University of Barcelona, Department of Fundamental Physics iSocial Marie Curie Initial Training Networks

# Individualism and collectivism in social dynamics:

contact process with stochastic opinion fluctuations in complex networks

> Liudmila Rozanova rozanova@ffn.ub.edu

> > January 27, 2016

### Content

### Contact process description

Voter model with distributed flip rate and spontaneous state changing

### System state evolution

Description of variables Differential equation

### Stochastic process modeling

Langevin equation Voter model in complex networks

#### Contact process in homogeneous network

Langevin equation and effective potential

### Split network: fast-slow agents

Model description Partial case: investigation of dynamics Condition of the effective potential maximum

### Simulation



### Contact process description

Voter model with distributed flip rate and spontaneous state changing

N is the set of contacting agents in states 0 and 1. Agent *i* changes his opinion:

- ► to influenced by other agents. The probability of agent *i* copying the opinion of agent *j* is  $P\{j|i\} = \frac{a_{ij}}{k_i} \frac{f(\lambda_j)}{\sum_{i=1}^{N} f(\lambda_i)}$ ,
  - *k<sub>i</sub>* is the degree of agent,
  - $A = \{a_{ij}\}$  is the adjacency matrix,
  - $\lambda_i$  is intrinsic activity rate of *i*-agent.
- spontaneously with probability  $\epsilon_i$ .

Let's  $n_i(t)$  is the opinion state the *i*-agent in the time *t*.

$$n_i(t + dt) = \phi_i(1 - n_i(t)) + (1 - \phi_i)n_i(t)(1 - \xi_i) + \nu_i\xi_i$$
(1)

 $\phi_i(t)$ ,  $\xi_i(t)$ , and  $\nu_i(t)$  are dichotomous random independent variables:

$$\phi_i(t) = \begin{cases} 1 \text{ with probability } \epsilon_i dt, \\ 0 \text{ with probability } 1 - \epsilon_i dt, \end{cases} \quad \xi_i(t) = \begin{cases} 1 \text{ with probability } \lambda_i dt, \\ 0 \text{ with probability } 1 - \lambda_i dt, \end{cases}$$

$$\nu_{i}(t) = \begin{cases} 1 \text{ with probability } \sum_{j=1}^{N} P\{j|i\}n_{j}(t), \\ 0 \text{ with probability } 1 - \sum_{j=1}^{N} P\{j|i\}n_{j}(t). \end{cases}$$

Time-evolution of the average opinion:

$$\frac{\langle n_i(t+dt)-n_i(t)\rangle}{dt} = \epsilon_i - 2\epsilon_i \langle n_i(t)\rangle + \lambda_i \left[\sum_{j=1}^N P\{j|i\} \langle n_j(t)\rangle - \langle n_i(t)\rangle\right]$$

Ensemble average of the opinion of agent *i*,  $\langle n_i(t) \rangle \equiv l_i$ ,

$$\frac{dl_i}{dt} = \lambda_i \left[ \sum_{j=1}^N P\{j|i\} l_j - l_i \right] + \epsilon_i (1 - 2l_i).$$
<sup>(2)</sup>

# Stochastic process modeling

Stochastic process X(t):

$$dX(t) = M(x)dt + \sqrt{D(x)}dW,$$
(3)

where the drift term is

$$M(x) = \frac{\langle X(t+dt)|X(t)\rangle - \langle X(t)\rangle}{dt},$$

the diffusion term is

$$D(x) = \frac{\langle X^2(t+dt)|X(t)\rangle - \langle X(t+dt)|X(t)\rangle^2}{dt},$$

dW is the differential Wiener process.

# Stochastic process modeling

Voter model in complex networks

Let's  $I_k(t) = \frac{1}{N_k} \sum_{i \in k} n_i(t)$  and  $\lambda_k \equiv \lambda$ ,  $\epsilon_k \equiv \epsilon$  are fixed coefficients for all  $i \in k$ .

Langevin equation for general case:

$$\frac{dI_k(t)}{dt} = \epsilon (1 - 2I_k(t)) - \lambda I_k(t) + \lambda \sum_j P\{j|i\} I_j(t)$$
$$+ \tau_k(t) \sqrt{\frac{\epsilon}{N_k} + \frac{\lambda}{N_k} \left[ (1 - 2I_k(t)) \sum_j P\{j|i\} I_j(t) + I_k(t) \right]}, \qquad (4)$$

where  $\tau_k(t)$  is Gaussian white noises.

Let's  $\rho(t)$  is the density of nodes in 1-state, then

$$\frac{d\rho(t)}{dt} = \epsilon - 2\epsilon\rho(t) + \tau(t)\sqrt{\frac{1}{N}\left[\epsilon + 2\lambda\rho(t)(1-\rho(t))\right]}.$$
(5)

For describing fluctuation dynamics we investigate the effective potential

$$V_{eff}(\rho) = \ln \frac{1}{N} \left[ \epsilon + 2\lambda \rho (1-\rho) \right] - 2 \int \frac{N\epsilon (1-2\rho)}{\epsilon + 2\lambda \rho (1-\rho)} d\rho, \qquad (6)$$

 $V_{\rm eff}$  has an extremum when ho=1/2, it is a maximum if  $\lambda/N>\epsilon$  and minimum otherwise.

### Split network: fast-slow agents Model description



Two groups - fast and slow agents,

- $N_f, N_s$  number of agents in each group,
- $\lambda_f$  and  $\lambda_s$  rate parameters,
- $k_{fs} = \frac{f(\lambda_f)N_f}{f(\lambda_s)N_s}$ ,
- $\rho_f(t), \rho_s(t)$  density of fast and slow agents in state 1,
- $\epsilon$  spontaneous flip probability.

System of differential equations:

$$\frac{d\rho_f(t)}{dt} = \epsilon(1-2\rho_f) + \frac{\lambda_f}{1+k_{fs}}(\rho_s - \rho_f) + \sqrt{\frac{1}{N_f} \left[\epsilon + \lambda_f \frac{\rho_s + \rho_f(1+2k_{fs}-2\rho_s - 2k_{fs}\rho_f)}{1+k_{fs}}\right]} \tau_f(t),$$

$$\frac{d\rho_s(t)}{dt} = \epsilon(1-2\rho_s) + \frac{\lambda_s k_{fs}}{1+k_{fs}}(\rho_f - \rho_s) + \sqrt{\frac{1}{N_s} \left[\epsilon + \lambda_s \frac{\rho_f k_{fs} + \rho_s(k_{fs}+2-2\rho_f k_{fs}-2\rho_s)}{1+k_{fs}}\right]} \tau_s(t).$$

If  $\epsilon$  has the same order as  $\lambda_s$ ,  $\Rightarrow$  fix  $\rho_s \Rightarrow$  consider just one Langevin equation.

The effective potential has a single extremum at approximately

$$\rho_s \approx \rho_f \approx \frac{1}{2}.$$

It is a maximum if

$$N_f(2\epsilon + \lambda_f) + 2k_{fs}(\epsilon N_f - \lambda_f) < 0, \tag{7}$$

and minimum in another case. Transition from minimum to maximum can only happen if  $\lambda_f > \epsilon N_f$ .

Conditions of the effective potential maximum

$$x \equiv \frac{2f(\lambda_f)}{N_s f(\lambda_s)}, y \equiv \frac{\lambda_f}{\epsilon N_f}.$$

The effective potential maximum possible only if

$$x > 1$$
 (8)

and

$$y > \frac{x + \frac{2}{N_f}}{x - 1}.$$
 (9)



Figure 1: Effective potential condition in XY space,  $N_f = 1000$ .

Simulation: evolution of the fraction of agents in the 1-state



Figure 2:  $N_f = 1000$  fast,  $N_s = 4000$  slow agents,  $\lambda_f = 10^3 \lambda_s$ ,  $\epsilon = 0.001$ .

Simulation: evolution of the fraction of agents in the 1-state



Figure 3:  $N_f = 1000$  fast,  $N_s = 4000$  slow agents,  $\lambda_f = 10^4 \lambda_s$ ,  $\epsilon = 0.0003$ .

Simulation: evolution of the fraction of agents in the 1-state



Figure 4:  $N_f = 1000$  fast,  $N_s = 4000$  slow agents,  $\lambda_f = 10^4 \lambda_s$ ,  $\epsilon = 0.00099$ .

#### Split network: fast-slow agents Simulation: evolution of the fraction of agents in the 1-state

1 voter0.00050.dat 0.8 0.6 0.6 (b) Fast agents 0.4 0.2 0 10 15 0 5 20 25 (a) Fast+slow agents (c) Slow agents

Figure 5:  $N_f = 1000$  fast,  $N_s = 1000$  slow agents,  $\lambda_f = 10^4 \lambda_s$ ,  $\epsilon = 0.0005$ .

#### Split network: fast-slow agents Simulation: criterion of the effective potential maximum

Variance curve  $\langle (\rho_f - 1/2)^2(t) \rangle$  slope indicates the existence of the effective potential maximum.



Figure 6: Variances of the fraction of fast agents in 1-state,  $N_f = 1000$ ,  $N_s = 4000$ ,  $\lambda_f = 10^4 \lambda_s$ .

### Thank you for your attention!