

Location Based Access Control for P2P Video Streaming

Giovanni Simoni - PEER 2016-01-29 Milano

Background and Motivation

LBAC for P2P Video Streaming (L stands for "Location")

- Video streaming is popular in Social Networks
- Also in "dedicated" social networks:
 - Enterprises OSN
 - e.g. Yammer
- We exploit the P2P technology to improve video streaming in Enterprises
- Motivation: improve security with LBAC

Under the hood: CDNs

Content Delivery Networks:

Content: served by CDNs

Multimedia

Web pages

Software

- Deployment of multiple nodes serving content
- Connected with backbones

UNITED STATE

Goal: scalability

- Anteretion Load Balancing
 - Requests are served optimally

RUSSIA

• ...

•

CDNs and Enterprise Networks

Hierarchical structure

- Central headquarter
- Many sites interconnected by Virtual Private Networks
- Security: all the traffic goes through VPNs
 - Defeating the purpose of CDNs

Live Video Events

- Each node runs independent requests
- Redundant transmissions of the same video stream
- Bottleneck!

Hive: distributed CDN (using P2P)

Principles:

Confidential Video content in Enterprise OSN

- Confidential data shared through OSNs
 - Inclusive of knowledge base, in form of Videos
- Role Based Access Control
 - But people have {laptops, smartphone, tablets, whatever}
- Location Based Access Control
 - Additionally we consider the user location as context

LBAC

Many flavours of LBAC

- Location detection GPS, GSM antennas, RFID, **WiFi**
- Different granularity
 Geographical region ← to → Meters

"The Corporate Building"

Contribution

- Design of a **simple** LBAC distributed protocol
 - On the top of Hive
- Testing in simulation
- Measure of performances
 - User experience
 - Effectiveness of the enforcement

The Hive Client

The Hive System

The Hive System

The Hive System

LBAC: Extension to Architecture

LBAC: Extension to the Protocol

The protocol

• Assuming simple policies

Content URL	Location: Lobby	Location: Office #1	Location: Office #2	Location: Relax Area
https://	yes	yes	yes	yes
https://	no	yes	yes	no
https://	no	no	yes	no

- We can add orthogonally different flavours of access control
 - e.g. Role Based Access Control

Simple Protocol

- Based on certified authorizations
 - Policy server emits signed Certified Access Grant
 - CAG(who=user1, loc=loc1, item=http://..., expire=1454189691)
 - AAA server emits a signed Certified Locaiton Proof
 - CLP(who=user1, loc=loc1, expire=1454189691)
- Proof have an expiration
 - CAG => Policy Certification Validity parameter
 - Accounting for changes in the policy
 - Medium to long expiration (e.g. hours or days)
 - CLP => Location Certification Validity parameter
 - Accounting for user movement
 - Short expiration (e.g. seconds or minutes)
 - Absolute expiration time: Emission Time + Period

Enforcement points

The Client can obtain data from three sources

- The CDN connection
- In-Partners
- The local Cache

P2P Retrieval

- Client modification: prevent out-partnersip towards unauthorized peers
- Partnership establishment:

Candidate **out-partner** user1 must provide certificates:

- CAG(who=user1, loc=loc1, item=V, expire=future1)
- CLP(who=user1, loc=loc1, expire=future2)
- Partnership maintenance:
 - Expires at time $T_e = min \{ future2, future1 \}$
 - Client user1 must keep certificates up to date
 - Change of location:
 - CLP(who=user1, loc=loc2, expire=future2+...)
 - Provided with matching CAG(who=user1, loc=loc1, item=V, expire=future1+...)

CDN Source Retrieval

- CDN data is served through HTTP[S]
 - Many different server implementations could be used
 - Trick: using regular HTTPS credentials, temporarily
- Enabled and periodically maintained
 - Request to AAA
 - Must provide CAG(who=user1, loc=loc1, item=V, expire=future1)
 - Must be renewed before future1 with CAG(who=user1, loc=loc1, item=V, expire=future2)
- Setup during Manifest retrieval: fallback must be fast

Local Retrieval

- The client aggressively fetches fragments for future needs
 - Content is stored in encrypted form
- Requirement: check the authorization before deliverying to the player
 - As simple as: check my own permission

Evaluation

Simulation Scenario

From the streaming perspective

- Simple scenario used for unit testing
 - Ingredients: network structure + streaming pattern
 - Focus on one site
- Goals:
 - User experience perspective
 - How fast is the enforcement

Simulation Scenario

G

From the movement perspective

- Datasets are difficult to find, but I was lucky
 - Crawdad archive uw/places^[1]
- Companion paper on *extraction of relevant places from locations*^[2]

I. sleep 1; s…ures/xml.png 🗙	2. less campus/campus.xml $ imes$ +				
<time>1086653834695</time>					
<latitude>47.65325766215818</latitude>					
<longitude>-122.30574007693448</longitude>					
<accesspoints numbers="8"></accesspoints>					
<accesspoint></accesspoint>					
<bssid>00:0f:34:9d:01:a0</bssid>					
<ssid>UniversityOfWashingtonCSE</ssid>					
<known>YES<th>vn></th></known>	vn>				
<rssi>-76</rssi>					
<accesspoint></accesspoint>					
<bssid>00:0f:34:72:47:b0</bssid>					
<ssid>UniversityOfWashingtonCSE</ssid>					
<known>YES</known>					
<rssi>-60</rssi>	>				
<accesspoint></accesspoint>					
<bssid>00:02:dd:</bssid>	34:6d:09				
<pre> <ssid>SpeedStrea</ssid></pre>	am				

[1]: Jong Hee Kang, Gaetano Borriello, William Welbourne, and Benjamin Stewart. CRAWDAD dataset uw/places (v. 2006-05-02). Downloaded from http://crawdad.org/uw/places/20060502

[2] Jong Hee Kang, William Welbourne, Benjamin Stewart, and Gaetano Borriello. Extracting places from traces of locations.

Simulation Scenario

Movement in time (from bottom-right to top-left)

- Tracing regular activity of a volunteer
 - 2+ hours long
- Clustering algorithm was parametrized and applied
 - 9 "relevant" locations
- Arbitrary selection of 4 areas as *Allowed*
 - Access points marked accordingly

Permission in Time

Simulation parameters

How does it behave?

- What impact on user experience?
 - Streaming from source
 - Streaming from a peer
- How soon is the enforcement applied?
 - Same cases

Evaluation in different setting:

- **nolbac**: Original system (for comparison)
- **perlbac**: Permissive (checks are done, but all Locations are allowed)

(for user experience)

• **Ibac**: Enforcing (selected locations are forbidden)

Simulation Parameters

Available settings for LBAC:

- Policy Certification Validity
- Location Certification Validity

Expiration of certificates (intuitively)

- High → Lower disruptive effect on streaming
- Low → Faster reactions to system changes

- PCV not really relevant
 - Probably we want higher values for it (as in hours or days)

• The disruptive effect of the shortest one (LCV) dominates

Results: user experience

Results: effectiveness

Results

- Trade-off between user experience and security
 - Although not a dealbreaker
- Streaming from source is more prone to disruption
 - A new credentials setup is always needed
 - Recommended a static node pre-fetching from an authorized area

Conclusions

Conclusions

- Status:
 - Paper is ready
 - Targeting SACMAT conference
 - Deadlines soon (beginning of February)

Thanks!

Q&A