Risk Assessment in Decentralized Social Networks Based on Anomalous Behavior Detection

Advisors: Prof. Elena Ferrari, Prof. Barbara Carminati, Naeimeh Laleh Insubria University, Varese Como, Italy

Introduction

- Decentralized Social Networks allow users to create a public or private profile
- Users interact with each other in the virtual environment
- Dramatic increase in online social network users
- Privacy is an enormous problem
- Some users are less concerned about information privacy
- Users by privacy setting couldn't control the resources published by other users
 - Can lead to security risks such as, identity theft and cyber stalking

State of Art

- The success of I-social networks relies on the level of trust that members have with each other
- Trust is a measure of confidence that an entity or entities will behave in an expected manner.
- In online systems, trust is considered to be of two types:
 - **Direct trust:** is based on the direct experience of the member with the other party.
 - **Recommendation trust:** is based on experiences of other members in the social network with the other party.

State of Art

- Trust information can be collected from three main sources:
 - Attitude: It related to user's like or dislike for something. This information is derived from a user's interactions.
 - **Experiences:** Experiences describe the perception of the members in their interactions with each other. Experiences may affect attitudes or behaviors.
 - **Positive experiences:** Encourage users to interact more in the community.
 - Behaviors (Patterns of interactions):
 - If a member is a highly active participant and suddenly stops participating, it means his trust decreased.

State of Art

- Creating an environment where members can share their thoughts, opinions and experiences in an open and honest way without concerns about privacy
 - Trust models classified into
 - Statistical and machine learning techniques
 - Heuristics based techniques
 - Behavior based techniques
- Some mechanisms based on user feedback/ experiences that are tools for reflection on user experiences.
- Trust models based on tie strength
 - Two close friends rarely exchange messages
 - Passive users just read, view other profiles and don't interact===decrease tie strength

Behavior based Models:

- There are different types of activities in the community
 - Writing
 - Reading
 - Commenting on a post
 - Viewing information and Participating in an activity
 - Sending add request to others
- There are two types of interactions:
 - Active
 - Sending add request to others
 - Writing a post or commend
 - Passive
 - Regular visits to the community and Accepting add request
 - Reading a post or commend of others

Behavior based Models:

- Model1: There are two particular behavior patterns as an expression of trust:
 - Conversation: If two users converse, they trust each other
 - Propagation: If user propagates information of others, the propagator trusts the information
- Model2: Model of trust based on long-time interaction and shorter distance
 - User of OSN has more friends (high degree)
 - Frequent communications with friends (minimum contact interval)
 - More secure
 - Higher trust value

Problems in Behavior Based Models

- A pair can be friends with each other but rarely exchange messages
- Some users are passive and they just read and view other profiles
- Some users may send a lot of messages, but never receive a response
- A user with high number of friends and interactions is more secure
- User with a lot of friends has an anomaly behavior

Problems in Behavior Based Models

- Having a lot of friends only cannot be a sign of trust.
- User that propagates a lot of information of users.
- User may sends a lot of friendship invitation and no one accept.
- One stranger may be trustworthy for one user but not trustworthy for another user.

The goal of this project

- Before a user becomes friends with a stranger
 - Can a stranger be trusted?
 - How much is risky to create a relationship with a stranger?
 - $\circ~$ How to measure the trust of a stranger

The goal of this project

- Our goal is to identify trust and risk patterns-----Good solution for default privacy setting for a user
 - Machine learning techniques
 - Behavior-based techniques

• Overal approach:

- 1- Find anomalous behaviors
 - Have anomaly behavior that can be risky
 - Different behavior in compare of other users in a group
 - There is a blance between send and receive for majority of users in each group
 - If some one send a lot and did't recive
 - In passive group, if someone propagates a lot of information to others

-Risk of relationship between target user and stranger

Overall Approach

- We analyse user behavior (patterns of interactions) globally and locally to assign two risk scores
- GRS: Global Risk Score
 - The result of anomaly detection algorithm
- LRS: Local Risk Score
 - How much is risky
 - Based on patterns of interactions
 - Matching relationship with user's white list

Overall Approach

Global Risk Score

- Anomaly detection approaches in behavior analysis can be classified in three categories
 - Supervised learning
 - Each behavior labeled as anomalous or not
 - Unsupervised learning
 - Label is not required
 - Semi supervised learning
 - Few labeled behaviors

GRS: What is behavior? Outlier?

- Global Risk Score- Behavior?
 - Sets of features that occur together by user's activities

Global Risk Score : Features

- Global Risk Score- Find anomalous behaviors
 - Distribution of behavior of each user across all other users
- Two group of features
 - Grouping
 - Profile (Education, Location, Age and number of friends, Internationality)
 - Attitudes (Passive, Active)
 - Behavior
 - Longevity
 - Number of add request sent
 - Variety of same family name in user's network
 - How many percent of profile items
 - Number of Propagated information

- Number of like
- Comment/ tag/ post

GRS: Global Risk Score

- There are two phases:
 - Cluster users based on Grouping features
 - Cluster each group based on Behavioral features

GRS: Probability Based Clustering

- Every user with his behavior has a certain probability to a given cluster
- There is K probability distributions, representing K clusters
- Each distribution gives the probability
- A particular behavior would have a certain set of features values to be member of that cluster

User ID	Education	Age	Gender	No. Interaction	Current City	Hometown	
2	Master	25	Male	22	Milan	Milan	
3	master	25	Male	114	Varese	Milan	C
4	PhD	27	Female	58	Varese	Varese	
7		24	Female	58	Milan	Varese	

Probability Based Clustering

Categorical Features: Pr[a=v|C1]

Probability Based Clustering

- Numeric Features: Consider a Normal distribution with a mean and standard deviation for each feature, Probability Density Function
- If we have an equal number of education level as bachelor, PhD, master, our global distribution for each education would be 25%. P(bachelor)+P(master)+P(PhD)=1

Education	Cluster 1	Cluster2	Cluster 3	Cluster 4
Bachelor	10%	75%	80%	30%
Master	45%	25%	0%	25%
PhD	45%	0%	20%	45%

Expectation-Maximization(EM)

- Use three step:
 - **Initialization:** Guess the parameters (μ, σ, ρ) to calculate the cluster probability for each cluster
 - **Expectation:** Calculate the cluster probability and reestimate the parameters
 - Maximization: Calculation of the distribution parameters (μ, σ, ρ) increase the likelihood of the distributions in each iteration to maximize it.

$$\mu_{A} = \frac{w_{1}x_{1} + w_{2}x_{2} + \dots + w_{n}x_{n}}{w_{1} + w_{2} + \dots + w_{n}}$$

$$\sigma_{A}^{2} = \frac{w_{1}(x_{1} - \mu)^{2} + w_{2}(x_{2} - \mu)^{2} + \dots + w_{n}(x_{n} - \mu)^{2}}{w_{1} + w_{2} + \dots + w_{n}}$$

User ID	Educatio n	Age	Gender	No. Interacti on	Current City	Hometo wn	
2	Master	25	Male	22	Milan	Milan	
3	PhD	25	Male	114	Varese	Milan	
4	PhD	27	Female	58	Varese	Varese	
7	Master	24	Male	58	Milan	Varese	

Education	Age	Gender	No. Interaction	Current City	Hometown	Probability	
Bachelor	22	Male	120	Milan	Bologna	10%	
Master	22	Male	80	Milan	Milan	15%	Mining
PhD	22	Male	80	Varese	Milan	60%	
PhD	36	Female	80	Varese	Varese	30%	
PhD	32	Female	120	Varese	Bologna	15%	
Master	24	Tensla	22	Milan	Bologna	20%	
Master	24	Male	58	Milan	Varese	70%	

Mining Model

GRS: User Grouping Phase

- Clustering users based on some grouping features
 - \circ Profile
 - Education
 - Location
 - o Age
 - Number of friends
 - Internationality
 - Attitudes
 - o Passive
 - o Active

Anomaly/Outlier Detection Phase

- We cluster all users in each cluster based on behavior features to predict anomaly behavior
- The result of the "PredictCaseLikelihood" function is the Global Risk Score(GRS)

$$GRS(x_i) = \begin{cases} Anomaly & \text{if } PCL \ x_i \text{ is } \geq T_p \\ Normal & \text{if } PCL \ x_i \text{ is } < T_p \end{cases}$$

EM Result for Anomaly Detection

 Behaviors that are far from any of clusters indicate as anomalous behavior

[DEPOSITAM	[DEPOSITAMO	[[[D	[D	[[Meas	[Meas	[Meas	[Measures]	[M.	[Measures].[[Expression	\$CLUSTER
2008-08-24	100280010011	2	1	D	12	1	109	0	934.5	5500000	2	0	0	0	Cluster 2
2008-05-07	1602225225221	4	1	D	12	1	0	0	188.5	13399999000	4	0	0	0	Cluster 8
2008-08-18	201102789641	4	1	D	12	1	103	0	453.5	3000000	3	0	0	0	Cluster 4
2008-11-09	202103455421	4	1	D	12	1	70	0	372.5	5363055	3	0	0	0	Cluster 4
2008-05-07	21010272801	4	1	D	12	1	0	0	896.5	5930000000	2	0	0	0	Cluster 8
2008-05-10	360136511	0	1	D	12	1	2	0	875.2	6995100000	4	0	0	0	Cluster 8
2008-05-01	3601102240511	4	1	D	12	1	0	0	560.6	49000000	49	0	0	0	Cluster 8
2008-05-06	18018001810332	2	0	D	12	1	2	0	14.05	4200000	1	0	0	8.99844035077263E-201	Cluster 2
2008-05-04	2818005488921	2	0	D	12	1	0	0	1.043	9900000	2	0	0	4.23111531494548E-151	Cluster 10
2008-07-02	202800295021	2	1	D	12	1	55	0	934.3	3800	2	0	0	3.31517148202206E-99	Cluster 4
2008-06-24	202103455421	4	1	D	12	1	51	0	372.5	19946010	2	0	0	1.11196726201352E-81	Cluster 4
2008-05-03	32018005210591	2	0	D	12	1	0	0	19.99	3000000	1	0	0	5.38400079566377E-69	Cluster 10
2008-07-19	202810201591	2	1	D	12	1	76	0	1058	200000	1	0	0	8.77333184899138E-07	Cluster 2
2008-11-09	2028003858251	2	1	D	12	1	70	0.	324.6	2481000	1	0	0	0.00244739280369199	Cluster 2

Local Risk Score(LRS)

- We want to find how much is risky for a target user to create a relationship with a stranger based on patterns of interactions with him and profile features ?
- To assign this risk score, we compare all features of two user1 with user 2 to create a white List for target user1

LRS: What is inside the White List

LRS: Risk of Creating Relationship

References:

- Sherchan, Wanita, Surya Nepal, and Cecile Paris. "A survey of trust in social networks." ACM Computing Surveys (CSUR) 45.4 (2013): 47.
- Nepal, Surya, Wanita Sherchan, and Cecile Paris. "STrust: a trust model for Social Networks." *Trust, Security and Privacy in Computing and Communications* (*TrustCom*), 2011 IEEE 10th International Conference on. IEEE, 2011.
- Adali, Sibel, and Jennifer Golbeck. "Predicting Personality with Social Behavior." *Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012)*. IEEE Computer Society, 2012.
- Adali, Sibel, Fred Sisenda, and Malik Magdon-Ismail. "Actions speak as loud as words: Predicting relationships from social behavior data." *Proceedings of the 21st international conference on World Wide Web*. ACM, 2012.
- Li, Ming, and Alessio Bonti. "T-OSN: A Trust Evaluation Model in Online Social Networks." *Embedded and Ubiquitous Computing (EUC), 2011 IFIP 9th International Conference on*. IEEE, 2011.

References:

- Bouguessa, Mohamed. "Unsupervised Anomaly Detection in Transactional Data." *Machine Learning and Applications (ICMLA), 2012 11th International Conference on*. Vol. 1. IEEE, 2012.
- Papadimitriou, Panagiotis, Ali Dasdan, and Hector Garcia-Molina. "Web graph similarity for anomaly detection." *Journal of Internet Services and Applications*1.1 (2010): 19-30.
- DuBois, Thomas, Jennifer Golbeck, and Aravind Srinivasan. "Predicting trust and distrust in social networks." *Privacy, security, risk and trust (passat), 2011 ieee third international conference on and 2011 ieee third international conference on social computing (socialcom).* IEEE, 2011.
- Akcora, Cuneyt Gurcan, Barbara Carminati, and Elena Ferrari. "User similarities on social networks." *Social Network Analysis and Mining* (2013): 1-21.
- Akcora, Cuneyt Gurcan, Barbara Carminati, and Elena Ferrari. "Privacy in social networks: How risky is your social graph?." *Data Engineering (ICDE), 2012 IEEE 28th International Conference on*. IEEE, 2012.

References:

- Adali, Sibel, et al. "Measuring behavioral trust in social networks." *Intelligence and Security Informatics (ISI), 2010 IEEE International Conference on*. IEEE, 2010.
- Arnaboldi, Valerio, Andrea Guazzini, and Andrea Passarella. "Egocentric Online Social Networks: Analysis of Key Features and Prediction of Tie Strength in Facebook." *Computer Communications* (2013).
- Huang, Bert, et al. "A flexible framework for probabilistic models of social trust." Social Computing, Behavioral-Cultural Modeling and Prediction. Springer Berlin Heidelberg, 2013. 265–273.
- Smyth, Padhraic. "Probabilistic model-based clustering of multivariate and sequential data." *Proceedings of the Seventh International Workshop on AI* and Statistics. San Francisco, CA: Morgan Kaufman, 1999.
- Kuusela, Mikael, et al. "Semi-supervised anomaly detection-towards modelindependent searches of new physics." *Journal of Physics: Conference Series*. Vol. 368. No. 1. IOP Publishing, 2012.

Thanks for your attention

