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Social Network Analysis




P Activity slide

1) Work individually.

2) Grab paper and pen (or equivalent technology).

3) Think of the people constituting your research
group. (between 7 and 12 people?)

4) Draw the network of your working relationships
(= who you are directly collaborating with).

You have 3 minutes.
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P Activity slide

1) Work individually.

2) Take your working network.

3) Use a different color / line type and add your fika
network on top of it.

4) Use a different color / line type and add your
friendship network on top of it.

5) Use a different color / line type and add your
facebook network on top of it.

You have 3 minutes.
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"~ Some traditional questions, revisited

* Which individuals should know about you and
the fact you are a brilliant student?

* How far are you from that PhD student you
would like to 1nvite out for dinner?

* Are there any research sub-groups you might
want to join?
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« From user-centered to dimension-centered

>

_

What is the popularity of a user?

\5 \> How close are two users?

In which community can we classify a
user?

Cm
_

Which dimensions determine the popularity of a user?
Which dimensions keep two users close to each other?

Which dimensions define a user’s communities?

Moving out of flat-land - slide 6 of I-don’t-know-yet



" Larger-scale questions

e Government initiatives to shut down Twitter.

e Etc. etc. etc.
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One-minute-break slide
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Social Network Analysis




Multiple Social Network Analysis

friendfeed
Tube

off-line encounters
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“"" Why this tutorial?

Multiple networks

Multiplex networks Networks of networks

Multi-modal networks

Multidimensional networks .
Multilevel networks

Multi-layer networks Labeled graphs

Heterogeneous information networks
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® 9:00-9:25 - Introduction
® 9:25-10:00
o Part I: Historical foundations and models. | Background
® 10:00-10:30
o Coffee break.
® 10:30-12:30
o Part II: Measures. | gnA
o Part III: Formation. | Dynamics

o Part IV: Community detection (if time left). | Mining
o Part V: Discussion.
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» Multiplexity as a quality measure

» Relation specific approach

Location Membership Attribute Kinship  Otherrole Affective Cognitive e.g., eg.
eg., e.g., e.g., e.g., eqg., eg., e.g., Sex with Information
Same Same Same Mother of Friend of Likes Knows Talked to Beliefs
sgnagal ELs gencer Sibling of Boss of Hates Knows Advice to Personnel
Same Same about
temporal : Student of etc. Helped Resources
space events attitude e e
etc. etc. Competitor of happy Harmed etc.
etc. etc.

Borgatti et al. 2009 - Network Analysis in the Social Sciences
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ECONOMIC:
Guild 2

KINSHIP:

Neighborhood 1

POLITICAL:

Social Class 1

Sq

cial Class 3

Neighborhpod 2

Social Class 1

Sacial Class 2

Social Class 2 Social Class I Social Class 2 Social Class 1

F1G6. 1.—Multiple-network ensemble Renaissance Florence. Solid lines are constitutive
ties, dotted lines are relational social exchanges, and oblongs are formal organizations (fam-
ilies and firms). People in multiple roles are vertical lines connecting corresponding dots in
the domains of activity in which people are active (only two are shown for illustration).

J F Padgett & P D McLean (2006) Organizational Invention and Elite Transformation: The Bir
Partnership Systems in Renaissance Florence. American Journal of Sociology Volume 111 Nu
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Soctal Networks 10 (1988) 383-411
North-Holland

NETWORK MODELS: SOME COMMENTS ON PAPERS
IN THIS SPECIAL ISSUE

Philippa E. PATTISON *

University of Melbourne

4. Models for network interrelations

Much work in developing representations for multiple networks has
focussed on the consequences of different models for describing per-
sons or positions and their interrelations in a network. The papers by

White, H.C., S.A. Boorman and R.L. Breiger

(1976) “Social structure from multiple networks: 1. Blockmodels of roles and positions”.
American Journal of Sociology 81: 730-780.
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~ Interdependent networks

Logical edge
) ights:
a3 ; weig
1-2
e 3-5

A

a e  6-10
: @ 10-30

-

Kurant, M., & Thiran, P. (2006). Layered Complex
Networks. Physical Review Letters, 96(13), 138701.
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Networks of networks

Figure 1| Modelling a blackout in Italy. [llustration of an iterative process of
a cascade of failures using real-world data from a power network (located on
the map of Italy) and an Internet network (shifted above the map) that were
implicated in an electrical blackout that occurred in Italy in September
2003%°. The networks are drawn using the real geographical locations and
every Internet server is connected to the geographically nearest power
station. a, One power station is removed (red node on map) from the power
networkand as a result the Internet nodes depending on it are removed from
the Internet network (red nodes above the map). The nodes that will be
disconnected from the giant cluster (a cluster that spans the entire network)
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at the next step are marked in green. b, Additional nodes that were
disconnected from the Internet communication network giant component
are removed (red nodes above map). As a result the power stations
depending on them are removed from the power network (red nodes on
map). Again, the nodes that will be disconnected from the giant cluster at the
next step are marked in green. ¢, Additional nodes that were disconnected
from the giant component of the power network are removed (red nodes on
map) as well as the nodes in the Internet network that depend on them (red
nodes above map).

Buldyrev, S. V, Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic
cascade of failures in interdependent networks. Nature, 464(7291), 1025-8.
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(YouTube)

(Friendfeed)

(Twitter)

Magnani M and Rossi L (2011) The ML-model for multi layer
network analysis. In: ASONAM Conference, IEEE Computer Society.
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* Multiple network analysis and mining allows
us to work on more accurate representations
of the world.

* Some questions need this level of detail.

* Different models are “formally similar” but
emphasize different aspects of the networks.
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NODE MEASURES
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Degree and neighborhood

\ Degree: 3 | Degree:2 | ¢y A\
| Central | Peripheral | v “\/:(\L
) "\‘ "‘,v _— S

Degree: 2
Peripheral |

Neighbors: 3 Neighbors: 4
Central Very central

Magnani M and Rossi L (2011) The ML-model for multi layer
network analysis. In: ASONAM Conference, IEEE Computer Society.
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Network relevance

/

/ y‘\\‘\
// % ?: ffs » 3 neighbors: relevance 100%
/ . Al

~ 3 neighbors

[

» 2 neighbors: relevance 50%

I 4neighbors

Neighbors(v, D)

DimRelevance(v, D) = Neighbors(v, L)
etghbors(v,

=

Berlingerio, M., Coscia, M., Giannotti, F., Monreale, A., & Pedreschi, D. (2012).
Multidimensional networks: foundations of structural analysis. WWW Journal
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Exclusive neighbors

/ 7 ffi\é e /%70 f_\ff‘;\
N T -Vl

Neighborsxor(v, D) =

{ueV|3de D: (u,v.d) € EANAd ¢ D : (u,v,d) € EY}|
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Exclusive network relevance

/ \J S » 3 neighbors: relevance 100%
f @ =\ 0 x-neighbors

L 3 neighbors x-relevance: 0%

| 2 x-neighbors
L 4 neighbors x-relevance: 50%

/ v \({ S » 2 neighbors: relevance 50%
f - )

[ L

A"‘v("llgll bO‘I‘.S‘XOR(‘l‘. D)

DimPRelevancexogr(v. D) = —
(' ) Neighbors(v, L)
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MEASURES: EXAMPLES
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" AUCS Dataset

- 61 employees of a University department
- Survey-based/Automatic data collection

- 5 kinds of relationships:

- Coworking,

Coauthorship,
Friendship (having fun together),

Facebook friendship,

Having lunch together.
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""" AUCS Dataset

Work Friends Coauthor Lunch Facebook
# edges 194 88 21 193 124
# con. comp. 2 1 8 1 1
# avg. deg. 6.47 3.74 1.68 6.43 7.75
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- AUCS Dataset

1. Work

2. Friends
3. Lunch

4. Facebook
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- AUCS Dataset
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Relevance and exclusive relevance
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Network complementarity
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One-minute break
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NODE DISTANCE
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Distances in multi-layer networks
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A short digression
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Reduction to single-network distances

Yo% "

\J\\\J | Il ~
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Pareto distances

(e.g., LinkedIn)

(e.g., Facebook)

Magnani, M., & Rossi, L. (2013). Pareto Distance for Multi-layer
Network Analysis. In SBP (Vol. 7812). Berlin, Heidelberg: Springer
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Pareto distances

d (e.g., LinkedIn)

(e.g., Facebook)

Moving out of flat-land - slide 45 of I-don’t-know-yet



Pareto distances

b d (e.g., LinkedIn)
Q,
d
/ (e.g., Facebook)
N

One shortest (pareto-efficient) path




Pareto distances

Another shortest (pareto-efficient) path

(e.g., LinkedIn)

(e.g., Facebook)
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Pareto distances

One non-pareto-efficient path

(e.g., LinkedIn)

(e.g., Facebook)
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Pareto-efficient paths

 Paths not dominated by any other path.

* A path dominates another if it is not longer

on every single network and is shorter in at
least one.
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Property 1

Every shortest path in any possible

flattened network is a pareto-optimal
multi-layer path.

Moving out of flat-land - slide 50 of I-don’t-know-yet



Property 2

Every pareto-optimal multi-layer path is

a shortest path in at least one flattened
network.
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Property 3

On a single network,

the two concepts correspond.
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Complexity: worst-case scenarios
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Scalability analysis

* Test the growth of Pareto distances between

any

two nodes with increasing network size.

* Synthetic data.

U

p to 50 000 nodes per network.
oout 150 000 undirected edges.
data.

pout 150 000 users on Twitter and Friendfeed.
oout 20 000 000 directed edges.
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Cardinality vs. Size (synthetic data)

10

Num pareto distances (min, avg, max)
4
|
| < ‘
'\\ \
I.‘

0 10000 20000 30000 40000 50000

Num nodes
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DISTANCES: EXAMPLES
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Interpretation

U54 -lunch- U109

U54 -facebook- U109 close friend
connected through

U54 -friend- U109 several networks
U54 -work- U109
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. Interpretation
J54 -lunch- U3 Close friend but not a
U54 -facebook- U3 coworker

J54 -friend- U3
J54 -work- U90 -work- U3
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U54 -work- U19

U54 -facebook- U10 -lunch- U19

U54 -friend- U10 -lunch- U19

U54 -facebook- U79 -friend- U73 -friend- U19

US54 -friend- U79 -friend- U73 -friend- U19

U54 -lunch- U76 U130 -lunch- U32 -lunch- U73 -lunch- U19
U54 -lunch- U79 -lunch- U130 -lunch- U32 -lunch- U73 -lunch- U19

Interpretation: Not all coworkers are friends
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Wrapping up & Open Problems

Centrality:

* Extended measures considering the multiple
interdependent networks.

* New network-specific measures.
Computing social distances.
Possible applications:

* Multi-layer betweenness.

* Community detection.

Other measures”?
Methodology?
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FORMATION OF MULTIPLE
NETWORKS
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Evolution
Model

Synthetic data
Evolution

MODEL
PARAMETERS

Evolution

na_ I _ 1.
1viUUICio

Properties

—l Explanation

"- PARAMETERS
(INCLUDING MODELS)
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~" Study framework

time



PhD student

Optimization
Hip-hop
Hinnerup

Professor

Database systems

Jazz music, quidditch

Aarhus

N,

time




Barabasi-Albert
Forest-fire

A’;tribute-based

time
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External
External

EVENTS
Internal
Internal

No action
No action

Evolution model
(init, evolve)
Evolution model
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Data

Friendfeed 37.997 edges
Twitter 67.123 edges
YouTube 1.185 edges

(i1 Tube
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Wrapping up & Open problems

* |dentified a minimal set of parameters to
control basic co-evolution patterns.

» Synchronization / different growth.
* Internal/external dynamics.

* Future research questions.
* Relevant configurations for > 2 networks?

 How different formation models for different
networks interact?
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CLUSTERING
(COMMUNITY DETECTION)
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~ Afew basic definitions

Community based on network topology.
How to quantity the connectedness?
We need a quality function to optimize.

Two relevant concepts:

o Modularity.

o (Quasi-)clique.

Introduce modularity for single graphs, then
extend 1t to multiple graphs.

Give an overview over clique-based methods
and draw a future scenario.
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same node on
different networks

nodes on same network

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P. (2010). Community struc-
ture in time-dependent, multiscale, and multiplex networks. Science (New York, N.Y.),328(5980).
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Clique finders
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Quasi-Clique
(>50%)
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Clique finders (top-down)

Present in at least s% of the
networks (support)

Zhiping Zeng, J. W. (2006). Coherent closed quasi-clique discovery from large dense graph
databases. 12th International Conference on Knowledge and Data Discovery (KDD), 2006
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Clique finders: bottom-up

Present in any number of graphs
(but in all of them)

Boden, B., Giinnemann, S., Hoffmann, H., & Seidl, T. (2012). Mining coherent subgraphs in
multi-layer graphs with edge labels. Proceedings of the 18th ACM SIGKDD international
conference.
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SOME PRACTICAL REMARKS
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data CO||€ctiOn
identity mapping
priVaCy Issues

off-line
encounters
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heterogeneous data (and the lack of proper
multiplex archives) lead toward mixed data
collection methods: scalability & reliability
problems
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(LinkedIn)

(Twitter) _ . .
multiplex identity
can show
unexpected and

(Facebook) evolving structure.
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A large number of layers gives a high level
of additional information about users
making harder real and effective
anonymization (e.g. T3 dataset)

Moving out of flat-land - slide 87 of I-don’t-know-yet



UNIVE RSITET

Related research projects

==—=IMPACT

propagation analysis
community detection

http://sigsna.net/impact http://www.multiplexproject.eu/

% Plex LA SA GNE = :

Cutting through complexn:y

http://www.plexmath.eu/ http://lasagne-project.eu



" Related topics not covered here

 Mining heterogeneous information networks
o J. Han's group work
e Link prediction
o E.g., Rossetti et al., Scalable link prediction on
multidimensional networks. ICDMW, 2011.
* Multiple network visualization
o Very little work.
o Dai et al., ViStruclizer: A Structural Visualizer for Multi-
dimensional Social Networks. PAKDD, 2013
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