
When	Two	Choices	Are	not	Enough:		
Balancing	at	Scale	in	Distributed	Stream	Processing	

Anis	Nasir	
Accepted	at	ICDE	2016,	available	at	arXiv	

Stream	Processing	

2	

Stream	Processing	Engines	

•  Streaming	ApplicaGon	
– Online	Machine	Learning	
– Real	Time	Query	Processing	
– ConGnuous	ComputaGon	
	

•  Streaming	Frameworks	
– Storm,	S4,	Flink	Streaming,	Spark	Streaming	

3	

Stream	Processing	Model	

•  Streaming	ApplicaGons	are	represented	by	
Directed	Acyclic	Graphs	(DAGs)	

Data	Stream	

Operators	

Data	Channels	

Worker	

Worker	

Worker	

Source	

Source	

4	

Rank

Fr
eq
ue
nc
y

Head

Tail

Data	Streams	

5	

m	=	<Gmestamp,	key,	value>	
					=	<14477912,	046-XXXX817,	217>	

k1	(p1)	
	

kn	(pn)	

Stream	Grouping	

•  Key	or	Fields	Grouping	(Hash	Based)	
–  Single	worker	per	key	
–  Stateful	operators	

•  Shuffle	Grouping	(Round	Robin)	
–  All	workers	per	key	
–  Stateless	Operators	

•  ParGal	Key	Grouping	
–  Two	workers	per	key	
– MapReduce-like	Operators	

	
6	

Key	Grouping	

•  Key	Grouping	
•  Scalable	✖	
•  Low	Memory	✔	
•  Load	Imbalance	✖	

Worker	

Worker	

Worker	

Source	

Source	

7	

Shuffle	Grouping	

•  Shuffle	Grouping	
•  Load	Balance	✔	
• Memory	O(W)	✖	
•  AggregaGon	O(W)	✖	

Worker	

Worker	

Worker	

Aggr.	

Source	

Source	

8	

ParGal	Key	Grouping	
Worker	

Worker	

Worker	

Aggr.	

Source	

Source	

•  ParGal	Key	Grouping	
•  Scalable	✖	
•  Low	Memory	✔	
•  Load	Imbalance	✖	

9	

ParGal	Key	Grouping	

10	

P1	=	9.32%	

10-7

10-6

10-5

10-4

10-3

10-2

10-1

5 10 20 50 100

WP

Im
b

a
la

n
ce

 I
(m

)

Workers

PKG
D-C
W-C

Problem	FormulaGon	
•  Input	is	a	unbounded	sequence	of	messages	from	a	key	

distribuGon	

•  Each	message	is	assigned	to	a	worker	for	processing	(i.e.,	
filter,	aggregate,	join)	

•  Load	balance	properGes	
–  Memory	Load	Balance	
–  Network	Load	Balance	
–  Processing	Load	Balance	

•  Metric:	Load	Imbalance	

11	

Rank

Fr
eq
ue
nc
y

Head

Tail

High	Level	Idea	

12	

splits	head	from	the	tail	

k1	(p1)	
	

kn	(pn)	

How	to	find	opGmal	threshold?		

•  Any	key	that	exceeds	the	capacity	of	two	
workers	require	more	than	two	workers	pi	≥	
2/(n)						

•  We	need	to	consider	the	collision	of	the	keys	
while	deciding	the	number	of	workers	

•  PKG	guarantees	nearly	perfect	load	balance	
for		p1	≤	1/(5n)						

13	

How	to	find	opGmal	threshold?		

14	

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 0.4 0.8 1.2 1.6 2

W-C

Im
b

a
la

n
ce

 I
(m

)
n=50

2/n
1/n

1/2n
1/4n
1/8n

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

 0.4 0.8 1.2 1.6 2

W-C

n=100

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.4 0.8 1.2 1.6 2

RR

Im
b

a
la

n
ce

 I
(m

)

Skew

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.4 0.8 1.2 1.6 2

RR

Skew

How	many	keys	are	in	the	Head?	

•  Plots	for	the	number	of	keys	in	Head	for	two	
different	thresholds	

15	

 0

 10

 20

 30

 40

 50

 60

 70

 0.4 0.8 1.2 1.6 2

C
a

rd
in

a
lit

y
o

f
th

e
 h

e
a

d

Skew

θ=1/(5n)
θ=2/n

How	many	workers	for	the	Head?	

•  D-Choices:	adapts	to	the	frequencies	of	the	
keys	in	the	Head	

	
•  W-Choices:	allows	all	the	workers	for	the	keys	
in	the	head	

•  Round-Robin:	employs	shuffle	grouping	for	
the	keys	in	the	Head	

16	

How	many	workers	for	the	Head?	

•  How	to	assign	a	key	to	set	of	d	workers?	

•  Greedy-d:	uses	d	different	hash	funcGons		
– generate	set	of	d	candidate	workers	
– assign	the	key	to	least	loaded	of	those	workers	

•  In	case	of	W-Choices,	all	the	workers	are	the	
candidate	for	a	key	

17	

How	to	find	the	opGmal	d?	

18	

•  We	can	write	our	problem	as	an	opGmizaGon	
problem	

•  We	can	rewrite	the	constraint	

•  For	instance	for	the	first	key	with	p1	

How	to	find	opGmal	d?	

19	

pi
i≤h
∑ +

b
n
⎛

⎝
⎜
⎞

⎠
⎟
d

pi
h<i≤H
∑ +

b
n
⎛

⎝
⎜
⎞

⎠
⎟
2

pi
i>H
∑ ≤

b
n
⎛

⎝
⎜
⎞

⎠
⎟+ε

p1 +
b
n
⎛

⎝
⎜
⎞

⎠
⎟
d

pi
1<i≤H
∑ +

b
n
⎛

⎝
⎜
⎞

⎠
⎟
2

pi
i>H
∑ ≤

b
n
⎛

⎝
⎜
⎞

⎠
⎟+ε

•  We	can	rewrite	the	constraint	

where	

How	to	find	opGmal	d?	

20	

pi
i≤h
∑ +

b
n
⎛

⎝
⎜
⎞

⎠
⎟
d

pi
h<i≤H
∑ +

b
n
⎛

⎝
⎜
⎞

⎠
⎟
2

pi
i>H
∑ ≤

b
n
⎛

⎝
⎜
⎞

⎠
⎟+ε

b = n− n n−1
n

⎛

⎝
⎜

⎞

⎠
⎟
h×d

What	are	the	values	of	d?	

21	

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.8 1.2 1.6 2

F
ra

ct
io

n
 o

f
w

o
rk

e
rs

 (
d

/n
)

Skew

n=5
n=10
n=50

n=100

Memory	Overhead	

22	

 0

 10

 20

 30

 0.4 0.8 1.2 1.6 2M
e
m

o
ry

 w
.r

.t
 P

K
G

 (
%

)

Skew

n=50

D-C
W-C

 0.4 0.8 1.2 1.6 2

Skew

n=100

•  Compared	to	PKG	

Memory	Overhead	

23	

•  Compared	to	SG	

-100

-90

-80

-70

 0.4 0.8 1.2 1.6 2

M
e
m

o
ry

 w
.r

.t
 S

G
 (

%
)

Skew

n=50

D-C
W-C

 0.4 0.8 1.2 1.6 2

Skew

n=100

Experimental	EvaluaGon	

•  Datasets	

24	

Experimental	EvaluaGon	

•  Algorithms	

25	

How	good	are	esGmated	d?	

•  Comparison	of	esGmated	d	versus	the	minimal	
experimental	value	of	d	

26	

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.8 1.2 1.6 2

F
ra

ct
io

n
 o

f
w

o
rk

e
rs

 (
d
/n

)

Skew

n=50

Minimal-d
D-C

 0.4 0.8 1.2 1.6 2

Skew

n=100

Load	Imbalance	for	Zipf	

27	

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.4 0.8 1.2 1.6 2

|K|=104

Im
b
a
la

n
ce

 I
(m

)

n=50

 0.4 0.8 1.2 1.6 2

n=100

PKG
D-C
W-C
RR
sxε

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

 0.4 0.8 1.2 1.6 2

|K|=105

Im
b
a
la

n
ce

 I
(m

)

 0.4 0.8 1.2 1.6 2

Load	balance	for	real	workloads	

•  Comparison	of	D-C,	WC	with	PKG	in	terms	of	
load	balance	

28	

10-7

10-6

10-5

10-4

10-3

10-2

10-1

5 10 20 50 100

WP

Im
b

a
la

n
ce

 I
(m

)

Workers

PKG
D-C
W-C

sxε

10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2

5 10 20 50 100

TW

Workers

Load	Imbalance	over	Gme	

•  Load	imbalance	over	Gme	for	the	real-world	
datasets		

29	

10-9

10-8

10-7

10-6

10-5

 0 5 10 15 20 25

WPWP

Im
b
a
la

n
ce

 I
(t

)

n=20

10-9

10-8

10-7

10-6

 0 5 10 15 20 25

n=50

10-8

10-7

10-6

10-5

10-4

10-3

10-2

 0 5 10 15 20 25

n=100

PKG
D-C
W-C

10-7

10-6

10-5

10-4

10-3

10-2

 0 5 10 15 20 25 30 35

TW

Im
b
a
la

n
ce

 I
(t

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0 5 10 15 20 25 30 35
10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

 0 5 10 15 20 25 30 35

Throughput	on	real	DSPE	

30	

•  Throughput	on	a	cluster	deployment	on	
Apache	Storm	for	KG,	PKG,	SG,	D-C,	and	W-C	
on	the	ZF	dataset		

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

KG PKG D-C W-C SG

T
h

ro
u

g
h

p
u

t
(e

ve
n

ts
/s

e
co

n
d

)

z=1.4
z=1.7
z=2.0

Latency	on	a	real	DSPE	

31	

•  Latency	(on	a	cluster	deployment	on	Apache	
Storm	for	KG,	PKG,	SG,	D-C,	and	W-C		

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

KG PKG D-C W-C SG

L
a
te

n
cy

 (
m

s)

z=1.4

max avg
p50
p95
p99

KG PKG D-C W-C SG

z=1.7

KG PKG D-C W-C SG

z=2.0

Conclusion	

•  We	 propose	 two	 algorithms	 to	 achieve	 load	
balance	at	scale	for	DSPEs	

•  Use	heavy	hilers	to	separate	the	head	of	the	
distribuGon	and	process	on	larger	set	of	
workers	

•  Improvement	translate	into	150%	gain	in	
throughput	and	60%	gain	in	latency	over	PKG	

32	

When	Two	Choices	Are	not	Enough:		
Balancing	at	Scale	in	Distributed	Stream	Processing	

Anis	Nasir	
Accepted	at	ICDE	2016,	available	at	arXiv	

