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Strong Car culture 

•  In US: 
–  Commuters:128.3M 

–  drive alone:75.7% 

–  Bike:0.38% 
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Commuting 
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Annual cost of owing a 2010 VW Jetta  
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Source:	  h+p://www.doughroller.net/smart-‐spending/true-‐cost-‐of-‐a-‐car-‐over-‐its-‐life<me/	  



What is Ride-Sharing ? 
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Ride-Sharing: An old idea 
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That never really made it to 
mainstream 
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Ride-Sharing in the past 



Ride-Sharing in the past 

 
1.  Few opportunities  

2.  Inflexible 

3.  Difficult to set up 
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2nd gen Ride-Sharing: web based  
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2nd gen Ride-Sharing: web based  



Ride-Sharing Now 

 
1.  Few opportunities  
 
2.  Inflexible 

3.  Difficult to set up 

But, why it’s not 
mainstream yet ? 
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What affects ride-sharing? 

•  Mobility patterns: 
– Trajectories  
– Distribution of departure times 

•  User’s tolerance: 
– Distance tolerance 
– Time tolerance 

•  Stranger danger: fear of sharing a ride 
with strangers. 
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Contributions 

•  We use large scale mobility data to derive 
bounds on the potential of ride-sharing. 

•  Formulate ride-sharing as a facility location 
problem, and developed efficient solutions 

•  Use social graph to study the effect of 
“stranger danger” 

•  Building a scalable Ride-Sharing system  
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Mobile phone data & location 
info. 
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CDR Data 

•  Call Description Records (CDRs): 
– Every phone call: caller#, callee#, 

timestamp, cell-tower coordinates … 
– Maintained for billing purposes 

•  Our CDR dataset: 
– September – December  2009  
– 5M users in Madrid (820M calls) 
– 2M users in Barcelona (465M calls) 
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Geo-tagged Tweets 
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Geo-tagged Tweets 

•  JSON Format 

•  Contains: 
–  User id 
–  Timestamp 
– <lat, lng> 

coordinates 
–  Text  
–  Links (e.g. 

YouTube) 
– … 

NY: 5.2M tweets, 225K users 
LA: 3.23M tweets, 155K users 
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Identifying Home/Work 

•  Small set of users 
with known Home/
Work addresses  

•  Train classifiers to 
identify home and 
work locations to 
the rest. 

 

Home/Work locations: 
Madrid (CDRs) : 272, 479  
New York (Twitter): 71,977 
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Initial Assumptions 

•  Stranger danger is 
not a problem 

•  All cars have a 
capacity of 4 

24 



Space proximity 

d : distance tolerance 
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Time proximity 

Time	  	   8	  am	   5	  pm	  

•  σ : standard deviation of Home/Work 
departure times 

•  τ : time tolerance 
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Formulation 

•  Goal: minimize the number of cars give 
spatial and time constraints 

•  Capacitated Facility location with 
Unsplittable Demands: 
– Facilities : Drivers 
– Clients : Passengers  

•  Distance function: 
– d(u,v) = max{h_dist(u,v), w_dist(u,v)} 
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EndPoints RS 

•  Since our problem is NP-hard, we use 
an efficient and scalable heuristic 

•  EndPoints RS: 
– Start with an initial “smart” solution 
–  Iterative improvements by local search in 

solution space 

•  Scalability 
– Fixed local search steps 
– Fix numbers of iterations 
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Results for EndPoint RS 
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26% of the cars can be removed ! 
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EnRoute RS 

•  Find Home/Work path 
through Google Maps 

•  EnRoute RS: 
–  Get the solution of 

EndPoints RS 
–  Iterative 

improvements 
–  Fill empty seats by 

pick-ups 
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Results for EnRoute RS 
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47% of the cars can be removed ! 
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Reducing “Stranger Danger” 

•  Assume users are willing to share 
a ride only with: 
–  friends 
–  friends of friends 

•  Social graphs: 
– CDRs : call graph 
– Twitter : mutual declared friendship 
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Filtering with social constr.  

City Friends 
only 

Friends 
of friends 

Anybody 

Madrid 0.2% 2.4% 47% 
New York 1.5% 9.1% 52% 

Ride-sharing parameters: 
-  Time distribution: 20 min 
-  Distance tolerance : 0.8 km 
-  Delay tolerance : 10 min 
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Social graph properties 

CDRs - Madrid 
Twitter graph – New 
York 
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The next big question !!! 

How to design an efficient 
Ride-Sharing application ?  
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Requirements 

•  Immediate response to request 
•  Spatial-temporal constraints: 
– Max dist. : 0.8 km 
– Max deviation from time routine: 10 min 

•  Matching ratio is crucial !  
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Online Ride Sharing  

39 
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Online Ride Sharing  
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Preference  
Finder 

Matching 

Driver 
Monitoring 



Online Ride Sharing  
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Preference  
Finder 

Matching 

Driver 
Monitoring 

Role: Find <passenger, drivers> meeting 
spatio-temporal constraints ! 
Challenge: Scalable, real-time spatio-
temporal queries ! 

Role: Assign passengers to drivers, based on 
their preferences. 
Challenge: High matching ratios, small 
departure delay, social proximity between 
drivers and passengers.   

Role: Monitor drivers and estimate pick-up 
times.  
Challenge: Generate accurate estimations, 
deal with delays.  



Preference Finder 
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•  Current implementation based on 
KDTrees 

•  For 272K users can run on a single 
machine 

 



The heart of the system 
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Matching 

p1: {p1’s preferences} 
p2: {p2’s preferences} 
… 
… 
… 
pn: {pn’s preferences} 

<p1, d1> 
<p2, d2>    
… 
… 
... 
<pn, dn>    



The matching algorithm: 
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•  Match new request as soon as they 
arrive 

•  Refines existing (driver, passng) 
pairs every 2 mins. 

•  Use distance function to model 
preferences. 



Distance function 
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•  dist(d, p) = 

   social_weight * social_dist (d, p) 
 
+  time_weight * time_dist(d, p) 

+  load_balance_weight * empty(d) 



Extreme cases 
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Cases Driver 
ratio 
(%)  

Passenger 
ratio 
 (%) 

Social 
sharing  

(%) 

social 
best 

62 79 6 

time best 48 79 0.4 

load-
balancing 
best 

73 79 0.5 



Prediction Errors 
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•  On line ride sharing depends on en-
route pick-ups  

•  Predicting driver arrival time of users 
is very important  

•  How is ride-sharing affected by 
prediction errors 



Driver Monitoring 
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Driver 
Monitoring 

d1:(lat, lng) … (lat, lng) 
d2:(lat, lng) … (lat, lng) 
… 
… 
… 
dn:(lat, lng) … (lat, lng) 

d1: loc. estimation 
… 
… 
… 
dn: loc. estimation 



Modeling prediction error 
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•  We implemented a state-of-the-art 
arrival prediction algorithm 

•  We used GPS a dataset of 500 taxi 
drivers in Silicon Valley. 

•  Modeled the error & plugged it in our 
simulations.  



Modeling prediction error 
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Extreme cases – Matching 
Ratio 

Best Load balancing 
•  Weights: 

–  social_weight = 0 
–  time_weight = 0 
–  load_balance_weight 

= 1 

•  Canceled pairs: 5% 

Lowest time deviation 
•  Weights: 

–  social_weight = 0 
–  time_weight = 1 
–  load_balance_weight 

= 0 

•  Canceled pairs: 3% 
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Summary 

•  We evaluated the potential or ride-sharing 
with using CDRs, and geo-tweets. 

•  Results: 
–  The success of of ride-sharing can be as high 

as 47%, if we don’t consider “stranger danger” 
–  ONLY with friends is too restrictive 
–  Sharing rides with friends of friends, can lead 

to a success up to 9.1%, depending on the 
density of the social graph 
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Summary 
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•  Ride-sharing application with a real-world 
feeling 

•  Highlighted trade-offs in the design of ride-
sharing system. 

•  Showed the impact of arrival predictions 
such a system 



Beyond Ride-Sharing 
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Thank You  
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More	  at:	  h+p://people.<d.es/Nikolaos.Laoutaris	  


