
CONTACT INFORMATION

Hive.js: Browser-Based Distributed
Caching for Adaptive Video Streaming !

www.hivestreaming.com
www.peerialism.com

ABSTRACT

Peer-to-peer (P2P) technology has
long been considered a natural
complement to standard CDN
infrastructure for video distribution
since it greatly reduces costs and
improves quality of user
experience. However, P2P
solutions have traditionally required
the installation of additional
software or plugins to be deployed,
which significantly hinders
adoption.

In this paper, we present Hive.js, a
browser-based plugin-less
distributed caching platform for
video streaming. Hive.js is layered
over WebRTC, a new set of HTML5
APIs for direct browser-to-browser
communication, and it is designed
to transport adaptive HTTP
streaming protocols, specifically
MPEG-DASH. Initial results
obtained by evaluating Hive.js in a
controlled test environment show
that our approach significantly
reduces the load on CDN
infrastructure and does not
sacrifice quality of user experience.

REFERENCES
1.  R. Roverso, S. El-Ansary, and S.

Haridi. Smoothcache: Http-live
streaming goes peer-to-peer. In
Proc. of IFIP NETWORKING,
2012.

HTTP Streaming ! Distributed Caching with Hive.js !

HTTP is the de-facto industry standard for distributing
video streams over the Internet

•  Based on a pull model that utilizes HTTP as
transport protocol

•  Content available with multiple video and audio
qualities (bitrates)

•  Player implements complex heuristics to choose
which quality to render

Advantages

§  Routers and firewalls are more permissive to HTTP
§  HTTP caching is straight-forward
§  Cheaper CDN cost

Goals !
•  User transparency, no plugins or client

installation
•  Same quality of user experience as a

CDN
•  Peer-to-Peer operations are completely

transparent to the player and stream’s
source

Hive.js is a javascript library that
enables a set of browsers to create
distributed cache for video streaming

CDN

Results from initial experiments in a controlled environment with up to 30 peers

Fragment Loader!
•  Used to intercept fragment requests from the DASH.js player

and redirect to Hive.js
!
Peer!
•  The cache stores video fragments in persistent storage or in

memory
•  The index contains a mapping from video fragment to a list of

peers which has cached the fragment

Transport Layer!
•  Fragments are sent to other peers over the WebRTC data

channel using SCTP
•  Large fragments are chunked with additional integrity checks
!
Discovery Service!
•  Discovery of random peers with data from the video
•  Signaling protocol used to setup a direct connection between

two peers

DASH and WebRTC !
DASH and DASH.js!
•  Interoperable standard for HTTP-based video streaming
•  DASH.js implements DASH for the browser using the

HTML5 video framework

WebRTC!
•  Direct browser-to-browser communication with video, voice

or data
•  NAT traversal using ICE, STUN and TURN
•  Reliable transport layer using SCTP
•  DataChannels for arbitrary message exchange between

browsers

Hive.js Internals !

Network (IP)

Transport (TCP) Transport (UDP)

Session (TLS) ICE, STUN, TURN

XHR SSE WebSocket

 HTTP 1.x/2.0

SRTP

SCTP

DataChannel RTCPeer-
Connection

Session (DTLS)

uTP

PEER

Hive.js

 MPEG-DASH Player Fragment
Loader

Channel
P2P Transport

.….….
Channel

P2P Transport

Discovery

Index Cache

Roberto Roverso, Mikael Högqvist !

●

●

● ●
● ● ● ● ●

●
● ●

●

●

●

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of peers

Sa
vi

ng
s

(p
er

ce
nt

)

Scenario
● seeder

swarm

●
●

●
●

●

●
●

●

● ●

●

●
●

●

●
●

●

●
●

●

● ●

●

● ●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

0
200
400
600
800

1000
1200
1400
1600
1800

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of peers

Tr
an

sf
er

re
d

da
ta

 (M
B)

Transfer type
●

●

●

p2p
src
total

● ● ●
●

●

●

● ● ● ● ●
●

●
●

●

0
1
2
3
4
5
6
7
8
9

10

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of peers

Bu
ffe

r S
ize

 (s
ec

on
ds

)

Scenario
● seeder

swarm

Experiments !

Random View In-Partner
choice

CDN

Hive.js Overlay !
Overlay Construction!
•  Randomized neighbor selection by sampling peers

watching the same video from a shared discovery service

Distributed Cache!
•  Cache hit - retrieve from other peer
•  Cache miss - retrieve from CDN !

Cache Protocol!
•  A peer uses the local cache to store retrieved fragments
•  When a fragment is retrieved a peer tell neighbors by

broadcasting a Have message
•  A peer that wants to download a fragment checks in a local

index of Haves to find a peer to get it from

