shape of
the basin of attraction of the coexistence solution near
the origin. Indeed, only in this region are fluctuations
important enough to make the system change from one
basin to the other. As an illustration, in the inset of
Fig. P& we show such a basin for n; = 2 and different
values of A in the mean-field approximation. As can be
observed, the shape of the basin in the neighborhood of
pi2 ~ 0 is almost independent of the value of A, which
explains why the probability of reaching the coexistence
state saturates at a constant value.

This saturation effect is similarly observed for sys-
tems of more networks, where the effective critical
lines of higher coexistence states successively saturate
at lower values; that is 0¢/f(00;2) > 0¢/f(00;3) >
0¢ff(00;4) - -, which narrows the effective coexistence
region in the plane (), o) for large numbers of networks.
This is particularly relevant because, although our the-
ory allows for the coexistence of an arbitrarily large num-
ber of networks, the stochastic nature of the dynamics,
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Figure 5: Evolution of the fraction of active users (top)
and the total number of users (bottom) for two competing
networks. The first column corresponds to the parameters
)\/)\i =5, 0 = 0.5, and v = 4 which lies in the coexistence re-
gion. The second column represents the parameters A/l = 5,
o = 0.75, and v = 4, which lies in the dominance region.

coupled with the narrow form of the basin of attraction
at low densities of active users, makes such coexistence
highly improbable. Therefore, our model predicts—even
without knowledge of the exact empirical parameters—a
moderate number of coexisting networks in a large frac-
tion of the parameter space.

The results shown in Fig. are obtained for a fixed
value of the parameter v. While this parameter has no
influence on the stability of the coexistence solution, and
thus no effect on the results shown in Fig. 2p, it has
a strong influence on the probability of reaching coexis-
tence. Indeed, when v is finite, the last term in Eq.
acts, at the beginning of the evolution, as a temporal
boost that increases the fraction of active users in each
network. This mechanism drives the system closer to
the coexistence state where its attractor is broader. Fig-
ure [4 shows the simulation results of the probability of
reaching coexistence as a function of v for two competing
networks. For small values of v, the initial boost is large
and the system almost always ends up in the coexistence
state. For larger values of v, the probability decreases
significantly. We conclude that a higher boost—hence
a smaller value of v—favors the effective reachability of
the coexistence state; whereas a small boost reduces that
probability dramatically. Since v is related to the influ-
ence of mass media, these results show that mass media
influence plays a crucial role in the diversity of the digital
ecosystem.

The temporal evolution of the process also shows in-
teresting patterns. Figure [5| shows typical realizations of
the process below and above the effective critical line in
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Figure 6: Evolution of the fraction of active users (top) and
the total number of users (bottom) for three competing net-
works. Both columns correspond to the same parameters
)\/)\i = 7.5, 0 = 0.8, v = 4, but are different realizations.

the case of two competing networks. It should be noted
that in both cases, during the first stage of the evolution,
the two networks acquire a very similar number of ac-
tive users, making the forecasting of which network will
eventually prevail very difficult. In a second stage, the
symmetry is broken and one of the networks starts dom-
inating, while the activity of the other declines. This
pattern of “rise and fall” has been observed in many real
OSNs [35]. In our model, however, such behavior is a
consequence of the non-linear coupling between the net-
works, without the need to introduce an exogenous mech-
anism to explain it [20]. Meanwhile, the effective critical
lines shown in Fig. |2c separate regions in a probabilistic
way. This implies that in the vicinity of these lines, it is
possible to find realizations that, with the same param-
eters and initial conditions, have opposite fates. This is
illustrated in Fig. [6] where we show two different realiza-
tions of three competing networks. In the first column
of Fig. [6] we show one such realization where two out
of three networks coexist and, in the second column, a
realization where only one of the three networks prevails.

III. DISCUSSION

OSNs constantly compete to attract and retain users’
attention. From this point of view, OSNs and other dig-
ital services can be understood as forming a complex
digital ecosystem of interacting species that compete for
the same resource: our networking time. In this work,
we have introduced a very general and concise theory of
such an ecosystem. Akin to standard ecological theo-
ries of competing species, the fitness of OSNs increases

with their performance following a preferential attach-
ment (or rich-get-richer) mechanism. However, unlike
the case of standard ecology, the total fitness of the sys-
tem is a conserved quantity, which induces diminishing
returns in the fitness of each network. Over a range of
parameters, the combination of these two mechanisms
leads to stable states of coexistence of many networks, in
stark contrast to the competitive exclusion principle [14].

However, stable coexistence is only possible across a
range of the parameter space, which is delimited by a
critical line. At that critical line the system undergoes
a subcritical pitchfork bifurcation akin to a first-order
phase transition. Our model thus predicts that a mini-
mal change or perturbation in the interactions between
the different networks can have a catastrophic effect on
the fate of the system. In any case, due to the stochastic
nature of the dynamics and the multitude of fixed points,
a stable coexistence solution is not always reached. The
probability of reaching such a solution is an indicator of
the diversity observed in the digital ecosystem. Interest-
ingly, we find that over a large proportion of the param-
eter space the most probable outcome is the coexistence
of a moderate number of digital services; in agreement
with empirical observations. This number is, in general,
greatly affected by the magnitude of the mass media in-
fluence.

The flexibility of our theory allows us to reproduce,
with only three parameters, a large number of possible
outcomes that have been observed empirically. More-
over, it can easily be modified to account for more com-
plex situations, such as intrinsic differences between the
networks or different launch times. This would allow an
understanding to be gained of the extent to which higher
intrinsic performance of one network can overcome the
launch time advantage of another. Our model can also
be extended to incorporate a description of the world-
wide ecology of OSNs by incorporating different underly-
ing societies that would represent different countries. It
remains a task for future research to validate our assump-
tions regarding the coarse-grained coupling mechanism.
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Appendix A: Jacobian matrix

Here we analyze the Jacobian matrix of the dynamical
system defined in Eq. whose entries correspond to the
following derivatives

0| o)t
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The Jacobian matrix (of dimension 2n; X 2n;) can be

written as
j — Ma7a Ma,s
Ms,a Ms,s

where M, g represent n; x n; matrices with the following
elements
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ap)
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Mo (is j) = (A3)
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The matrix M, ; is a diagonal matrix with all its diag-
onal equal to d = — [i + p?;} < 0. Mg is also a

vng 1—pf

diagonal matrix with all its diagonal elements equal to
some value ¢ and finally M, , has all its elements equal
to 0.

By using the Laplace expansion starting from the
2n;,2n; entry and expanding row-wise, one finds after
n; iterations that

det [ — AZ] = (d — A)™ det [Mao — AZ]  (Ad)

which means we have the eigenvalues A;,, 41, 20, = d
with degeneracy n; and the remaining eigenvalues are
those of M, 4. Because d < 0, this means that the stabil-
ity of the coexistence solution is exclusively determined
by the dynamics in the limit ¥ — oo, which reduces the
dimensionality of the system from 2n; to n; and decouples
the dynamics of p¢ from p;. See Fig. |§| for the dynamical
properties.
The matrix M, , has the form

afB - B
Ba- - B

Maa = Tonoe. (A5)
BB - «

and its eigenvalues are Ay = a+ (n; — 1) and Ay, ,, =
(a — ), which has degeneracy n; — 1. With
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(here we used >, w; = 1, hence gT‘f;H#j = —ﬁg;ﬁ)

From here, one obtains the result that A; is always neg-
ative and the stability is controlled by the eigenvalues
n,, Which are
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which have to be negative to satisfy stable coexistence.
This leads to the condition
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as described in Eq. @

Appendix B: Dynamical response to a small
perturbation for n > 1

To evaluate the stability of the system in the coexis-
tence state, one has to perform an analysis of the Ja-
cobian matrix as shown in Appendix [A] In this section,
we discuss the response of the system to a small per-
turbation, Ap¢, of the activity of one network. In the
limit » > 1, we can neglect the effect of perturbing the
i-th network on the remaining ones. The perturbation
induces a shift in the corresponding weight according to

8(«%‘
op¢

i

Aw; = Apf. (B1)

pax

Our initial perturbation triggers the dynamical response
Ap from the system given by
Ipi™ (wi)

A of = L 7
Pi Auog

Awi , (BZ)
wi:i
ny
where p#*(w;) = 1—1/X(k)w;. With Eq. (B1]), we obtain
awi
op

i

AP = m(1 - pf)

Apf. (B3)

pa*

The coexistence solution is stable if the perturbation de-
creases; this means that the dynamical response Ap{ has
to be smaller than the initial perturbation Ap¢. Mathe-
matically, this leads to the condition

6&)1‘
op;

ni(1— pt™)

K2

<1 (B4)
po
which is equivalent to Eq. @ in the limit n; > 1. The
left-hand side of Eq. is proportional the ratio be-
tween the dynamical response of the system and the ini-
tial perturbation. If this ratio is smaller than one, the ini-
tial perturbation will decrease and the coexistence state
is stable. In the general case, one has to consider the
eigenvalues of the Jacobian matrix as in Appendix [A]



Appendix C: Existence of stable coexistence region

Our assumptions of symmetry and normalization allow
us to write

¥ (pi)

wi<pa> = m( . a
Ej:l w(P]‘)

where ¢(p?) is an arbitrary monotonically increasing

function with 1(0) = 0, which is bounded on the interval
[0,1]. We have

(C1)
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which we can plug into Eq. (@ to obtain
A,
o(p") =1 — pd — <1. C3
(i) =( ) o) (C3)

Since 9(0) = 0 and ¥'(0) # ¥(0), the left-hand side of
Eq. (C3) diverges for p¢* — 0. Because % is bounded,
we have

lim (") = 0.

(C4)
pir—1

Therefore, there is always a p?* (and so a value of \) for

which the inequality (C3]) is fulfilled.

Appendix D: Simulation details
1. General algorithm

To simulate our model we use the Pokec network [13],
a real OSN, as the underlying off-line network. We take
advantage of the fact that the temporal events in our
model are independent Poisson point processes, which
allows us to use the Gillespie [36, B7] algorithm (also
known as the Doob-Gillespie [38] algorithm). For a single
network, the algorithm works as follows:

1. Initialize the system and fix the rates corresponding
to the respective events (here A, p, § = 1)

2. (a) Evaluate the number of susceptible nodes
(Ng), the number of active nodes (N4) as
well as the number of edges connecting sus-
ceptible and active nodes (Fg4) and the num-
ber of edges connecting active and passive
nodes (Epa). Evaluate the sum & = uNg +
AEsa+ Epal+ 0Na.

(b) Generate random numbers to choose the next
event. The probabilities for the events are the
following:

e Mass media activation: uNg/S
e Viral activation: AEg4/S
e Viral reactivation: AEp4/S

e Deactivation: dN4/S

(c) Evaluate the corresponding time step 7. The
corresponding time step is given by 7 = S71.

3. Update the status of the system. So, if in step 2
a mass media activation was chosen, we randomly
choose a susceptible node and change its status to
active. For a deactivation, we randomly choose an
active node which then becomes passive. In the
case of viral activation, we randomly choose an
edge connecting a susceptible and an active node
and activate the susceptible node at the end of the
link. Similarly, for viral reactivation we randomly
choose an edge connecting a passive and an active
node and the passive node at the end of this edge
becomes active. We increase the time: t — ¢t + 7.
We iterate by returning to step 2 until the end of
the simulation is reached.

Generalization of the algorithm to multiple layers is
straightforward. One evaluates the probabilities of hav-
ing a certain dynamical process in a certain layer; for
example, mass media activation in layer ¢ occurs with
probability p;Ns;, where Ng; denotes the number of
susceptible nodes with respect to layer ¢ (all the nodes
which are in the underlying network but not in the i-th
layer) and p; is the corresponding rate in layer i. Ac-
cordingly, the probability of viral activation in layer 7 is
given by A\;Esa;, where Egy ; is the number of edges
connecting active and susceptible nodes in layer i. One
then chooses a dynamical processes in a certain layer in
accordance with these probabilities. Finally, 7 is given
by the inverse of the sum over all these probabilities in
all the layers.

Network activity
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Figure 7: Steady state activity of our model for a single net-
work when using Pokec as the underlying off-line network as
a function of the virality parameter A (see [I3]). Below a
critical value A, the network becomes entirely passive.



2. Empirical stability

Independent of the topological properties of the net-
work, the activities for the steady state solution for an
arbitrary number of layers is encoded in the activity curve
of a single layer, which we show in Fig.[7} At the steady

10

state of n. coexisting networks, each prevailing layer has
the same share of the total Vlrahty Ai = WA = 7%
whereas the remaining ones have )\j = 0. The steacfy
state activity of the i-th network is then given by the

activity value of a single layer shown in Fig. [ at A = A;.

[1] WeAreSocial. Global  digital
http://wearesocial.net/tag/sdmw/, 2014.

[2] Joanna Brenner and Aaron Smith. 72% of online adults
are social networking site users. Pew Research Internet
Project, 2013.

[3] Robert M Bond, Christopher J Fariss, Jason J Jones,
Adam D I Kramer, Cameron Marlow, Jaime E Settle,
and James H Fowler. A 61-million-person experiment
in social influence and political mobilization. Nature,
489(7415):295-8, 2012.

[4] Stephen P. Borgatti, Ajay Mehra, Daniel J. Brass, and
Giuseppe Labianca. Network analysis in the social sci-
ences. Science, 323(5916):892-895, 2009.

[5] Jukka-Pekka Omnnela and Felix Reed-Tsochas. Spon-
taneous emergence of social influence in online sys-
tems. Proceedings of the National Academy of Sciences,
107(43):18375-18380, 2010.

[6] Sinan Aral and Dylan Walker. Identifying influential
and susceptible members of social networks. Science,
337(6092):337-341, 2012.

[7] Manuel Garcia-Herranz, Esteban Moro, Manuel Cebrian,
Nicholas A. Christakis, and James H. Fowler. Using
friends as sensors to detect global-scale contagious out-
breaks. PLoS ONE, 9(4):92413, 04 2014.

[8] Alain Barrat, Marc Barthlemy, and Alessandro Vespig-
nani. Dynamical Processes on Complex Networks. Cam-
bridge University Press, New York, NY, USA, 2008.

[9] Kun Zhao, Juliette Stehlé, Ginestra Bianconi, and Alain
Barrat. Social network dynamics of face-to-face interac-
tions. Phys. Rev. E, 83:056109, May 2011.

[10] Michael D. Conover, Emilio Ferrara, Filippo Menczer,
and Alessandro Flammini. The digital evolution of oc-
cupy wall street. PLoS ONE, 8(5):¢64679, 05 2013.

[11] Federico Vazquez, Juan Carlos Gonzélez-Avella,
Victor M. Eguiluz, and Maxi San Miguel. Collective
phenomena in complex social networks. In Applications
of Nonlinear Dynamics, pages 189-199. 2009.

[12] Claudio Castellano, Santo Fortunato, and Vittorio
Loreto. Statistical physics of social dynamics. Rev. Mod.
Phys., 81:591-646, May 2009.

[13] Kaj-Kolja Kleineberg and Maridn Bogund. Evolution of
the digital society reveals balance between viral and mass
media influence. Phys. Rev. X, 4:031046, Sep 2014.

[14] G. Hardin. The competitive exclusion principle. Science,
131:1292-1297, 1960.

[15] Hermann Haken. Synergetics, An introduction. Springer
Verlag, 1977.

[16] G. E. Hutchinson. The paradox of the plankton. The
American Naturalist, 95(882):137-145, 1961.

[17] Alan Hastings. Disturbance, coexistence, history, and
competition for space. Theoretical population biology,
18:363-373, 1980.

[18] Marc William Cadotte. Competition-colonization trade-

statshot  001.

offs and disturbance effects at multiple scales. FEcology,
84(4):823-829, 2007.
[19] M. W. Palmer. Variation in species richness: towards

a unification of hypotheses.
29:511-530, 1994.

[20] B. Ribeiro and C. Faloutsos. Modeling Website Popular-
ity Competition in the Attention-Activity Marketplace.
arXiv:1403.0600, 2014.

[21] Wikipedia. List of social networking websites. 2014.

[22] Albert-L4szl6 Barabédsi and R. Albert. Emergence of
scaling in random networks. Science, 286(5439):509-512,
1999.

[23] S N Dorogovtsev, J. Mendes, and A. Samukhin. Size-
dependent degree distribution of a scale-free growing net-
work. Phys Rev E, 63(6):062101, May 2001.

[24] Ginestra Bianconi and A.-L. Barabdsi. Bose-Einstein
Condensation in Complex Networks. Phys Rev Lett,
86(24):5632-5635, 2001.

[25] G Caldarelli, A Capocci, P De Los Rios, and and M. A.
Murtioz. Scale-Free Networks from Varying Vertex Intrin-
sic Fitness. Phys Rev Lett, 89:258702, 2002.

[26] Alexei Vézquez. Growing network with local rules: Pref-
erential attachment, clustering hierarchy, and degree cor-
relations. Phys Rev E, 67(5):056104, May 2003.

[27] R Pastor-Satorras, E Smith, and R V Sole. Evolving
protein interaction networks through gene duplication. J
Theor Biol, 222(2):199-210, May 2003.

[28] Santo Fortunato, Alessandro Flammini, and Filippo
Menczer. Scale-Free Network Growth by Ranking. Phys
Rev Lett, 96(21):218701, May 2006.

[29] Raissa M D’Souza, Christian Borgs, Jennifer T Chayes,
Noam Berger, and Robert D Kleinberg. Emergence
of tempered preferential attachment from optimization.
Proc Natl Acad Sci USA, 104(15):6112-7, April 2007.

[30] F. Papadopoulos, M. Kitsak, M. Serrano, M. Boguii,
and D. Krioukov. Popularity versus Similarity in Grow-
ing Networks. Nature, 489:537-540, Sep 2012.

[31] L. Weng, A. Flammini, A. Vespignani, and F. Menczer.
Competition among memes in a world with limited at-
tention. Scientific Reports, 2, March 2012.

[32] James P. Gleeson, Jonathan A. Ward, Kevin P.
O’Sullivan, and William T. Lee. Competition-induced
criticality in a model of meme popularity. Phys. Rev.
Lett., 112:048701, Jan 2014.

[33] James P. Gleeson, Davide Cellai, Jukka-Pekka Onnela,
Mason A. Porter, and Felix Reed-Tsochas. A simple gen-
erative model of collective online behavior. Proceedings of
the National Academy of Sciences, 111(29):10411-10415,
2014.

[34] L. Takac and M. Zabovsky. Data analysis in public social
networks. International Scientific Conference and Inter-
national Workshop Present Day Trends of Innovations,
2012.

Folia Geobot Phytotazon,


http://wearesocial.net/tag/sdmw/
http://arxiv.org/abs/1403.0600

11

[35] Bruno Ribeiro. Modeling and predicting the growth [37] Daniel T. Gillespie. Exact stochastic simulation of cou-

and death of membership-based websites. International pled chemical reactions. The Journal of Physical Chem-
World Wide Web Conference, April 2014. istry, 81(25):2340-2361, 1977.

[36] Daniel T Gillespie. A general method for numeri- [38] J. L. Doob. Markoff chains-denumerable case. Trans-
cally simulating the stochastic time evolution of coupled actions of the American Mathematical Society, 58(3):pp.
chemical reactions. Journal of Computational Physics, 455—473, 1945.

22(4):403 — 434, 1976.



	I Introduction
	II Results
	A From quasi-isolated online social networks to interacting networks
	B Mean-field approximation
	C Real-world topology

	III Discussion
	 Acknowledgments
	A Jacobian matrix
	B Dynamical response to a small perturbation for n 1
	C Existence of stable coexistence region
	D Simulation details
	1 General algorithm
	2 Empirical stability

	 References

