

Community Based Identity Validation

Model & Opportunities for Collaboration

By: Leila Bahri

Supervised by: Prof. Elena Ferrai & Prof. Barbara Carminati iSocial meeting

Stockholm, February 2014

Outline

- Motivation
 - Identity within Access Control
 - Previous work
 - Research Question
- Observation, Hypothesis, Concerns
- The CBIV Model
- Preliminary Experiments and Results
- Future Work
- Opportunities for collaboration (KTH)

Access Control in 3 steps

Resource

Identity related issues on OSNs

- Different types of attacks:
 - Sybil
 - Identity theft
 - Cloning
- Fake accounts for varying purposes: Facebook releases that
 5% to 6% of registered accounts are fake
- \rightarrow There is unreliability!
 - users do not have, or rarely do have, a mean to reliably identify the person behind the account

- Veracity is not verifiable:
 - privacy preservation
 - spoiled accounts
 - Identification misleads
 - Ineffective access control and privacy preservation mechanisms

nsecure environment

LIE?

TOTL

Previous works

- Most focus on **detecting** identity related frauds and attacks [14][15][16]
- Most rely on the central system to perform the detection and to take action
- Few give users a mean to rate the reliability/credibility of an account [17][18]
 - Mostly through relying on historical transactions or connections between participants
 - *Limitation 1:* Transaction scoped
 - Limitation 2: Connections' fraudulent collusion

Research Question

STRIC LAB

- How can we validate identities of OSN users without relying on a central authority?
- Can we make use of the community to validate profile information?

Observation

• The more coherent an online profile is + the better this coherency is maintained over time, the more probable this profile is operated by a truthful identity [10]

Full name: Poe Pineapple Gender: Male

Age: 31

Address: 12, Banana Street; Spring city; Fruits Land

Religious views: Citruism Interested in: improving digestion, strengthening bones Work place: Fun Juice factory Education: Health and Nutrition University Social status: married Hobbies: Sports: Movies: Music: Country of origin: Fruits Land Lives in: Fruits Land Lived in: Fruits Land Languages: Applian

Age: 18 Address: Religious views: Complicated Interested in: strength and body-building Work place: Proteins production INC Education: Aesthetics Professional School Social status: single Hobbies: sun-bathing Sports: Movies: Music: Country of origin: Veggies Land Lives in: Flesh Land Lived in: Veggies Land Languages: Strawssian

Full name: Frya Straws

Gender: Female

Hypothesis & Concerns

- OSN community can collaborate to credibly rate the coherency of a target profile
- BUT
 - Profiles span multiple identity dimensions → where is coherency expected?
 - Quality of rates \rightarrow who could rate what?
 - Collusions' risks
 - Privacy issues → sensitive information disclosure/leakage!

The CBIV Model - Overview

- What are the attributes for which the corresponding values can be rated for intercoherency?
 - Correlated attribute groups identification
- How can these groups be identified?
 - A learning phase is needed
- Who is to rate what?
 - Raters' selection is a requirement
- How to rate a target profile based on the above
 - An evaluation phase emerges

Let's exemplify it...

Summary:

✓ We need to identify the <u>correlated attributes</u>
 ✓ We need to know the <u>direction of the correlation</u>

Resemblance:

The problem sounds similar to Association Mining for Basket Analysis

Question:

How can we detect the correlated attributes?

- Can we count the frequency of occurrence of similar values?!
- Can we mine people's knowledge/feedback?

The CBIV Model – Learning Phase 1/2

<u>Correlated Attribute Groups</u>: a group of attributes for which the values can be rated as coherent to each other or not by an informed person.

The CBIV Model – Learning Phase 1/2

How to find correlated attribute groups?

Learn them from trusted users' feedback on learning profiles dataset

Do you think the following values can belong to a true identity altogether?

The CBIV Model – Learning Phase 2/2

14

<u>Coherence Relation:</u> an implication between the elements of a correlated group based on which the coherence of their corresponding values is to be rated. Such an implication will define the raters selection on the given correlated group.

Who is to better judge the coherency of this combination?

- Job = Fun fruits factory, project manager
- Education = Health and Nutrition Univ Graduate

Support(Job/Education) vs.

Support(Education/Job)

The CBIV Model– The Evaluation Phase

- Goal: compute an ITL (Identity Trustworthiness Level) from user feedback for a target profile given a set of correlated groups and coherence relations on them
- Method:
 - For every correlated group
 - Perform raters' selection based on corresponding coherence relations
 - Gather selected raters' coherency feedback for the values on the target profile corresponding to the elements of the correlated group
 - Aggregate the feedback on all the correlated groups and make the ITL

Learning the correlated attributes

Evaluation of target user profile

Performed experiments - dataset

- Adults dataset from US Census Bureau
 - Contains 45222 records spanning 14 attributes
- 11 out of the original 14 attributes have been considered

Attribute	Description
Age	Age
Work-class	Work Class
Education	Education Level
Educ-num	Number of years spent at school
Marital-status	Marital Status
Occupation	Job
Social-role	Social Role
Race	Race
Sex	Gender
hrsperweek	Number of hours worked per week
Country	Country of origin
TADIE I .	Attailates of the second second

TABLE I : Attributes of the profile schema adopted in the experiments

17

Identified correlated groups-CB vs. AM

	Supports	
Candidate Group	AM	СВ
educ-num, gender	0.36	insig
hrsperweek, gender	0.66	insig
educ-num, race	0.34	insig
hrsperweek, race	0.36	insig
gender, race	0.44	insig
educ-num, social-role	0.29	insig
hrsperweek, social-role	0.30	insig
gender, social-role	0.38	insig
educ-num, marital-status	0.27	insig
hrsperweek, marital-status	0.26	insig
gender, marital-status	0.36	insig
gender, education	0.25	insig
educ-num, work-class	0.29	insig
hrsperweek, work-class	0.30	insig
gender, work-class	0.37	insig
race, work-class	0.21	insig
educ-num, age	0.28	insig
race, age	0.21	insig
gender, age	0.37	insig
hrsperweek, age	0.35	0.56
social-role, marital-status	0.21	0.56
educ-num, education	0.37	0.52
education, hrsperweek	insig	0.66
age, marital-status	insig	0.58
education, occupation	insig	0.59
occupation, hrsperweek	insig	0.67
occupation, educ-num	insig	0.63
occupation, work-class	insig	0.63
country, race	insig	0.56
work-class. educ-num	insig	0.57

TABLE II : Candidate groups considered as correlated attributes either by CB or by AM method

Performance results

STRIC LAB

19

The CBIV Model – Privacy issues

- Exclude the quasi-identifier attributes from all the reasoning of the model
- ... not enough
- K-anonymity shall be ensured...
 - Is it enough?!

The CBIV Model – Future Works

- More experiments on real environment
- Address privacy issues
- Weighted / multi-dimensional ITL
- Revise the model to fit the requirements of a decentralized architecture

The CBIV Model – Collaborations

 CBIV on a decentralized architecture using Gossip learning

Amira has addressed that...

This model has been formalized and submitted for a paper review to the **International Conference on Distributed Computing Systems-ICDCC 2014** http://lsd.ls.fi.upm.es/icdcs2014

References...

24

- [1] Vandell, Deborah. L, Parents, peer groups, and other socializing influences. Development Psychology, Vol 36(6). 2000.
- [2] Pascal. S, Joachim. G, Organizational Virtualness. Proc. of the VoNet Workshop. 1998.
- [3] C. L. Corritoire, B. Kracher, S. Wiedenbeck, *On-line trust: concepts, evolving themes, a model.* International Journal of Human- Computer Studies, Vol. 58, no. 6, pp. 737 758. 2003.
- [4] Nikolaos Volakis, *Trust in Online Social Networks*. University of Eidenberg. 2011.
- [5] H. Nissennbaum, Securing trust online: Wisdom or Oxymoron. BUL Rev, Vol. 81. 2001.
- [6] Squicciarini. A. C, Griffin. C, Sundareswaran. S, *Towards a Game Theoretical Model for Identity Validation in Social Network Sites.* IEEE International Conference on Privacy, Security, Risk, and Trust. 2011.
- [7] E. Martinez, *Alexis Pilkington brutally cyber bullied even after her suicide.* http://www.cbsnews.com/8301-504083-162-20001181-504083.html. 2010.
- [8] H. Bray, Griffin. C, Sundareswaran. S, Privacy still a nagging concern on Facebook.
- http://www.boston.com/business/technology/articles//2010/02/04/privacy still a nagging concern on facebook/. 2010.
- [9] S. Barnes, Griffin. C, Sundareswaran. S, Social networking in the united states. First Monday. A privacy paradox [Online], 11(9). 2006.
- [10] Ljung, A and Wahlforss, E, Griffin. C, Sundareswaran. S, *People Profiles and Trust On Interpersonal Trust in Web-mediated Social Spaces*. [Online], available at: http://trustmojo.com. 2008.
- [11] Michael J. A. Berry, Gordon S. Linoff, *Data Mining Techniques*. Copyright 1997 by John Wiley and Sons. ISBN 0-471-47064-3. 2007.
- [12] S. de Capitani di Vimercati, S. Foresti, *Quasi-Identifier*. Encyclopedia of Cryptography and Security: SpringerReference. [Online].
- [13] R. Agrawal, R. Srikant, *Fast Algorithms for Mining Association Rules*. IBM Almaden Research Center. Proc. of the 20th VLDB Conference Santiago, Chile. 1994.
- [14] B. Viswanath, M. Mondal, A. Clement, P. Druschel, K O. Gummadi, A. Mislove, A. Post, *Exploring the design space of social network-based Sybil defenses*. IEEE Fourth International Conference on Communication Systems and Networks (COSNETS). 2012.
- [15] G. Guette, B. Ducourthial, On the Sybil attack detection in VANET. IEEE International Conference on Mobile Adhoc and Sensor Systems (MASS). 2007.
- [16] L. Jin, H. Takabi, J B.D. Joshi, *Towards Active Detection of Identity Clone Attacks on Online Social Networks*. Proc. of the first ACM conference on Data and Application Security and Privacy (CODAPSY). 2011.

References...

- [17] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. S. kim, P. Compton, A. Mahidadia, *Collaborative Filtering for People to People Recommendation in Social Networks*. Advances in Artificial Intelligence: Lecture Notes in Computer SCience Vol, 6464. SpringerLink. 2011.
- [18] M. Sirivianos, K. Kim, J. W. Gan, Yang, *Assessing the veracity of identity assertions via OSNs*. IEEE 4th International Conference on Communication Systems and Networks (COMSNETS). 2012.
- [19] Roffo, Giorgio, Segalin, Cristina, Vinciarelli, Alessandro, Murino, Vittorio, al. *Reading between the turns:* Statistical modeling for identit recognition and verification in chats. IEEE 10th International Conference on Advanced Video and Signal Based Surveillance (AVSS). 2013.
- [20] L. Dehache, L. Souici-Meslati, *A multibiometric system for identity verification based on fingerprints and signatures.* IEEE International Conference on Complex Systems (ICCS). 2012.
- [21] P. Chairunnanda, D. R. Cheriton, N. Pham, U. Hengartner, *Privacy: Gone with the Typing! Identifyin Web Users by Their Typing Patterns.* IEEE 3rd International Conference on Social Computing. 2011.
- [22] A. S. Bozkir, S. G. Mazman, E. A. Sezer, *identification of User Patterns in Social Networks by Data Mining Techniques: Facebook Case.* Technological Convergence and Social Networks in Information Management, Vol, 96. 2010.
- [23] Y. Yang, E. Lewis, J. Newmarch, *Profile-based digital identity management a better way to combat fraud.* IEEE International Symposium on Technology and Society (ISTAS). 2010.
- [24] TOGAF, TOGAF version 9.1. [Online] available at: www.togaf.org. 2013.
- [25] M. Kosinski, D. Stillwell, T. Graepel, *Private traits and attributes are predictable from digital records of human behavior.* Proc. of the National Academy of Sciences of the USA. [online]. 2012.
- [26] S. Vijayarani, A. Tamilarasi, M. Sampoorna, *Analysis of privacy preserving k-anonymity methods and techniques*. IEEE International Conference on Communication and Computationa

Thank you for your attention...

