A tale of 2 continents and 4 cities about the influence of demographics and social constraints on ride-sharing

Nikolaos Laoutaris**

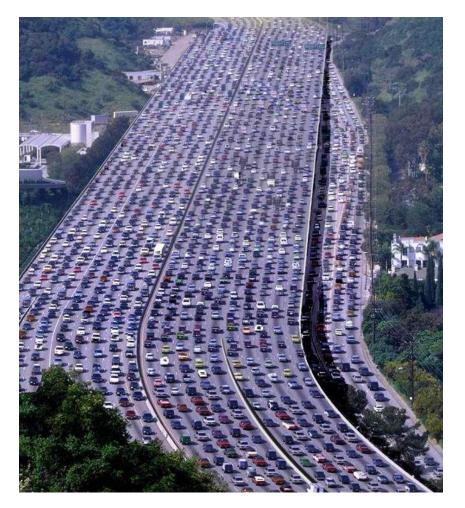
Blerim Cici*, Athina Markopoulou*, Enrique Frías-Martínez**,

> *University of California, Irvine **Telefonica Research

Outline

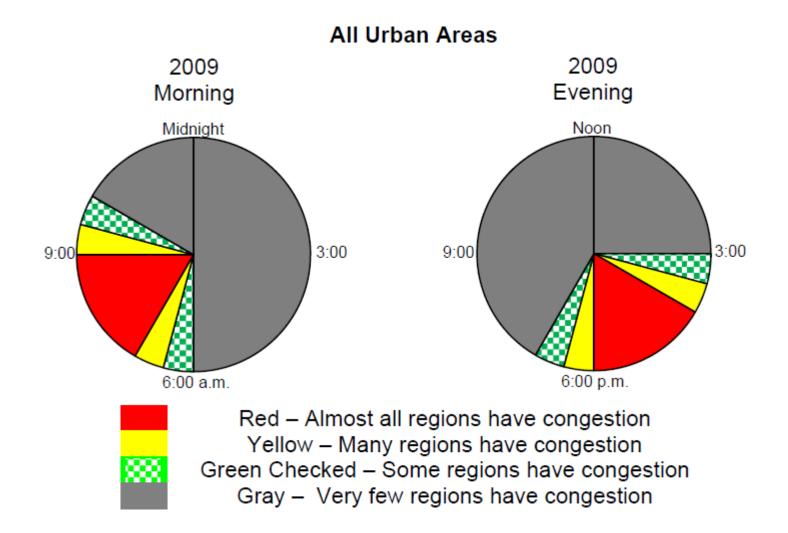
- Introduction
- Data
- Algorithms and Results
- Social Constraints
- System Design

Strong Car culture



- In US:
 - Commuters: 128.3M
 - drive alone:75.7%
 - Bike: 0.38%

Commuting



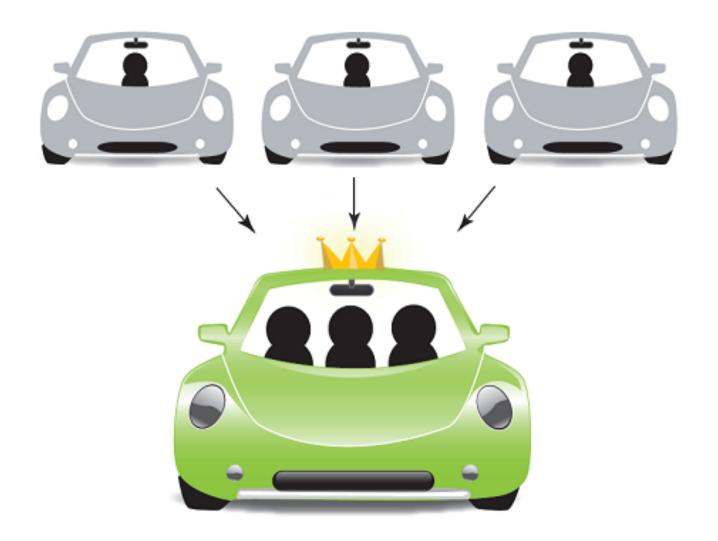
Annual cost of owing a 2010 VW Jetta

Example 2 - According to Edmunds.com, the cost to own a **2010 Volkswagen Jetta** 4 door Sedan over 5 years (assuming 15,000 miles a year) is approximately \$35,500 broken down as follows:

	Year 1	Year 2	Year 3	Year 4	Year 5	5 Year Total
Depreciation	\$3,732	\$1,959	\$1,725	\$1,528	\$1,371	\$10,315
Taxes and Fees	\$1,206	\$8o	\$8o	\$8o	\$8o	\$1,526
Fuel	\$1,6 44	\$1,693	\$1,744	\$1,796	\$1,850	\$8,727
Maintenance	\$29	\$188	\$540	\$820	\$1,328	\$2,905
Repairs	\$o	\$o	\$124	\$297	\$432	\$853
Financing	\$1,037	\$833	\$616	\$385	\$139	\$3,010
Insurance	\$1,531	\$1,585	\$1,640	\$1,697	\$1,757	\$8,210
Yearly Totals	9,179	\$6,338	\$6,469	\$6,603	\$6,957	\$35,546

Source: http://www.doughroller.net/smart-spending/true-cost-of-a-car-over-its-lifetime/ 4

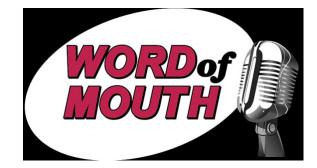
What is Ride-Sharing ?

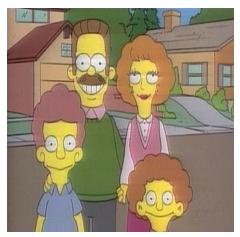


Ride-Sharing: An old idea

That never really made it to mainstream

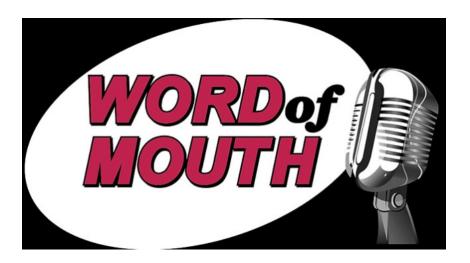
Ride-Sharing in the past





Ride-Sharing in the past

- 1. Few opportunities
- 2. Inflexible
- 3. Difficult to set up



2nd gen Ride-Sharing: web based

	and shan United	 Soluciones Pro Comunid Compartir coche en tus traye una alternativa eficaz para
Origen	Destino	
Ej: Av. Diagonal, Barcelona	Ej: Alcorcón	
Búsqueda Avanzada 💙	(Buscar
<i>i</i> Más opciones de búsqueda: b	usca por fech	a y tipo de viaje.
Últimos viajes publicados		

>	Pasajero de Cádiz » Contempopranea (Badajoz)	29-07-2011
>	Pasajero de Contempopranea (Badajoz) » Cádiz	31-07-2011
>	Conductor de Oviedo » Valladolid	٧
>	Conductor de Valladolid » Oviedo	D
>	Conductor de verín » coruña	D

2nd gen Ride-Sharing: web based

.			
Origen	••••••	Destino	
Ej: Av. Diagor	nal, Barcelona	Ej: Alcorcón	
Búsqued	la Avanzada 💙	(Buscar
i Más o	pciones de búsqueda: k	ousca por fecha	a y tipo de viaje.
_			

Conductor de verín » coruña

D

11

Ride-Sharing Now

What affects ride-sharing?

- Mobility patterns:
 - Trajectories
 - Distribution of departure times
- User's tolerance:
 - Distance tolerance
 - Time tolerance
- Stranger danger: fear of sharing a ride with strangers.

Contributions

- We use large scale mobility data to derive bounds on the potential of ride-sharing.
- Formulate ride-sharing as a facility location problem, and developed efficient solutions
- Use social graph to study the effect of "stranger danger"
- Building a scalable Ride-Sharing system

Related Work

• Analysis of Ride-sharing

- R.F. Teal. "Carpooling: Who, how and why.", Transportation, Research, 1987.
- W. He, D. Li, T. Zhang, L. An, M. Guo, and G. Chen. "Mining regular routes from gps data for ridesharing recommendations", In UrbComp. ACM, 2012.
- R. Trasarti, F. Pinelli, M. Nanni, and F. Giannotti. "Mining mobility user proles for car pooling". In Proc. UrbComp., ACM, 2011.

• Quantification of Ride-sharing potential

- H.-S. J. Tsao and D. Lin, "Spatial and temporal factors in estimating the potential of ride-sharing for demand reduction", California PATH Research Report, UCBITS-PRR-99-2, 1999.
- A. M. Amey, J. P. Attanucci, "Real-Time Ridesharing: Exploring the Opportunities and Challenges of Designing a Technology-based Rideshare Trial for the MIT Community"

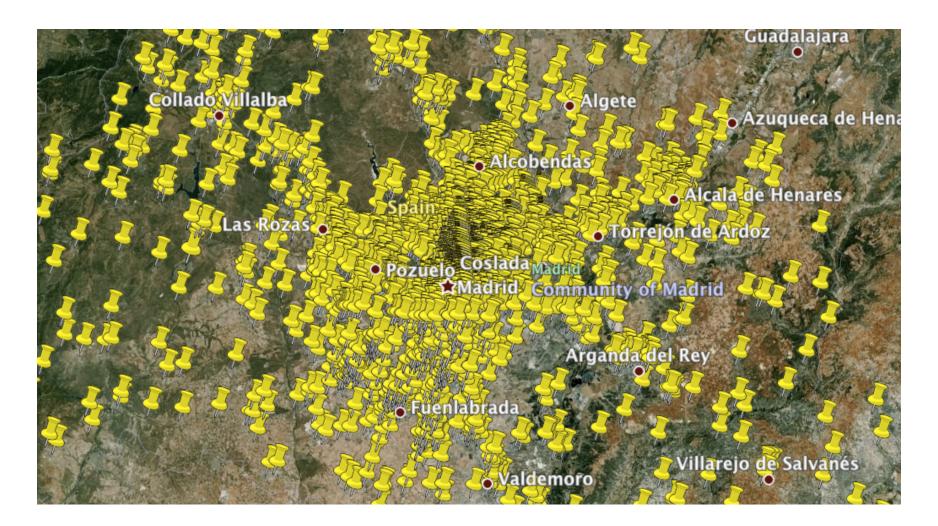
Related Work

- CDR Analysis and Human Dynamics
 - M. C. Gonzalez, C. A. Hidalgo, A. L. Barabasi, "Understanding individual human mobility patterns", Nature 2008
 - S. Isaacman, R. Becker, R. Caceres, S. Kobourov, M. Martonosi, J. Rowland, and A. Varshavsky, "Identifying Important Places in People's Lives from Cellular Network Data", Pervasive 2011
 - E. Cho, S. A. Myers, J. Leskovec, "Friendship and Mobility: User Movement In Location-Based Social Networks", KDD 2011
 - F. Calabrese, F. C. Pereira, G. Di Lorenzo, L. Liu, and C. Ratti, "The Geography of Taste: Analyzing Cell-Phone Mobility and Social Events", Pervasive 2010
- Call Description Record Analysis
 - V. Frias-Martinez, J. Virseda, A. Rubio, E. Frias-Martinez, "Towards Large Scale Technology Impact Analyses: Automatic Residential Localization from Mobile Phone-Call Data", ICTD, 2010
 - V. Soto, E. Friaz-Martinez. "Automated Land Use Identification using Cell-Phone Records", HotPlanet 2011

Outline

- Introduction
- Data
- Algorithms and Results
- Social Constraints
- System Design

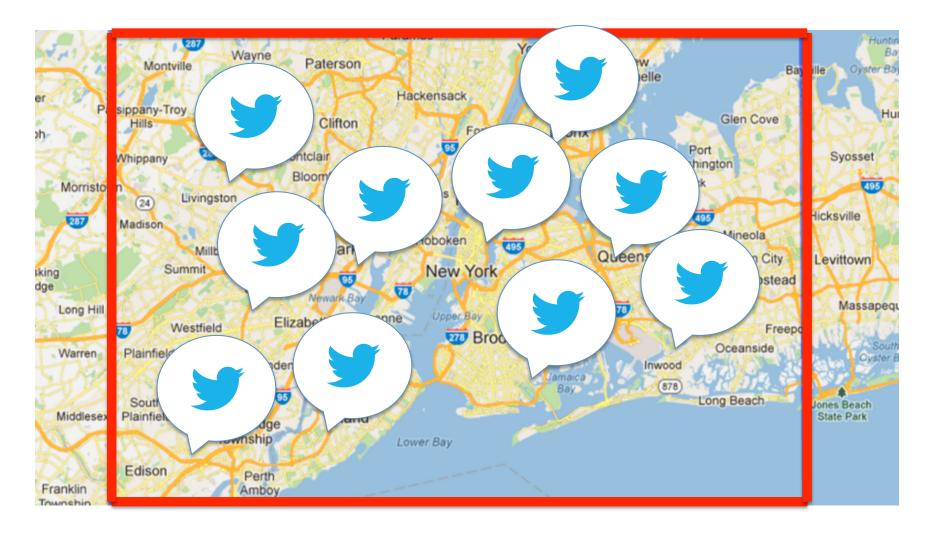
Mobile phone data & location info.



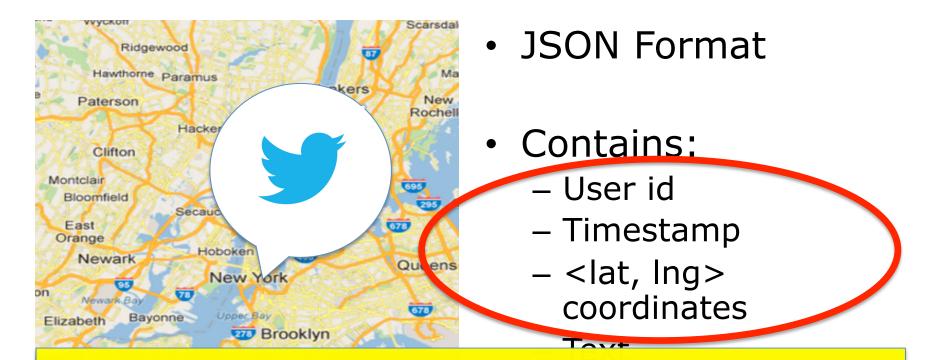
CDR Data

- Call Description Records (CDRs):
 - Every phone call: caller#, callee#, timestamp, cell-tower coordinates ...
 - Maintained for billing purposes
- Our CDR dataset:
 - September December 2009
 - 5M users in Madrid (820M calls)
 - 2M users in Barcelona (465M calls)

Geo-tagged Tweets

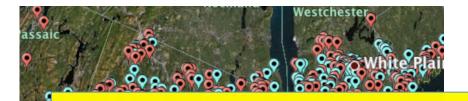


Geo-tagged Tweets



NY: 5.2M tweets, 225K users LA: 3.23M tweets, 155K users

Identifying Home/Work



 Small set of users with known Home/

Home/Work locations: Madrid (CDRs) : 272, 479 New York (Twitter): 71,977

LIE IESL.

Outline

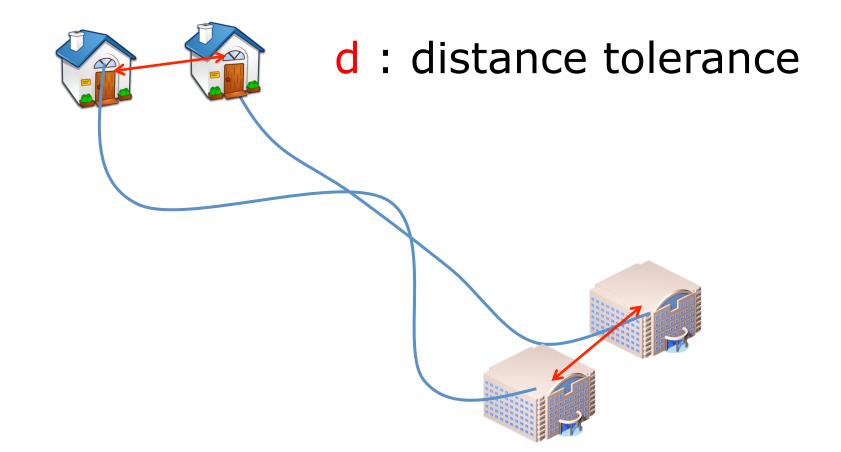
- Introduction
- Data
- Algorithms and Results
- Social Constraints
- System Design

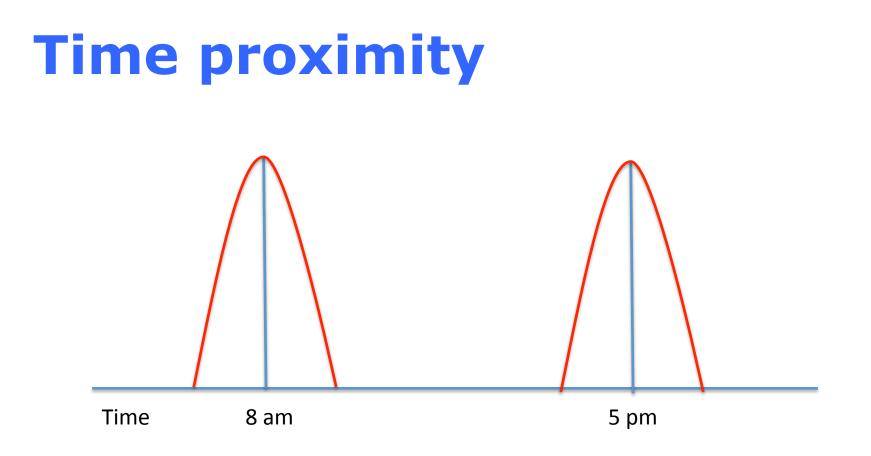
Initial Assumptions

 Stranger danger is not a problem

• All cars have a capacity of 4

Space proximity





- σ : standard deviation of Home/Work departure times
- T : time tolerance

Formulation

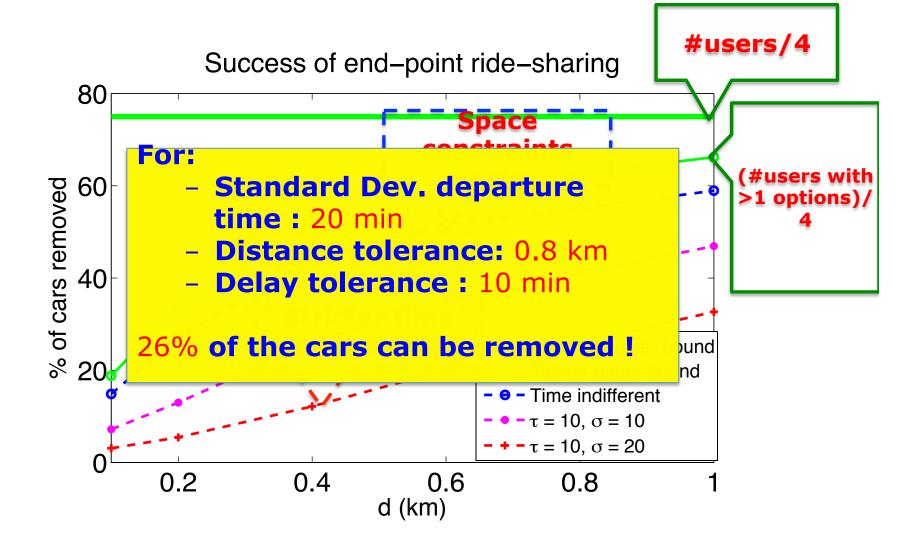
- Goal: minimize the number of cars give spatial and time constraints
- Capacitated Facility location with Unsplittable Demands:
 - Facilities : Drivers
 - Clients : Passengers
- Distance function:

 $-d(u,v) = max\{h_dist(u,v), w_dist(u,v)\}$

EndPoints RS

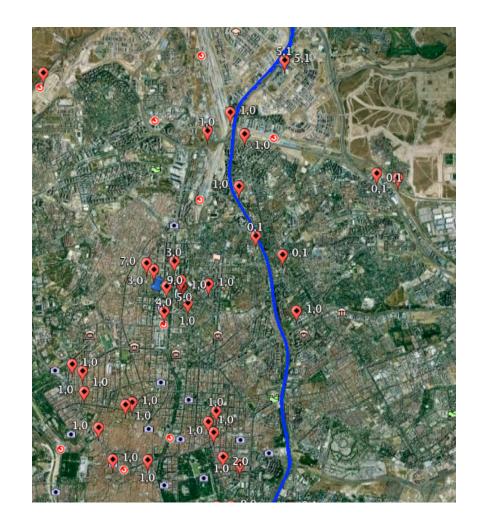
- Since our problem is NP-hard, we use an efficient and scalable heuristic
- EndPoints RS:
 - Start with an initial "smart" solution
 - Iterative improvements by local search in solution space
- Scalability
 - Fixed local search steps
 - Fix numbers of iterations

Results for EndPoint RS

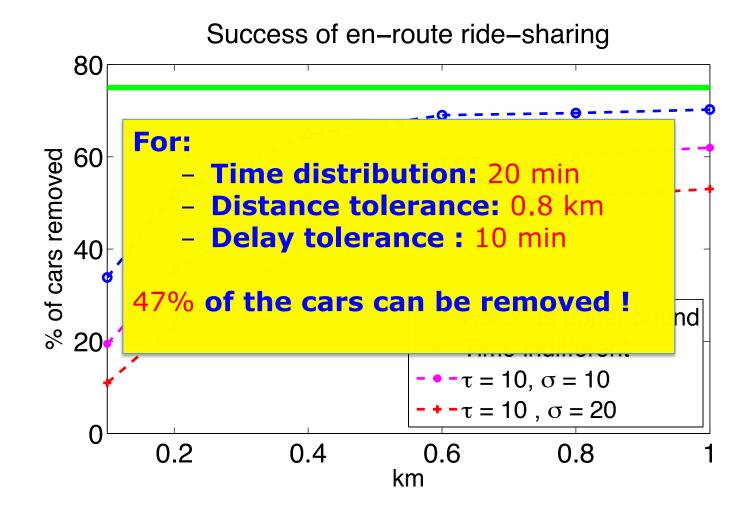


EnRoute RS

- Find Home/Work path through Google Maps
- EnRoute RS:
 - Get the solution of EndPoints RS
 - Iterative improvements
 - Fill empty seats by pick-ups



Results for EnRoute RS



Outline

- Introduction
- Data
- Algorithms and Results
- Social Constraints
- System Design

Reducing "Stranger Danger"

- Assume users are willing to share a ride only with:
 - friends
 - friends of friends
- Social graphs:
 - -CDRs : call graph
 - -Twitter : mutual declared friendship

Filtering with social constr.

Ride-sharing parameters:

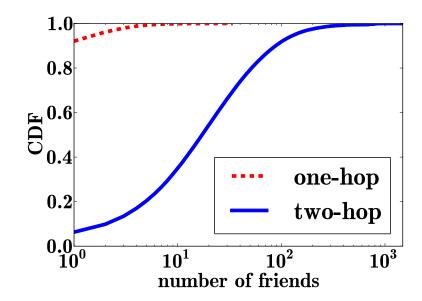
- Time distribution: 20 min
- Distance tolerance : 0.8 km
- Delay tolerance : 10 min

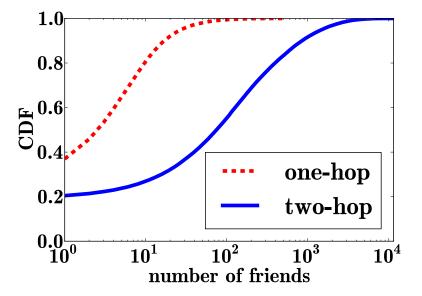
City	Friends only	Friends of friends	Anybody
Madrid	0.2%	2.4%	47%
New York	1.5%	9.1%	52%

Social graph properties

CDRs - Madrid

Twitter graph – New York





The next big question !!!

How to design an efficient Ride-Sharing application ?

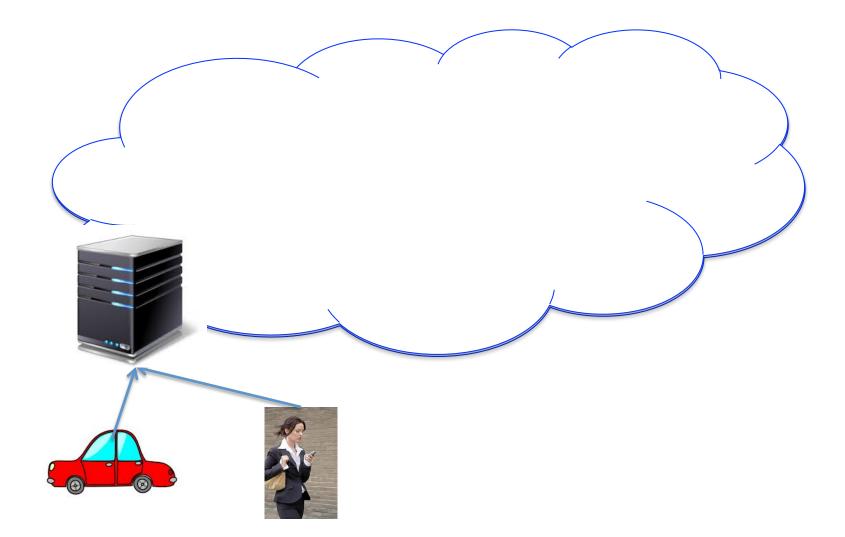
Outline

- Introduction
- Data
- Algorithms and Results
- Social Constraints
- System design

Requirements

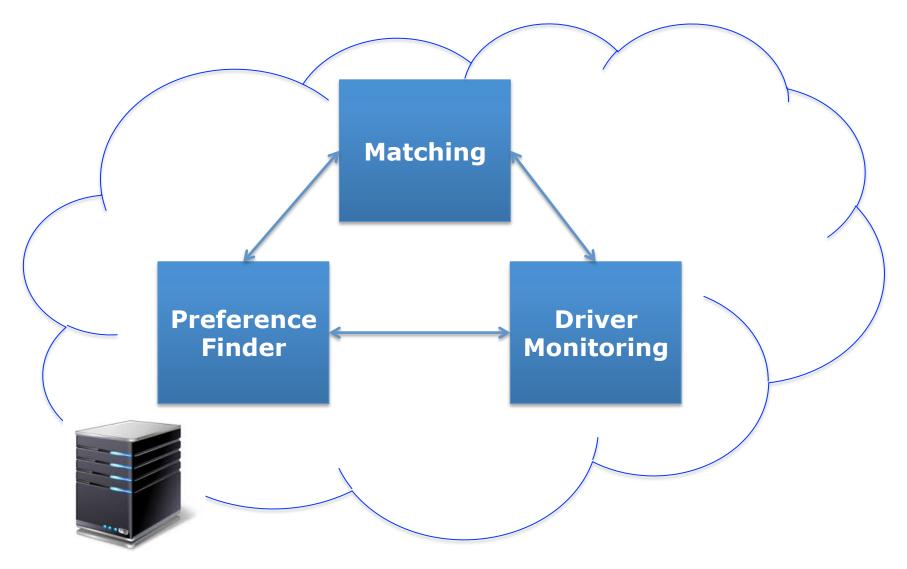
- Immediate response to request
- Spatial-temporal constraints:
 - Max dist. : 0.8 km
 - Max deviation from time routine: 10 min
- Matching ratio is crucial !

Online Ride Sharing

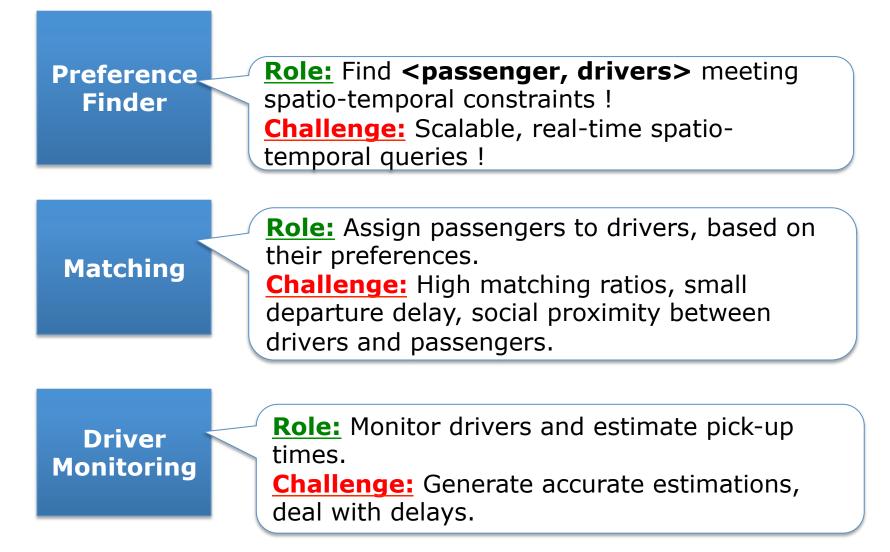


39

Online Ride Sharing



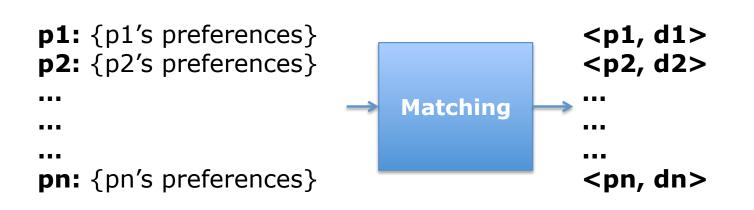
Online Ride Sharing



Preference Finder

- Current implementation based on KDTrees
- For 272K users can run on a single machine

The heart of the system



The matching algorithm:

- Match new request as soon as they arrive
- Refines existing (driver, passng) pairs every 2 mins.
- Use distance function to model preferences.

Distance function

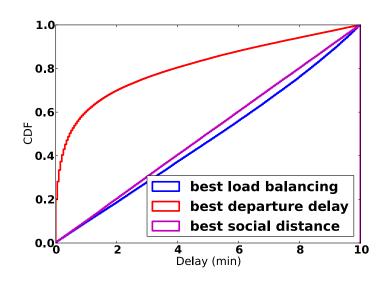
• dist(d, p) =

social_weight * social_dist (d, p)

- + **time_weight** * time_dist(d, p)
- + **load_balance_weight** * empty(d)

Extreme cases

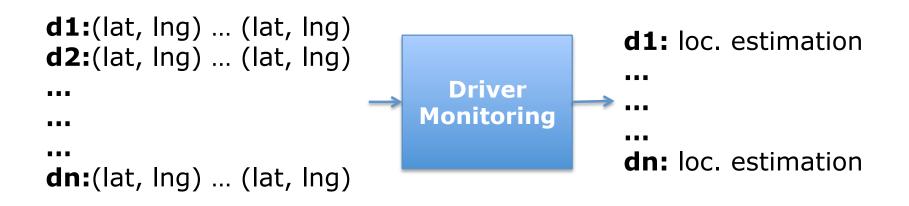
Cases	Driver ratio (%)	Passenger ratio (%)	Social sharing (%)
social best	62	79	6
time best	48	79	0.4
load- balancing best	73	79	0.5



Prediction Errors

- On line ride sharing depends on enroute pick-ups
- Predicting driver arrival time of users is very important
- How is ride-sharing affected by prediction errors

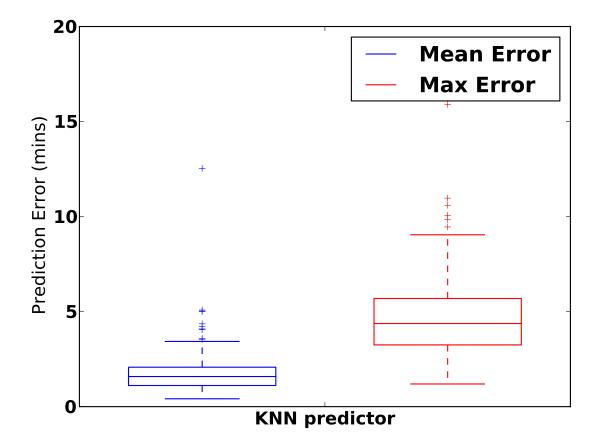
Driver Monitoring



Modeling prediction error

- We implemented a state-of-the-art arrival prediction algorithm
- We used **GPS** a dataset of 500 taxi drivers in Silicon Valley.
- Modeled the error & plugged it in our simulations.

Modeling prediction error



Extreme cases – Matching Ratio

Best Load balancing

- Weights:
 - social_weight = 0
 - time_weight = 0

Lowest time deviation

- Weights:
 - social_weight = 0
 - time_weight = 1
 - load_balance_weight
 = 0

- Canceled pairs: 5%
- Canceled pairs: 3%

Summary

- We evaluated the potential or ride-sharing with using CDRs, and geo-tweets.
- Results:
 - The success of of ride-sharing can be as high as 47%, if we don't consider "stranger danger"
 - ONLY with friends is too restrictive
 - Sharing rides with friends of friends, can lead to a success up to 9.1%, depending on the density of the social graph

Summary

- Ride-sharing application with a real-world feeling
- Highlighted trade-offs in the design of ridesharing system.
- Showed the impact of arrival predictions such a system

Beyond Ride-Sharing

Thank You

More at: http://people.tid.es/Nikolaos.Laoutaris