

Privacy, intellectual property and censorship Issues in OSNs

Panagiotis Ilia <pilia@ics.forth.gr>

Foundation for Research and Technology – Hellas (FORTH)

Outline

Part 1: User Privacy - Content Ownership

- Introduction
- Proposed Mechanism
- Evaluation / Limitations
- Intellectual Property

Part 2: Censorship in OSNs

- Motivation
- Objectives
- Analysis

Part 1:

User Privacy & Content Ownership

Introduction - Online Social Networks -

Popularity of OSNs

Facebook: > 1.5b monthly active users

Twitter: > 320m monthly active users

Uploaded content

Facebook: > 350m photos uploaded daily

Twitter: > 500m tweets sent daily

Introduction

- User Privacy -

Photos uploaded online

- Contain users' personally identifiable information (PII)
- Reveal private information (e.g., relationships, locations)

Users disclose sensitive information

- No concern about privacy
- Unaware of implications / consequences
- Unaware of true visibility of shared content

Motivation

- Group Photos -

Usually photos depict multiple individuals

- Users cannot control data published by others
- The uploader is considered owner of the photo.
 - → Granted full rights on the photo.
- Depicted/tagged people are NOT considered co-owners.
 - → Cannot restrict access or remove it

Allow each user in photo to control disclosure of PII

Changes granularity of AC from photo to users' faces.

Step 1: Face Recognition

- Exploit social relationships
- Uploader's friends, friends of identified users etc.

Step 2: Template Preparation

- N transparent layers, each contains a single blurred face
- Each identified user sets its own permissions

Step 3: Template Rendering

- Determines which faces the accessing user has permissions to view
- Generates a "processed" photo "on the fly"

Evaluation- Privacy / Effectiveness -

User Study

- 34 participants
- 14 challenges per participant
- One friend "hidden" in each challenge
- Requested to identify the "hidden" friend

Evaluation- Privacy / Effectiveness -

Why we propose this mechanism

- It can significantly enhance users' privacy on shared content
- It can be easily deployed by current OSNs, as an additional module
- Small overhead / Scalable

Panagiotis Ilia, Iasonas Polakis, Elias Athanasopoulos, Federico Maggi and Sotiris Ioannidis. Face/Off: Preventing Privacy Leakage From Photos in Social Networks. In Proceedings of the 22nd ACM Conference on Computer and Communications Security (CCS '15).

But

"Malicious" users befriend victim and its friends

- Collect information/photos
 - Impersonation attack
 - Bypassing social authentication mechanism [1]
- Can download and re-upload photos of others

The proposed approach relies on face recognition

- Difficult to identify strangers (multi-hop friends)
- Photos may not depict any face

[1] Iasonas Polakis, Panagiotis Ilia, Federico Maggi, Marco Lancini, Georgios Kontaxis, Stefano Zanero, Sotiris Ioannidis, Angelos D. Keromytis. Faces in the Distorting Mirror: Revisiting Photo-based Social Authentication In Proceedings of the 2014 ACM Conference on Computer and Communications Security (CCS '14)

Ownership - Intellectual Property - Proposed Approach -

The OSN implements a credit system

Each user sets its rules and required amount of credits.

A user can access the photo after transferring the credits

The OSN identify the uniqueness of each uploaded photo

- Watermarking
- Fingerprinting

When a photo is **re-uploaded**, the correct rules and credits are applied

Intellectual Property - Challenges -

The Watermarking and Fingerprinting algorithms should be:

- Resistant to OSN transformations (resizing, cropping, compression)
- Non detectable by users
- Tamperproof / non-reversible

The system should be:

- Efficient (low overhead)
- Scalable

Part 2:

Censorship in OSNs

Censorship in Twitter - "Country Withheld Content" policy -

From January 2012

- Governments / law enforcement agencies can request Twitter to withhold content / accounts.
- Twitter checks if this content violates its "Terms of Use"
- Those requests are published on <u>lumendatabase.org</u>
- Twitter publishes transparency reports

Censorship in Twitter - "Country Withheld Content" -

Tweet withheld

This Tweet from @Username has been withheld in: Country. Learn more

@Username withheld

This account has been withheld in: Country. Learn more

Censorship in Twitter

- Transparency Reports -

Censorship in Twitter - Objectives -

- Comparison of withheld and non-withheld tweets
- Investigate how tweets are being chosen for being withheld
- Graph properties, similarities and differences, clusters
- Investigate if there are patterns in user behaviour
- Influence of these users and propagation of tweets

Analysis - Tweets in Dataset -

18225 users

- ~ 39m tweets
- ~ 77k withheld tweets

- ~ 24.5m tweets
- ~ 7186 withheld tweets

Analysis - Withheld tweets per user -

- Percentage of Withheld tweets per user -

Analysis - Withheld tweets per Country -

- Number of Hashtags in Tweets -

- Keywords used as Hashtags -

- Retweets per Original Tweet -

- Tweets per Time of Day -

- Tweet date (creation) -

Future Work

- We collect a new dataset (original tweets of re-tweets)
- Estimate how long tweets live before being withheld
- Investigate connections between users that have withheld tweets
- Identify Influence of these users and propagation of tweets

Summary

- Design a fine-grained access control mechanism
 - Small overhead, scalable, effective
- Design a new model for solving intellectual property issues
 - Resistant fingerprinting and watermarking algorithms.
- Study cases of censorship in Tweeter
 - Compare withheld to non-withheld tweets
 - Graph clustering for users with withheld tweets
 - Propagation of withheld tweets, despite withholding efforts

Thank You