

Identifying Trending #SPAM in Twitter

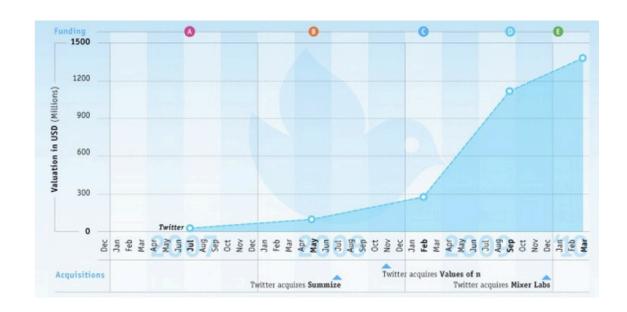
Despoina Antonakaki

despoina@ics.forth.gr

Twitter in numbers

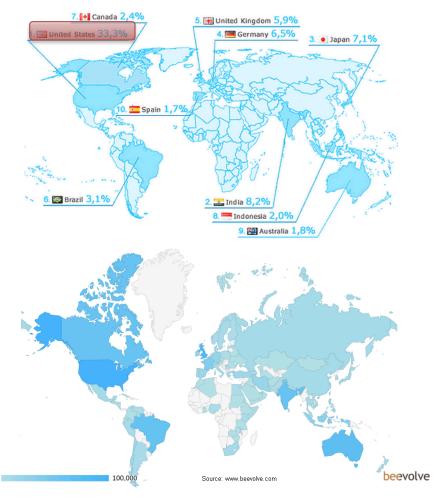
Fast growing OSN:

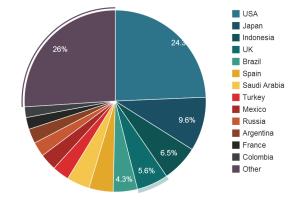
- Registered users: 650 million,
- 232 million monthly active users,
- Average number of daily tweets: 58 million
- Twitter queries per day: 2.1 billion



In 2010 - 2012 ...

Top 10 countries (percent of site traffic)





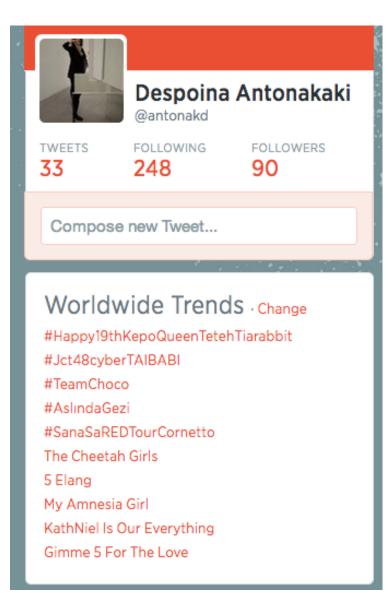
source: peerreach.com

COUNTRY	% OF USERS
United States	50.99
United Kingdom	17.09
Australia	4.09
Brazil	3.44
Canada	2.92
India	2.87
France	1.76
Indonesia	1.43
Iran	0.88
Ireland	0.85

Popular Trends (PTs)

PTs:

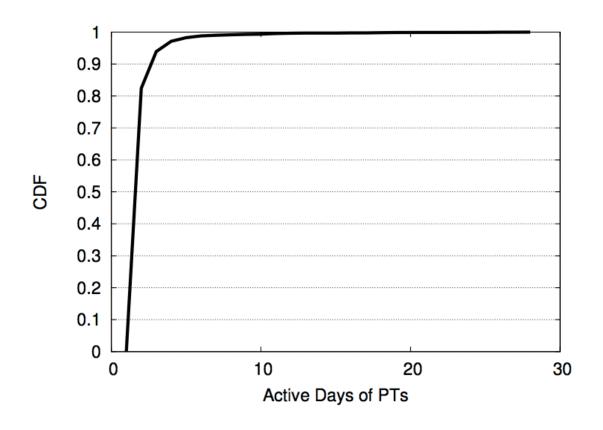
- Introduced in 2010: Hashtags rapidly becoming popular
- Popular #Hashtags
- Common Search Queries
- PTs belong to geographic regions
- Accesses from Twitter's API
- Exploited by Spammers:



The Dataset:

- January February March 2014
- Request 10 Popular Trends (PTs) every 10 minutes.
 - In average 240 PTs per day
- 10 Twitter accounts
 - Each account grabs a trend and downloads 1000 tweets
 - Then proceed to next trend
- In average: 1.5M-2.0M tweets / day
- Data from US
- In average: 400.000 different users / day
 - Total 150M tweets with PTs

How long does a PT "stays alive"?

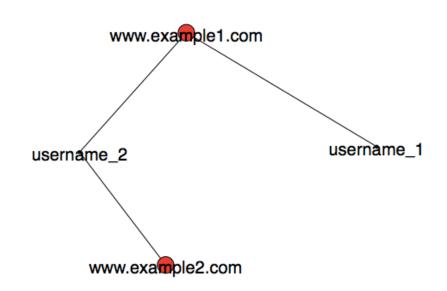


80% of PTs are active for 2 days or less PTs that stay alive for a long time are:

- places (i.e. New York)
- Known corporations (i.e. Disney)

The Method

For each day create a graph with edges among users and links



For each user collect:

- Total Tweets
- Total, Unique PTs
- Total, Unique HT (#)
- Total, Unique UM (@)
- #followers/followings
- #URLs
- Number of Active Days

For each spam user collect:

- #Spam tweets
- #Blacklist Hits

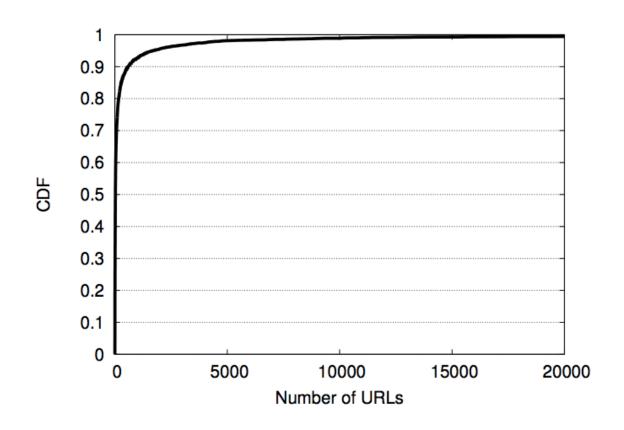
For each URL collect:

Total, Unique PTs
 of the tweets that
 posted this URL

For each edge collect:

 #Tweets of this user that contain this URL

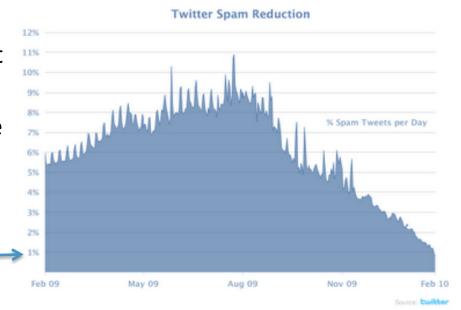
How many URLs are posted for each PT?



- 90% of PTs are associated with less than 1000 URLs
- PTs with high number of URLs: places and known corporations

Locate spam URLs

- Get links posted by >= 10 users
- Extract the domains of these links
 → 24.000 domains
- Check these domains in 86 different RBLs (Real Time Blackhole Lists)
- 1.911 domains blacklisted (91 False Positives, manually checked)
- Out of 4.5M different URLs, 250K
 belonged to spam domain (5.4%)
 - Twitter reports 1%..



Is that all spam? No there is more...

Spam URLs are hidden in a Google search results link

Spam users

- Now that we know which domains are spam
- Locate spam users
 - 8.2M users → 590K spammers(spammers & compromised users) → 7.2%

Next step:

 discover behaviors that can differentiate between SPAM and LEGIT users

Twitter features: Spam(S) / Legit(L)

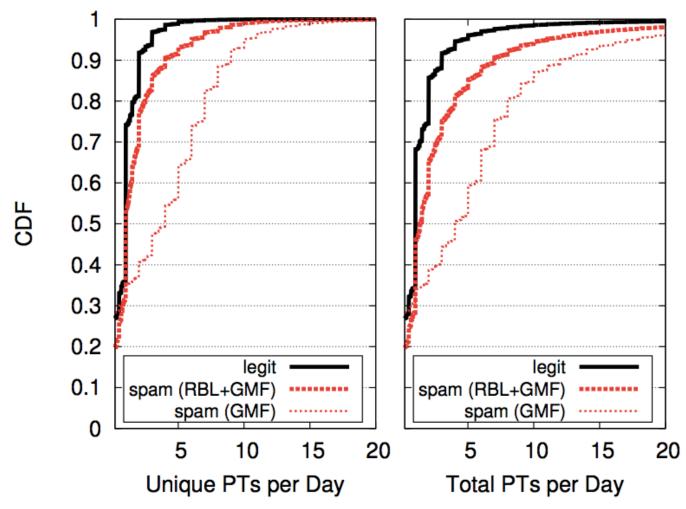
	Mean		Median	
	S	\mathbf{L}	S	\mathbf{L}
Tweets	2.5	1.6	1.3	1.0
Active Days	3.9	1.6	2.0	1.0
Trends (T)	2.64	1.3	1.3	1.0
Trends (U)	1.6	0.9	1.0	1.0
UM (T)	1.8	1.4	1.0	1.0
UM (U)	1.4	1.18	1.0	1.0
HashTags (T)	2.6	1.3	1.0	0.5
HashTags (U)	1.6	0.99	1.0	0.5
URLs (T)	1.6	1.1	1.0	1.0
URLs (U)	1.1	1.1	1.1	1.1
Spam URLs	1.6	NA	1.0	NA
Blacklist hits	1.9	NA	1.0	NA

	Mean		Median	
	S	\mathbf{L}	S	\mathbf{L}
Tweets	1.7	1.6	1.0	1.0
Active Days	1.5	1.8	1.0	1.0
Trends (T)	5.0	1.3	4.0	1.0
Trends (U)	3.8	0.9	4.0	1.0
UM (T)	0.6	1.4	0.0	1.0
UM (U)	0.4	1.2	0.0	1.0
HashTags (T)	4.4	1.3	4.0	0.5
HashTags (U)	3.4	1.0	4.0	0.5
URLs (T)	1.4	1.1	1.0	1.0
URLs (U)	1.1	1.1	1.1	1.1
Spam URLs	1.4	NA	1.0	NA
Blacklist hits	NA	NA	NA	NA

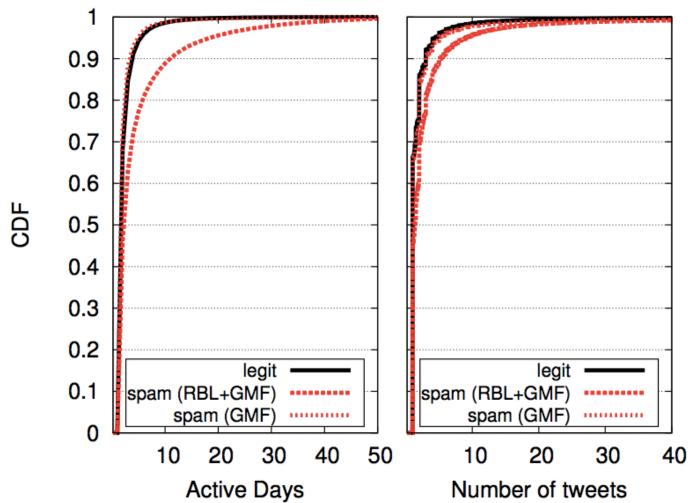
Blacklists: RBL+GMF

Blacklists: GMF

Spammers exploit PTs



RBL spammers are more active than GMF (this is because GMF spammers are people too..)



Classification

- Classify users based on Twitter features
- Train: February 2014, Test: March 2014
- Method: Decision Trees

$$Sensitivity = \frac{TP}{TP + FN}$$

$$Specificity = \frac{TN}{FP + TN}$$

Sensitivity: spammers correctly classified, Low means that users are not adequately protected by spam...

Still better User Experience than before

Specificity: legitimate classified correctly, Low means legit users incorrectly as spammers...

Worse User Experience than before

Classification Results

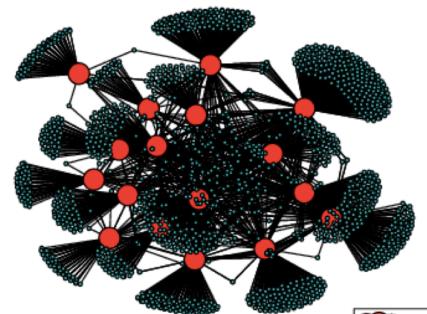
Objective	Blacklist	Sensitivity	Specificity
Users based on	RBL + GMF	13,3% 40,808/306,005	98.12% 4,373,684/4,457,565
Twitter features	GMF	37,6% 19,674/52,281	99.92% 4,707,627/4,711,289
URLs based on PTs	GMF	45.6% 317/696	99.83% 48353/48435

- Completely independent Test and Train samples (no cross validation)
- Very simple computation. Easy to apply.
- Due to high Specificity, can be a first line of defense

Spam campaigns

- January 10th 2014
- 2 IPs(!) \rightarrow 17 GMF domains \rightarrow 1604 users

Domain	IP Addr.	Users	Tweets
bestfollowers.org	216.55.x.y	337	462
goodfollowers.net	216.55.x.y	188	223
getmorefollowers.biz	216.55.x.y	179	283
newfollowers.me	216.55.x.y	175	207
justfollowers.us	216.55.x.y	152	173
getnewfollowers.us	216.55.x.y	151	195
followcrazy.us	216.55.x.y	150	161
bulkfollowers.co	216.55.x.y	131	169
followport.us	216.55.x.y	99	121
followcity.us	216.55.x.y	93	109
morefollowers.me	216.55.x.y	81	96
twitterfollowers.mobi	216.55.x.y	76	98
t1t.us	68.178.x.y	74	108
followmania.us	216.55.x.y	68	86
specialfollowers.com	216.55.x.y	64	73
livefollowers.org	216.55.x.y	67	77
onlinefollowers.com	216.55.x.y	40	51



URL node average degree:

Spam:125 Legit: 2.3

Discussion

- Framework to model and store a rich set of Twitter features
- Popular Trends is a feature widely exploited by spammers
- Blacklists are still useful although link obfuscation techniques can bypass them (like Google results link)
- 5% of URLs and 7% of users in Twitter are spam
- Dedicated spam accounts and exploited real accounts have different tweeting behaviors
- Twitter features can be used to build a computational efficient first line of defense (More than 1/3 TPR, 99.9% TNR)
- Half of spam URLs can be identified by using only PT information
- Graph properties of Spam campaigns is a powerful method to detect and study spam in Twitter.

Submitted ...

Future work:

Decentralized Spam Filtering

Adjust the procedure in a gossip algorithm:

- Trend and Tweet collection is already distributed among multiple accounts
- Store in MongoDB
- Run ensemble methods for classification:
 - Adaboost
 - Random Forest Classifier
- Merge campaign graphs in order to identify larger spam campaigns,
- "get the complete picture"