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Stream	Processing	
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Stream	Processing	Engines	

•  Streaming	ApplicaGon	
– Online	Machine	Learning	
– Real	Time	Query	Processing	
– ConGnuous	ComputaGon	
	

•  Streaming	Frameworks	
– Storm,	S4,	Flink	Streaming,	Spark	Streaming	
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Stream	Processing	Model	

•  Streaming	ApplicaGons	are	represented	by	
Directed	Acyclic	Graphs	(DAGs)	
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Stream	Grouping	

•  Key	or	Fields	Grouping	(Hash	Based)	
–  Single	worker	per	key	
–  Stateful	operators	

•  Shuffle	Grouping	(Round	Robin)	
–  All	workers	per	key	
–  Stateless	Operators	

•  ParGal	Key	Grouping	
–  Two	workers	per	key	
– MapReduce-like	Operators	
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Key	Grouping	

•  Key	Grouping	
•  Scalable	✖	
•  Low	Memory	✔	
•  Load	Imbalance	✖	
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Shuffle	Grouping	

•  Shuffle	Grouping	
•  Load	Balance	✔	
• Memory	O(W)	✖	
•  AggregaGon	O(W)	✖	

Worker	

Worker	

Worker	

Aggr.	

Source	

Source	

8	



ParGal	Key	Grouping	
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•  ParGal	Key	Grouping	
•  Scalable	✖	
•  Low	Memory	✔	
•  Load	Imbalance	✖	
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ParGal	Key	Grouping	
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Problem	FormulaGon	
•  Input	is	a	unbounded	sequence	of	messages	from	a	key	

distribuGon	

•  Each	message	is	assigned	to	a	worker	for	processing	(i.e.,	
filter,	aggregate,	join)	

•  Load	balance	properGes	
–  Memory	Load	Balance	
–  Network	Load	Balance	
–  Processing	Load	Balance	

•  Metric:	Load	Imbalance	
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How	to	find	opGmal	threshold?		

•  Any	key	that	exceeds	the	capacity	of	two	
workers	require	more	than	two	workers	pi	≥	
2/(n)						

•  We	need	to	consider	the	collision	of	the	keys	
while	deciding	the	number	of	workers	

•  PKG	guarantees	nearly	perfect	load	balance	
for		p1	≤	1/(5n)						
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How	to	find	opGmal	threshold?		
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How	many	keys	are	in	the	Head?	

•  Plots	for	the	number	of	keys	in	Head	for	two	
different	thresholds	
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How	many	workers	for	the	Head?	

•  D-Choices:	adapts	to	the	frequencies	of	the	
keys	in	the	Head	

	
•  W-Choices:	allows	all	the	workers	for	the	keys	
in	the	head	

•  Round-Robin:	employs	shuffle	grouping	for	
the	keys	in	the	Head	
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How	many	workers	for	the	Head?	

•  How	to	assign	a	key	to	set	of	d	workers?	

•  Greedy-d:	uses	d	different	hash	funcGons		
– generate	set	of	d	candidate	workers	
– assign	the	key	to	least	loaded	of	those	workers	

•  In	case	of	W-Choices,	all	the	workers	are	the	
candidate	for	a	key	
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How	to	find	the	opGmal	d?	
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•  We	can	write	our	problem	as	an	opGmizaGon	
problem	



•  We	can	rewrite	the	constraint	

•  For	instance	for	the	first	key	with	p1	

How	to	find	opGmal	d?	
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•  We	can	rewrite	the	constraint	

where	

How	to	find	opGmal	d?	
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What	are	the	values	of	d?	
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Memory	Overhead	

22	

 0

 10

 20

 30

 0.4  0.8  1.2  1.6  2M
e
m

o
ry

 w
.r

.t
 P

K
G

 (
%

)

Skew

n=50

D-C
W-C

 0.4  0.8  1.2  1.6  2

Skew

n=100

•  Compared	to	PKG	



Memory	Overhead	
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•  Compared	to	SG	
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Experimental	EvaluaGon	

•  Datasets	

24	



Experimental	EvaluaGon	

•  Algorithms	
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How	good	are	esGmated	d?	

•  Comparison	of	esGmated	d	versus	the	minimal	
experimental	value	of	d	
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Load	Imbalance	for	Zipf	
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Load	balance	for	real	workloads	

•  Comparison	of	D-C,	WC	with	PKG	in	terms	of	
load	balance	
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Load	Imbalance	over	Gme	

•  Load	imbalance	over	Gme	for	the	real-world	
datasets		
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Throughput	on	real	DSPE	
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•  Throughput	on	a	cluster	deployment	on	
Apache	Storm	for	KG,	PKG,	SG,	D-C,	and	W-C	
on	the	ZF	dataset		
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Latency	on	a	real	DSPE	
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•  Latency	(on	a	cluster	deployment	on	Apache	
Storm	for	KG,	PKG,	SG,	D-C,	and	W-C		
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Conclusion	

•  We	 propose	 two	 algorithms	 to	 achieve	 load	
balance	at	scale	for	DSPEs	

•  Use	heavy	hilers	to	separate	the	head	of	the	
distribuGon	and	process	on	larger	set	of	
workers	

•  Improvement	translate	into	150%	gain	in	
throughput	and	60%	gain	in	latency	over	PKG	
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