

iSocial – February 5th, 2014

K-Leader Election with
Rank Slicing

Giovanni Simoni, Peerialism AB

The problem

● Goal: Within a Distributed Network of N nodes, select K
leaders basing on some appliction-specific metric.

● The leaders will be assigned to a special role (e.g
running a service for non-leaders).

● Broad spectrum of applications:
– Distributed storage: maintain K redundant copies of a file;

– Distributed Streaming: peers acting as source for the
chunks of a streamed video;

– Decentralized Social Network: top K neighbors from which
content or data should be fetched, preferably.

The problem

● Selection driven by node capabilities
● Examples of relevant metrics

– Distributed storage: available space in hard drive,
average network throughput...

– Distributed streaming: bandwidth, network
latency, locality...

– Decentralized Social Networks: shared interests,
level of trust...

Existing Solutions (1)

Indirect solution based on
Probabilistic Quorum, for
distributed storage

● An instance of Probabilistic
Quorum for every stored
content;

● Every instance decides K nodes
which will hold a replica.

Solutions for routing in Wireless
Ad-Hoc Networks

● Local election of a leader among
reachable neighbors

● Second election of K local
leaders as global leaders

I. R. A. Ferreira, M. K. Ramanathan, A. Grama, and S. Jagannathan: Randomized protocols for
duplicate elimination in peer-to-peer storage systems

II.Raychoudhury, J. Cao, and W. Wu: Top k-leader election in wireless ad hoc networks.

Existing Solutions (2)

Absolute Slicing

● A regular PSS for normal
topology construction

● Inner topology of candidate
super-nodes

● Inner-inner topology of size K
(using distributed aggregation)

A member
of the Distributed

Slicing family

General purpose

Close to our target

III. A. Montresor and R. Zandonati. Absolute slicing in peer-to-peer systems. In Parallel and
Distributed Processing,

Missing requirements:

We need to address real-world issues

● Link construction in the real world
is expensive (time)

● Routing in overlays is time
expensive

● We don't want to construct
additional topologies

We need a self-stabilizing algorithm

● Quick adaptation to changes,
without epochs or restarts.

Concepts (1)

Eligibility

● An eligible node is capable of
substaining the additional burden
of being a Leader

– E.g. Enough space in hard
drive to store a certain content

● Let Et be the subset of eligible
nodes in the network at time t.

– Eligibility changes in time

Goal: Consistency

If no variations occur in the eligible set
for a sufficiently long time, each of the
leader sets must eventually converge to
the same set.

Goal: Adaptiveness

If no variations occur in the eligible set
for a sufficiently long time, each of the
leader sets must eventually be
contained in Et. In other words, nodes
that lose their eligible status must
eventually leave the leader set.

Concepts (2)

Goal: Stability

The leader sets must be maintained
as stable as possible; i.e., even in
the presence of variation of the
eligibility set (with new nodes
joining the system or nodes outside
the leader set leaving it), the
leaders set should not vary
excessively over time.

Goal: Local Reliability

The application must be able to
know whether the result is reliable
or not. This information must be as
up-to-date as possible and should
be obtained in a decentralized way.

Point: minimizing the disruption of the
applicative logic which is using the k-
leader election service.

E.g. A good node is joining the system.

Measure of uniformity of choice of
leaders

Point: Each node wants to know if the
computation converged, and the result
is ready to be used.

Algorithm Description (1)

Idea: decentralized ranking of nodes

● Every node, periodically, contacts a neighbor and
exchanges the owned descriptors (gossip)

– Eligible nodes emit descriptors

– Descriptors contain the result of a ranking function

● Assumption: a topology management layer provides us
with an established connection to a neighbor

Ranking Array

Algorithm Description (2)

● Sorting accordingly to positional
significance;

● Keep descriptors only for eligible
nodes;

● Keep only the first K entries.

Result: Gossip view

Algorithm Description (3)

Pursuing Consistency

● Through Gossip descriptors reach
all nodes

● Keeping only K entries in the view:

– Eligible nodes emit their
descriptors;

– Only the best K are maintained
after merging

If no variations occur in the eligible set for a
sufficiently long time, each of the leader sets

must eventually converge to the same set.

Algorithm Description (4)

Pursuing Adaptiveness

● Descriptors are tagged with
a timestamp;

– Incremental integer
value

● Recent descriptors override
old ones

Note: Issuing a fresh descriptor
implies the
re-computation of the
ranking array

If no variations occur in the eligible set for a
sufficiently long time, each of the leader sets

must eventually be contained in Et. In other
words, nodes that lose their eligible status must

eventually leave the leader set.

Algorithm Description (5)

Pursuing Stability

● Descriptors are enriched with an
age counter (milliseconds)

– Propagation Age Limit (PAL)

– Basically a TTL

● Unavailable nodes cannot
propagate new descriptors

– The old one will eventually
disappear from the network.

Stability can change dramaticaly
depending on the ranking function,
which is application-dependent

The leader sets must be maintained as stable as
possible; i.e., even in the presence of variation of

the eligibility set (with new nodes joining the
system or nodes outside the leader set leaving
it), the leaders set should not vary excessively

over time.

Algorithm Description (6)

Pursuing Local Reliability

● Through a Quality Measure

– 0: Starting point: no knowledge

– 1: All nodes sharing the same
leaders set

– The value gets averaged over
nodes.

● Approximation: obtained through
decentralized computation

– Reliability information directly
available for the application, along
with result.

The application must be able to know whether
the result is reliable or not. This information must

be as up-to-date as possible and should be
obtained in a decentralized way

Optimal

Local view

K=10, Quality: (K-1)/K = 0.9

Quality measure

● We lack of the optimal leaders set!

– Quality is improving at each gossip cycle,
closer and closer to optimal result

– Use the next-step improvement as it was the
optimal

– The resulting quality is noisy and over-
optimistic:

● depends on local
information.

● A moving average can be
used to smooth it

● Perceived, compared with actual quality

Implementation

● Using real-world tools

– Mesmerizer

– Peerialism testing network

● No interference with the topology

– Requires a peer sampling system
underneath, but completely
decoupled from it.

● PSS as service (layer)
● Asking for a neighbor to gossip

with
● Using WPSS, a NAT aware

protocol.

– Credits: Roberto Roverso

Improvements

✔ Three-way gossip session, based on
descriptors freshness

1. Blind send

2. Savvy response

3. Savvy termination

✔ Open-Internet override

● Optimization for WPSS, where public
nodes converge quickly

● Overriding procedure as quality gets
closer to 1

● Credits: Alberto Montresor

Simulation & Results

Algorithm Parameters

● K and T (period)

● h (number of shared descriptors
per gossip session)

● α (smoothing factor)

● PAL (Propagation Age Limit)

● OQT (Override Quality Threshold)

● Simple ranking function: for each
node, choose a random value.

Parameters were studied in Simulation

● N = 1000

● Different classes of churn, X% of
nodes joining/leaving the network
within 10 seconds

– X {0.3, 0.5, 1}∈

● Behavior with different ratios K/N
and h/K.

● Best value for α

● Best PAL

Convergence time

Time for reaching a good
result quality (actual quality)
● In simulation, different

values of K and h
● Estimated convergence

time, around 20 seconds

Parameter study for Alpha

Smoothing factor: tuning
for obtaining an accurate
quality estimation

● Difference function
between perceived
and actual quality

● Minimization of the
integral, with different
classes of churn.

● A good range for α is
the 0.95-0.98 interval

Parameter study for PAL

Propagation Age Limit, remove old information
from the system
● Higher convergence time if too short
● Long-lived outdated information if too long
● Finding some good trade-off: around 12

seconds

Deployment & Results

Deployed on testing facility
in Peerialism
● Experiments up to

N=1000, 20% of which
Open Internet

● Selection of parameters:
– K=10, h=K, T=1sec
– PAL=12sec
– Α=0.95

● Note: different starting time

Here OQT (Override Quality
Threshold) was added as
parameter

Conclusions

● Strength Points

– Working on Real-world
scenario

– Resilient to local/global
dynamics

– Self-evaluating

– Self-stabilizing

● Weak points

– Needs additional
esperimentation, with actual
application logic

– Room for improvement

Submitted to ICDCS 2014, waiting for feedback.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

