

Shared Content Risk in Social Networks and Access Control

Panagiotis Ilia

Institute of Computer Science
Foundation for Research and Technology – Hellas (FORTH)

<pilia@ics.forth.gr>

Online Social Networks

Facebook: More than 1.2b users currently

More than **350m** photos uploaded daily.

Success of OSNs due to their human-centric design:

- Users create their digital counterparts
- Connect and communicate with others
- Create and share their own original content

Concerns regarding user privacy

- Most users don't care about their privacy
- Access control mechanisms are complicated
- Users are unaware of the "true visibility" of published content.

However, according to OSN design:

- The uploader is considered as the owner.
- Users can control only self-disclosed information.
 - Users **cannot** control **shared content** published by others

Conflict of interests

- The will of the uploader goes against the will of the depicted users.
- > The privacy settings of a user are overridden by those of another user.

Scenario: The Sober Tagger

Alice uploads photo - Bob request removal - Alice does not remove it.

Scenario: The Silent Tagger

Alice does not tag Bob, thus Bob is never notified about the photo.

Scenario: The Group Photographer

- Bob set the photo as "private" Alice set it as "public"
- **18%** allow friends-of-friends, **26%** public [Liu, IMC 11]

Scenario: The Accidental Over-sharer

- Users accidentally over-share content due to complex privacy settings.
- Sharing photos with much larger audience than they intended.
- 63% of photos wrong settings, 51% of them public [Liu, IMC 11]

Scenario: The Friendly Stranger

- Both Alice and Bob set their privacy settings as "friends".
- If their social graphs do not overlap, "strangers" can access the photo.

Contributions of this work

- Conduct a user study about the tagging behaviour of the users.
 - Identify the risk users face due to conflicting privacy settings.
- Design a new fine-grained access control mechanism.
 - Enforce face-level access control (according to user's access-list).
 - Handles effectively the conflicting visibility settings of the users.
 - Can inter-operate with the existing access control mechanisms.
- Proof-of-concept application.
 - Demonstrate applicability of the approach within OSN infrastructure.

- FB application for collecting user data and photos.
 - Photos and tags both from the user and his friends.
 - Friend-list of the users
- Collected data from 128 users
 - About 4m photos containing 4.6m tags
- Average number of friends 344
 - 7% less than 100 friends
 - 3% more than 1000 friends (hubs)

- Each user and his friends as a group
 - Average number of photos per group 31753
 - 20% of groups have more than 44700 photos
 - **4%** of groups have more than **100000** photos

(1 every 3 photos is accidentally public)

- Tags within a photo collection (group)
 - Average: each group has 36102 tags and 250 tagged users
 - 20% of groups have over 340 unique tagged users and over 50k photos

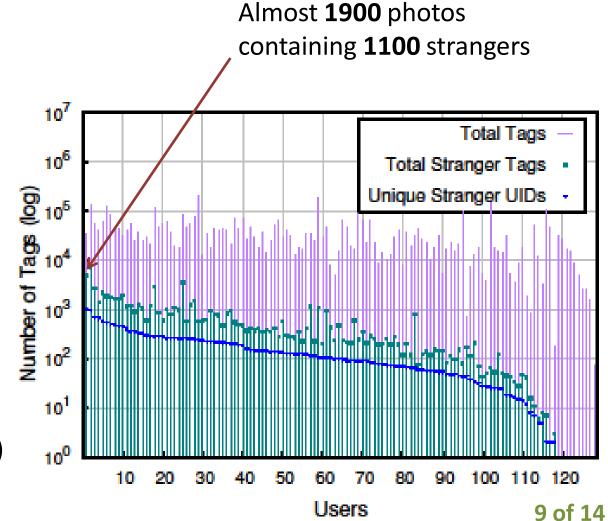
Silent uploader scenario

Tags - Faces	1	2	3	4	5	6+
Photos (# of Faces)	15.2% (304)	32.5% (651)	17.9% (359)	10.7% (214)	8.3% (166)	15.3% (306)
Photos (# of Tags)	87.6 % (1753)	9.9% (199)	1.6% (33)	0.3% (7)	0.25% (5)	0.15% (3)

Total of **7,244** faces \rightarrow **3.62 faces per photo**

2,331 faces have been tagged → 1.16 tags per photo

At least 4 depicted faces in 34% of the photos

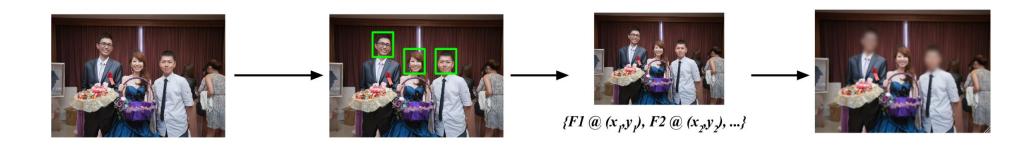

Friendly stranger scenario

Users as "Adversaries"

Access to photos containing stranger's information

92% of users have access to photos that contain tag of a stranger (non-friend).

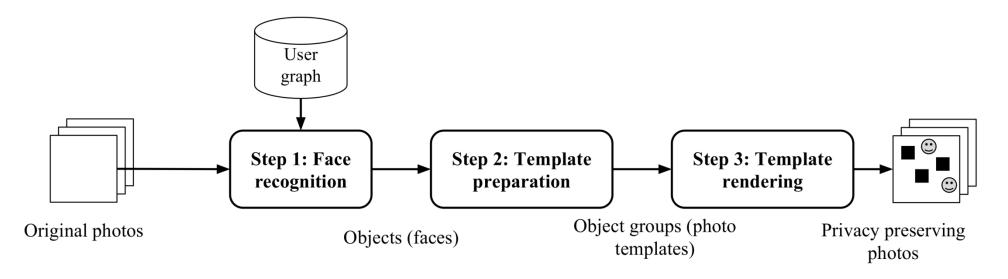
Average: access to **647** photos of **169** different users (strangers)



Proposed Access Control Mechanism

- Each user's face is considered as PII.
- Switches the granularity of the access control ...

... from the level of a **photo** to that of users' **faces**.


• User's privacy settings are not overridden by others.

Proposed Access Control Mechanism

Step 1: Face Recognition

Step 2: Template Preparation

- Auto-tagging the identified faces face verification.
- The users are automatically notified to verify the face validity.

Overview of the access control approach

Step 2: Template Preparation (cont)

- Each tagged user defines face-level privacy settings.
- For each tagged face a layer is created (face is hidden/blurred out).
- Photo template consisted from original photo and the created layers.

Step 3: Template Rendering

- Determine in constant time the hidden faces (access control matrix)
- The photo is rendered selectively according to who is viewing it.
- The requested photo is created "on the fly".
- Superimposing the required layers, on top of the original photo.

However,

This approach can be used only on shared photos

It affects the user experience as the presented photos are modified.

Thus,

- We study new approaches for collaborative access control
- The rules are defined and enforced collectively.
- A more generic model, not only for photos.

Summary

Tagged users affect the visibility of the photos

Conflict of interests

- The will of the uploader goes against the will of the depicted users.
- > The privacy settings of a user are overridden by those of another user.

We propose a new fine-grained access control mechanism.

- Enforce face-level access control (according to user's access-list).
- Handles effectively the conflicting visibility settings of the users.
- Can inter-operate with the existing access control mechanisms of SNs.

Previous work

- Survey on user behaviour, ownership and privacy issues. [Besmer, SOUPS 08]
- A "negotiation" mechanism. Out-of-band request to the uploader to hide the photo.
- Does not effectively solve conflict of interests.
 [Besmer, SIGCHI 10]

Rule-based access control

- Users annotate photos with custom descriptive tags. AC rules according to these tags.
- Access control on photo-level .

[Klemperer, SIGCHI 12]

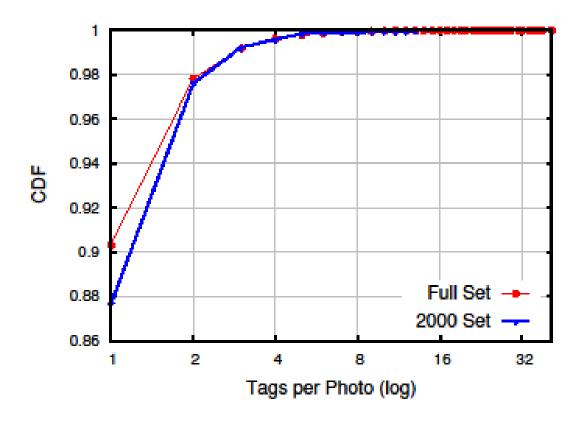
Rule-based mechanism / similar to recommendation systems

AC policy according to rules. Classifies new photos and predicts an acceptable rule.

[Squicciarini, HT' 11]

Security rules for content-based access control

- Uses the SWRL language. The owner sets complex Positive and Negative rules.
- Mechanism for resolving conflicting rules. Depends on the owner to set attributes /rules


[Al Bouna, SITIS 12]

Silent uploader scenario

- Randomly select 2000 photos
- The set is good representative

