GEOMETRIC CORRELATIONS IN REAL MULTIPLEX NETWORKS

Kaj Kolja KLEINEBERG Universitat de Barcelona

M. Angeles 🖾 • marian.serrano SERRANO @ub.edu Universitat de Barcelona Marian 🖾 • marian.boguna BOGUNA @ub.edu Universitat de Barcelona

Fragkiskos ⊠ • f.papado-PAPADOPOULOS poulos@cut.ac.cy Cyprus University of Technology

The problem of routing: efficient forwarding of a message from a source to a target

The problem of routing: efficient forwarding of a message from a source to a target

Diffusion is **not an efficient way** to perform navigation.

A map of the system reveals underlying geometry and provides notion of distance and direction

A map of the system reveals underlying geometry and provides notion of distance and direction

Underlying **geometry** allows **efficient routing** in networks with only **local knowledge**.

In reality networks form interacting entities in larger and more complex systems

Internet multiple

Summary & outlook

In reality networks form interacting entities in larger and more complex systems

Do **more interacting network layers** improve the performance of **routing?**

Geometric correlations in real multiplex networks

Geometric correlations in real multiplex networks Mutual greedy routing and geometric correlations

Geometric correlations in real multiplex networks Mutual greedy routing and geometric correlations

Internet multiplex correlations and routing

Geometric correlations in real multiplex networks

The map: real complex networks obey hyperbolic geometry rather than Euclidean

$$x_{ij} \approx r_i + r_j + \ln \frac{\Delta \theta_{ij}}{2}$$

Image taken from Nature Communications 1, 62 (2010)

Popularity: Birth time $t = 1, 2, 3, \ldots$

Similarity: Position on a circle given by angular coordinate θ

Growing network: New node t is placed randomly on the circle and connects to m existing nodes s that minimize the product of popularity times similarity

 $s \times \Delta \theta_{st}$

Nature 489, 537-540 (2012)

Internet multiple

Summary & outlook

Internet multiple

Summary & outlook

Nodes optimize the product of popularity and similarity

Internet multiple

Summary & outlook

Nodes optimize the product of popularity and similarity

Radial coordinate: $r_t = \ln t$

Radial coordinate: $r_t = \ln t$

Radial coordinate: $r_t = \ln t$

New node t connects to m existing nodes s that minimize $s\Delta\theta_{st}$

Radial coordinate: $r_t = \ln t$

New node t connects to m existing nodes s that minimize $s\Delta \theta_{st}$

$$st\frac{\Delta\theta_{st}}{2}$$

Radial coordinate: $r_t = \ln t$

New node t connects to m existing nodes s that minimize $s\Delta \theta_{st}$

$$st\frac{\Delta\theta_{st}}{2}$$
$$\ln st\frac{\Delta\theta_s}{2}$$

Radial coordinate: $r_t = \ln t$

New node t connects to m existing nodes s that minimize $s\Delta \theta_{st}$

 $st\frac{\Delta\theta_{st}}{2}$

 $\ln st \frac{\Delta \theta_{st}}{2}$

Radial coordinate: $r_t = \ln t$

New node t connects to m existing nodes s that minimize $s\Delta \theta_{st}$

$$st\frac{\Delta\theta_s}{2}$$

$$\ln st \frac{\Delta \theta_{st}}{2}$$

Generalization: Nodes i and j are connected with probability

$$p(x_{ij}) = \frac{1}{1 + e^{1/(2T)(x_{ij} - R)}}$$

 $T: \mathsf{Temperature}$

Real complex networks can be embedded in hyperbolic space

Idea: Invert hyperbolic network model

Maximum likelihood: Find node coordinates that maximize probability to reproduce the observed topology with the model

Details: PRE 92, 022807 (2015)

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Air and train transportation in India

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Air and train transportation in India

Drosophila protein interaction network
Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Air and train transportation in India

Drosophila protein interaction network

C. Elegans

multi synapse neuronal network

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Air and train transportation in India

Drosophila protein interaction network

C. Elegans

multi synapse neuronal network

Human brain structural and functional network

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 and IPv6 protocol

Air and train transportation in India

Drosophila protein interaction network

C. Elegans multi synapse neuronal network

Human brain

structural and functional network

co-authorship in different categories

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 network

Internet IPv6 network

Constituent network layers of real multiplex systems are embedded into separate hyperbolic spaces

Internet IPv4 network

Internet IPv6 network

Are **coordinates** of same nodes in different layers **correlated?**

Radial coordinates are strongly correlated between different layers

Radial coordinates are strongly correlated between different layers

Radial correlations are equivalent to **degree degree correlations** found in many studies.

Node clusters similar in both layers are overabundant in real compared systems to reshuffled counterparts

Node clusters similar in both layers are overabundant in real compared systems to reshuffled counterparts

Node clusters similar in both layers are overabundant in real compared systems to reshuffled counterparts

Angular correlations exist and give rise to **multidimensional communities.**

Generalized communities in the Internet belong to certain geographic regions

Distance between pairs of nodes in one layer is an indicator of the connection probability in another layer

Distance between pairs of nodes in one layer is an indicator of the connection probability in another layer

Distance between pairs of nodes in one layer is an indicator of the connection probability in another layer

Geometric correlations enable precise trans-layer link prediction.

Geometric correlations exist in real multiplex systems and generalize community detection and link prediction

Metric correlations

exist in real multiplex systems

Geometric correlations exist in real multiplex systems and generalize community detection and link prediction

Metric correlations

TTT

Metric correlations

exist in real multiplex systems define multidimensional communities

Geometric correlations exist in real multiplex systems and generalize community detection and link prediction

Metric correlations

İİİ

Metric correlations

exist in real multiplex systems define multidimensional communities

Metric correlations

allow trans-layer link prediction

Mutual greedy routing

Hyperbolic routing

forwarding to the neighbor with shortest hyperbolic distance to target in any of the layers

Angular routing

forwarding to the neighbor with shortest angular distance to target in any of the layers

Hyperbolic routing

forwarding to the neighbor with shortest hyperbolic distance to target in any of the layers

Angular routing

forwarding to the neighbor with shortest angular distance to target in any of the layers

Need for model to **vary correlations independently** from layer topology to study impact of correlations.

Constituent layer topologies according to hyperbolic model

Geometric correlations tuned independently from constituent layer topologies

Constituent layer topologies according to hyperbolic model

Geometric correlations tuned independently from constituent layer topologies

Radial correlations Gumbel-Hougaard copula controlled by $\nu \in [0, 1]$

Constituent layer topologies according to hyperbolic model

Geometric correlations tuned independently from

constituent layer topologies

Radial correlations Gumbel-Hougaard copula controlled by $\nu \in [0, 1]$

Angular correlations truncated Gaussian distribution controlled by $g \in [0, 1]$
Correlations improve performance mutual greedy routing using angular or hyperbolic distances

Constant **failure mitigation factor** as inverse of the slope for **optimal and uncorrelated case**.

Additional layers make system perfectly navigable if correlations are present, but otherwise are useless.

Metric correlations increase the performance of mutual greedy routing

Geometric correlations improve mutual greedy routing

Metric correlations increase the performance of mutual greedy routing

Uncorrelated layers

do not improve mutual navigability

Metric correlations increase the performance of mutual greedy routing

Geometric correlations improve mutual greedy routing


```
Uncorrelated
layers
do not improve
mutual navigability
```


Optimal correlations

make system perfectly navigable

The IPv4 IPv6 Internet multiplex

Constituent layers of the Internet multiplex have significantly different sizes

Constituent layers of the Internet multiplex have significantly different sizes

Are all nodes of the whole system **equally likely** to **exist in both layers?**

Nodes with high degree in IPv4 are more likely to be present in the IPv6 network as well

Nodes with high degree in IPv4 are more likely to be present in the IPv6 network as well

We select nodes from the IPv4 layer that also exist in IPv6 with **degree dependent probability.**

Internet multiplex model allows to study the performance of mutual greedy routing for arbitrary correlations

Internet multiplex model allows to study the performance of mutual greedy routing for arbitrary correlations

We can quantify the radial and angular correlations present in the real IPv4 IPv6 Internet multiplex

Radial correlations Person correlations coefficient between radial coordinates

We can quantify the radial and angular correlations present in the real IPv4 IPv6 Internet multiplex

Radial correlations

Person correlations coefficient between radial coordinates

 $\nu_E = 0.4$

We can quantify the radial and angular correlations present in the real IPv4 IPv6 Internet multiplex

Radial correlations

Person correlations coefficient between radial coordinates

$$\nu_E = 0.4$$

Angular correlations

Match overlap from empirical and synthetic coordinates

We can quantify the radial and angular correlations present in the real IPv4 IPv6 Internet multiplex

Radial correlations

Person correlations coefficient between radial coordinates

Angular correlations Match overlap from empirical and synthetic coordinates

$$\nu_E = 0.4$$

 $g_E = 0.4$

We can quantify the radial and angular correlations present in the real IPv4 IPv6 Internet multiplex

Radial correlations

Person correlations coefficient between radial coordinates

 $\nu_{E} = 0.4$

Angular correlations

Match overlap from empirical and synthetic coordinates

 $g_E = 0.4$

Do the **correlations** present in the **real Internet** help **navigation?**

Existing correlations in the real Internet multiplex increase performance of mutual greedy routing significantly

Geometric correlations in real Internet multiplex can be measured and favor mutual greedy routing

High degree nodes tend to exist in both layers **Geometric correlations in real Internet multiplex** can be measured and favor mutual greedy routing

High degree nodes tend to exist in both layers

Quantification of empirical metric correlations

Geometric correlations in real Internet multiplex can be measured and favor mutual greedy routing

High degree nodes tend to exist in both layers

Quantification of empirical metric correlations

Correlations

in real Internet favor navigation

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Geometric correlations

exist in real multiplex systems and...

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Geometric correlations

exist in real multiplex systems and...

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Geometric correlations

exist in real multiplex systems and...

İİİ

...identify multidimensional communities

...enable trans-layer link prediction

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Geometric correlations

exist in real multiplex systems and...

identify

P

...identify multidimensional communities ...enable trans-layer link prediction ...are essential to improve mutual navigability

Our findings can have important applications in diverse domains

Our findings can have important applications in diverse domains

reveal relations between functional and structural brain networks

Our findings can have important applications in diverse domains

multidimensional communities

trans-layer link prediction

reveal relations between functional and structural brain networks

Our findings can have important applications in diverse domains

multidimensional communities

trans-layer link prediction

reveal relations between functional and structural brain networks

uncover links

between terrorists knowing another network

Our findings can have important applications in diverse domains

multidimensional communities

trans-layer link prediction

reveal relations between functional and structural brain networks

uncover links

between terrorists knowing another network
Our findings can have important applications in diverse domains

multidimensional communities

trans-layer link prediction

mutual navigability

reveal relations between functional and structural brain networks

uncover links between terrorists knowing another network

improve search and navigation in decentralized systems

Kaj Kolja Kleineberg

Fragkiskos Papadopoulos

Maria Ángeles Serrano

Marián Boguñà

Summary & outlook

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Reference:

K.-K. Kleineberg, M. Boguña, M.A. Serrano, F. Papadopoulos. arXiv:1601.04071, 2016

Kaj Kolja Kleineberg:

• kkl@ffn.ub.edu

- @KoljaKleineberg
- koljakleineberg.wordpress.com
- in Kaj Kolja Kleineberg

Summary & outlook

Geometric correlations in real multiplex networks yield a powerful framework for understanding these systems

Reference:

	_
	FI.
1°	EL
	EL
	EL

K.-K. Kleineberg, M. Boguña, M.A. Serrano, F. Papadopoulos. arXiv:1601.04071, 2016

Kaj Kolja Kleineberg:

• kkl@ffn.ub.edu

- koljakleineberg.wordpress.com
- in Kaj Kolja Kleineberg

Compass: Martin Fisch Message in bottle: Susanne Nilsson

Old globe: jayneandd Compass: Creative Stall Compass (navigate): Creative Stall

Internet router: Thomas Uebe Train: Naomi Atkinson fly (drosophila): Daan Kauwenberg worm (celegans): anbileru adaleru bain network: parkjisun

Icons: thenounproject

Pictures: flickr

coauthor: Matt Wasser community: Edward Boatman Link: Rafaël Massé hyperbola: Dilon Choudhury Radial: Ates Evren Aydinel Angular: Arthur Shlain parameters: Sherrinford No: P.J. Onori target: Sergey Krivoy rock star: hum Bitcoin: Mourad Mokrane, RU terrorist: Luis Prado