Decentralized Ensemble Learning and Online Social Networks

Presented by: Amira Soliman Supervisor: Šarūnas Girdzijauskas

> iSocial Meeting February 4-5th, 2014

Outline

- 1. Distributed Machine Learning Ensemble Learning
- 2. Gossip Learning on DOSNs
- 3. Sampling Service in DOSNs
- 4. Ensemble learners CTR model
- 5. Collaboration (Insubria & FORTH)

Big Data & OSN

Learn from Data - Model

Engine Simulation Program Features 39 <u>Cover Features</u> ³⁴ (Numbered Items) Described Below	DeskTop And DynoSim Engine Simulations				Sport-Compact Engine Simulations			Dynomation Professional Series Engine Simulations	
	DeskTop Dyno Ba- sic	DeskTop Dyno	DynoSim Advanced	DynoSim ProTools™	DeskTop SC Dyno	SCDynoSim Advanced	SCDynoSim ProTools™	Dynomation Advanced	Dynomation ProTools™
Dyno-Testing RPM Range	2500 to 8000 rpm	2000 to 8500 rpm	1500 to 11500 rpm	1000 to 14500 rpm	2000 to 8500 rpm	1500 to 11500 rpm	1000 to 14500 rpm	1500 to 11500 rpm	1000 to 14500 rpm
Bore Range Limits	3.00 to 7.00	3.00 to 7.00-in	2.50 to 7.00-in	2.00 to 7.00-in	3.00 to 7.00-in	2.50 to 7.00-in	2.00 to 7.00-in	2.50 to 7.00-in	2.00 to 7.00-in
Stroke Range Limits	3.00 7.00	2.50 to 7.00-in	2.00 to 7_00-in	1.50 to 7.00-in	2.50 to 7.00-in	2.00 to 7.00-in	1.50 to 7.00-in	2.00 to 7.00-in	1.50 to 7.00-in
Includes Color Users Manual	Ye	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Best For Domestic Engines	Ye	Yes	Yes O	00	h			Yes	Yes
Best For Sport Compact			8-	<u>8</u>	Yes	Yes	Yes	Yes	Yes
Alternate Fuels/Nitrous (1)	Ye	OYes O	Yes		, Oos	Yes	Yes	Yes	Yes
AirFlow Converter™ (2)	Ye	Yes	Yes O	00	Yes	Yes	Yes	Yes	Yes
CamMath QuickCalculator™ (3)	Ye	Yes 🔵	OYes O	Yes O	Yes	Yes	Yes	Yes	Yes
Variable Valve Timing (4)		-			Yes	Yes	Yes	Yes	Yes
Advanced Compression-Ratio Calculator (5)	N	Yes	OPes O	Yes	Yes	Yes	Yes	Yes	Yes
Connecting-Rod-Length And Rod-Ratio Modeling (6)	N	Ye	• ••• •		Yes	Yes	Yes	Yes	Yes
Forced-Induction Modeling (7)	No	Yes		Yes	Yes	Yes	Yes	Yes	Yes
High-Speed Simulation (8)	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Custom Cylinder-Head Flow (9)	N					Yes	Yes	Yes	Yes
Multi-Page Test Reports (10)	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
DirectClick™ Menus (11)	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Real-Time "What-If" Testing (12)	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
U.S./Metric Units (13)	No	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes

Distributed Machine Learning

Large-Scale Learning

- Data
- Time

Gain?

- 1. Computations
- 2. Network
- 3. Accuracy
- 4. Privacy

Ensemble Learning

Two key Components:

- Algorithm to generate *Local Hypotheses*
- Method for combining output of these *Local Hypotheses*
 - Predictions
 - Learners

Decentralized Ensemble Learning

Ensemble Learning on DOSNs

Ensemble Learning on DOSN

Research Questions:

- 1. Diversity random overlay
- 2. Navigation constructing relay paths through social ties
- 3. Merge classifiers reflect Ego/Socio centric properties in OSN

Methodologies:

- 1. Gossip-based Peer Sampling Service
- 2. On-the-fly Path Construction
- 3. Content, Time, and Reachability: CTR Model for merging classifiers

Overlay Construction

Cyclon: Inexpensive membership management for unstructured P2P overlays

- that gives access to random peers
- has low diameter
- has low clustering coefficient
- Resilient to massive node failures

Basic idea: **Shuffle** operation, that's performed periodically using gossip

How Cyclon works C : ipAddrC A: ipAddrA E: ipAddrE G B D H: ipAddrH D: ipAddrD D: ipAddrD A: ipAddrA F A: ipAddrA B: ipAddrB C: ipAddrC E: ipAddrE F: ipAddrF G: ipAddrG Η H: ipAddrH \mathbf{C} E

Overlay Construction in DOSN

On-the-fly Path Reconstruction

Adaptive CTR Model

Stacking: training a learning algorithm to combine the predictions of several other learning algorithms.

Applications

For our iSocial project:

- 1. Identity Management with INSUBRIA
- 2. Spam Filtering with FORTH

Decentralized Privacy Management

Community-based Identity Validation:

- 1. Correlated Attribute Groups: Find coherence relations
- Raters Group: set of trusted users Get feedback regarding new user profiles

Add Friend
Send a Message

Decentralized Privacy Management

Decentralized Spam Filtering

To Sum Up:

- 1. Ensemble Learning: use multiple models to obtain better predictive performance
- 2. Integrating Gossip protocols to develop decentralized ensemble learning strategy for DOSN (peer sampling service)
- 3. Stacked Generalization: adaptive CTR
- 4. Future work: decentralized privacy management and spam detection

That's all, thanks ③

