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Introduction

® Decentralized Social Networks allow users to create a public
or private profile

Users interact with each other in the virtual environment
Dramatic increase in online social network u

Privacy is an enormous problem

Some users are less concerned about information privacy

Users by privacy setting couldn't control the resources
published by other users
® Can lead to security risks such as, identity taeft cyber stalking




State of Art

» The success of I-social networks relies on the level of trust
that members have with each other

» Trust is a measure of confidence that an entity or entities will
behave in an expected manner.
» In online systems, trust is considered to be of two ty

> Direct trust: is based on the direct experience of the member
with the other party.

- Recommendation trust: is based on experiences of other
members in the social network with the other party.



State of Art

» Trust Information can be collected from three main sources:

o Attitude: It related to user’s like or dislike for sometfiThis
iInformation is derived from a user’s interactions.

- Experiences. Experiences describe the perception of the members
their interactionwith eacl othel. Experiences may affect attitudes
behaviors.

- Podgitive experiences. Encourage users to interact more in the community.

- Behaviors (Patterns of interactiols

- If a member is a highly active participant and suddenly stops
participating, it means his trust decreased.




State of Art

» Creating an environment where members can share their
thoughts, opinions and experiences in an open and honest way
without concerns about privacy

} Trust models classified into
o Statistical and machine learning technigues
o Heuristics based techniques
o Behavior based techniques

® Some mechanisms based on user feedback/ experiencesehablarfor
reflection on user experiences.
® Trust models based on tie strength

Two close friends rarely exchange messages
assive users just read, view other profiles amdt dderact===decrease tie strength




Behavior based Models:

} There are different types of activities in the community
Writing

Reading

Commenting on a post

Viewing information and Participating in an activity

Sendincadc reques to other:

» There are two types of interactions:

> Active

- Sending add request to others

+ Writing a post or commend
- Passive

- Regular visits to the community and Accepting aelgliest
- Reading a post or commend of others
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Behavior based Models:

» Modell: There are two particular behavior patterns as an
expression of trust:
> Conversationtf two users converse, they trust each other
- Propagationlf user propagates information of others, theppgator
trusts the information
» Model2: Model of trust based on long-time interaction and
shorter distance

- User of OSN has more friends (high degree)
> Frequent communications with friends (minimum cchtaterval)

o More secure
c__Higher trust value




Problems in Behavior Based Models

» A pair can be friends with each other but rarely exchange
messages

» Some users are passive and they just read and view other
profiles

» Some users may send a lot of messages, but never re:
response

» A user with high number of friends and interactions is more
secure

» User with a lot of friends has an anomaly behavior




Problems in Behavior Based Models

» Having a lot of friends only cannot be a sign of trust.

» User that propagates a lot of information of users.

» User may sends a lot of friendship invitation and no one
accept.

» One stranger may be trustworthy for one user but not
trustworthy for another user.




The goal of this project

® Before a user becomes friends with a stranger
o Can a stranger be trusted?
o0 How much is risky to create a relationship withrasger?
0o How to measure the trust of a stranger

?7?7?




The goal of this project

} Our goal isto identify trust and risk patterns------ Good sautfor
default privacy setting for a user
0 Machine learning technigues
0 Behavior-based techniques

} Overal approach:

1- Find anomalous behaviors
O Have anomaly behavior that can be risky

o Different behavior in compare of other users in a group
o There is a blance between send and receive for majority of users in each group
0 If some one send a lot and did't recive
0 In passive group, if someone propagates a lot of information to others

of relationship between target user and stranger




Overall Approach

» We analyse user behavior (patterns of interactions) globally
and locally to assign two risk scores

» GRS: Global Risk Score

» The result of anomaly detection algorithm
» LRS: Local Risk Scol

» How much is risky

» Based on patterns of interactions

» Matching relationship with user’s white list




Overall Approach
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Global Risk Score

» Anomaly detection approaches in behavior analysis can be
classified in three categories

> Supervised learning
- Each behavior labeled as anomalous or not

> Unsupervised learnin
- Label is not required

- Semi supervised learning
- Few labeled behaviors




GRS: What is behavior? Outlier?

» Global Risk Score- Behavior?
» Sets of features that occur together by user'sites

B.={a, b, c}

B.,={a, b, d, e, q}
Bs={b, c, d, f, g}

B,={a, c,e, d, h,i}
B={,Kk,|,m,n,o,p, q}
Bs={r,s,t,u,v,w, X, y}




Global Risk Score : Features

» Global Risk Score- Find anomalous behaviors
» Distribution of behavior of each user across all other users

» Two group of features
» Grouping

»
»

Profile (Education, Location, Age and number oéids, Internationality)
Attitudes (Passive, Active)

» Behavio
2

4
4
»
4
4
»

Longevity
Number of add request sent

Variety of same family name in user's network
How many percent of profile items

Number of Propagated information

Number of like
Comment/ tag/ post



GRS: Global Risk Score

» There are two phases:
> Cluster users based on Grouping features

> Cluster each group based on Behavioral features
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GRS: Probability Based Clustering

» Every user with his behavior has a certain probability to a
given cluster

» There is K probability distributions, representing K clusters
» Each distribution gives the probability
» A particular behavior would have a certain set of features

values to be member of that cluster Cluster
User ID Education Age Gender I'\ll“lct)éraction Current City Hometown @
2 Master 25 Male 22 Milan Milan

3 master 25 Male 114 Varese Milan @

PhD 27 Female 58 Varese Varese \
24

Female 58 Milan Varese




Probability Based Clustering

» Categorical Features: Pr[a=v|C1]
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Probability Based Clustering

- Numeric Features. Consider a Normal distribution with a
mean and standard deviation for each feature, Probability
Density Function

- If we have an equal number of education level as bachelor,
PhD, master, our global distribution for each education w
be 25%. P(bachelor)+P(master)+P(PhD)=1

Education Cluster 1 Cluster2 Cluster 3 Cluster 4
Bachelor 10% 75% 80% 30%
Master 45% 25% 0% 25%
PhD 45% 0% 20% 45%




Expectation-Maximization(EM)

» Use three step:

o Initialization: Guess the parameters @4 p) to calculate the cluster
probability for each cluster

o Expectation: Calculate the cluster probability and reestimate the
parameters

o Maximization: Calculation of the distribution parameters ¢}ip)
iIncrease the likelihood of the distributions in le@&eration to maximize
it.
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User ID Educatilo Age l Gender No. Current Hometo
n Interacti City wh
on
2 Master 25 Male 22 Milan Milan
3 PhD 25 Male 114 Varese Milan
4 PhD 27 Female 58 Varese Varese
7 Master 24 Male 58 Milan Varese
Education Age Gender | No. Current City Hometown Probability
Interaction
Bachelor 22 Male 120 Milan Bologna 10%
Master 22 Male 80 Milan Milan 15%
PhD 22 Male 80 Varese Milan 60%
PhD 36 Female | 80 Varese Varese 30%
Female | 120 Varese Bologna 15%
Milan Bologna 20%
Milan Varese 70%

Mining Model



GRS: User Grouping Phase

» Clustering users based on some grouping features

o Profile
o Education

0 Location

0 Age

o Number of friends
0 Internationality

o Attitudes

o Passive
o Active




Anomaly/Outlier Detection Phase

» We cluster all users in each cluster based on behavior features
to predict anomaly behavior

» The result of the “PredictCaseLikelihood” function is the
Global Risk Score(GRS)

Anomaly if PCL x; 18 = T,
Normal if PCL x; 18 < T,

GRS(z;) = {




EM Result for Anomaly Detection

» Behaviors that are far from any of clusters indicate as

anomalous behavior

[oeposiTam,.. | [oerosttamo... [ L. [ L. [0, [[0.. | ||| (Meas... | Mess... | [eas... | easures].... | (M. | (Measures][... |T... | Expression | scLuster |
JO0E0E-24 .. l00ZE0OIOOLI 2 1 D 1z 1 L 434.5... 5500000 20 00 Cluster 2
OOEOS07 .. 1602EZSIZSZZL 4 1 D 12 1 0 o 19,5, 13399999000 4 O 00 Cluster &
O0R-DE-18 .. 200102789641 4 1 D 12 1 030 453.5... 3000000 30 00 Cluster 4
JO0E-1109 .. 20210MES421 4 1 D 121 70 o 1725,  GIEIEE 30 00 Cluster 4
O0E0S07 .. 2l0l0Z7EEOL 4 1 D 1z 1 o o #06.5.. SOM0ODOOD 2 O 00 Cluster &
J008-05-10 .. 360136511 o 1 b 1z 1 5 o E75.2.. EOUSIODO00 4 O 00 Cluster &
20080501 .. 30ILOZMOS1L 4 1 D 12 1 0 0 S60.6... 49000000 49 0O 00 Cluster 8
DOOEOS-06 .. 1B0IGOOIEIORZ 2 O D 12 1 y o 14.05... 4200000 i 0 0 8998400776200 Cluster 2
DOOROS-D4 . ZBlE00S4EESZL 2 00 D 12 1 o o 1.043... 9300000 2 0 0 4.23111531494548E-150  Cluster 10
O0E070Z .. 2z00ZSI 2z 1 D 12 1 55 o 9.3, 300 20 0 33ISI71462022066-99  Cluster 4
O0R-DE-24 .. 20210MSS421 4 1 D 12 1 51 o ¥25.. 19ME0I0 2z 0 0 LILI967262013526-81  Cluster 4
JO0S0S03 .. WOIGOCSZ0EL 2 0 D 12 1 o o 19.99,.. 3000000 10 0 S.3800079566377E-69  Cluster 10
JO0E07-19 .. zElzosel 2z 1 D 1z 1 7 o 1058.... | 200000 10 0 S77IIB4B00IFE-07  Cluster 2
JO0E-1109 .. 00GEESL 2 1 D 12 1 70 o P46, 2431000 10 0 0.00244739280360199  Clusker 2




Local Risk Score(LRS)

» We want to find how much is risky for a target user to create a
relationship with a stranger based on patterns of interactions
with him and profile features ?

» To assign this risk score, we compare all features of two userl
with user2 to create a white List for target ul




LRS: What is inside the White List

Top commeon relationship in the

white list
Normal relationship D
X110X11X1X101110111 1
X111X11X1X011111107 2
X111X10X1X110111011 3
. . X101X01X1X111111111 4
4 Whlte LISt X011X11X1X111110111 3
X011X07xX3X 000000001 &)
XI12X0I1XXX111111111 7
X171X00X3XX000000001 8
X111X17X1X110111111 0
X100X10X1X000000001 10




LRS: Risk of Creating Relationship

i arget User

Top commeon relationship in the
white list

Normal relationship

_ X110X11X1X101110111
: _ Family X111X11X1X01111110?
Relationship Relationship ~ X!11X10XIX110111011
Window of friends of in White list X101X01X1X111111111

1D
Check New !
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4

X011X11X1X111110111 5

stranger Colleague X011X0?7XXX000000001 6
-

8

9

10

X117X01XXX111111111
_ X121X00XXX000000001
Neighbors { X111X17X1X110111111

X100X10X1X000000001
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