The Power of Both Choices: Practical Load Balancing for Distributed Stream Processing Engines

Muhammad Anis Uddin Nasir¹, Gianmarco de Francisci Morales², David Garcia Soriano², Nicolas Kourtellis², Marco Serafini³ KTH Royal Institute of Technology, ²Yahoo Labs Barcelona, ³Qatar Computing Research Institute

1. Abstract

- ➤ Load Balancing in Distributed Stream Processing Engines directly affects the hardware utilization, latency, and throughput of the system
- ➤ We introduce Partial Key Grouping that leverages the classical "power of two choices"
- ➤ It achieves **better load balancing** than Key Grouping while being **more scalable** than Shuffle Grouping

2. Problem

- ➤ Streaming applications are represented by directed acyclic graphs (DAG)
- ➤ Key Grouping and Shuffle Grouping are two common partitioning strategies
- ➤ Highly skewed distribution of workloads creates imbalance among workers for Key Grouping
- > Shuffle Grouping incurs additional memory and aggregation cost
- > A streaming and distributed solution is required for the problem

3. Partial Key Grouping

- PKG makes "power of two choices" applicable to our problem by using two novel techniques: Key Splitting and Local Load Estimation
- > Key Splitting relaxes the atomicity constraint of key grouping and assigns each key to exactly two servers
- > Local Load Estimation solves the problem of gauging the load of downstream servers without any communication overhead

Source

4. Theoretical Analysis

Suppose we use m messages and n bins and let $m \ge n^2$. Assume a key distribution D with maximum probability $p_1 \le 1/5n$. Then the imbalance after m steps of Greedy-d process satisfies, with probability at least 1-1/n

$$I(m) = \begin{cases} O\left(\frac{m}{n} \cdot \frac{\ln n}{\ln \ln n}\right), & \text{if } d = 1 \\ O\left(\frac{m}{n}\right), & \text{if } d \ge 2 \end{cases}$$

5. Experimental Setup

Questions

- Effect of Key Splitting
- Local vs Global Estimation
- Robustness
- Real Implementation

Datasets

- > Twitter: 1.2G tweets
- > Twitter: 690k cashtags
- Wikipedia: 22M page visits
- ➤ Live Journal: 69M edges

6. Real Implementation

Storm Implementation

- ➤ 60% improvement in throughput
- > 45% improvement in latency

7. Simulations

- PKG provides better load balance compared to other strategies, e.g., greedy and power of two choices
- > PKG with local load estimation works as well as with global oracle
- PKG reduces the load imbalance by up to seven orders of magnitude compared to Key Grouping

7. Future Work

- Load Balancing with dynamic key migration
- Handling worker churn with Partial Key Grouping
- Applying queuing theory with Partial Key Grouping for load balancing

