arXiv:1309.1131

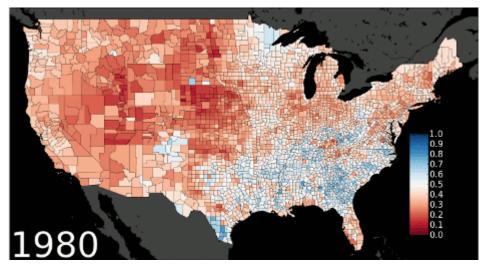
Voter model, opinion diffusion and mobility networks

MAXI SAN MIGUEL

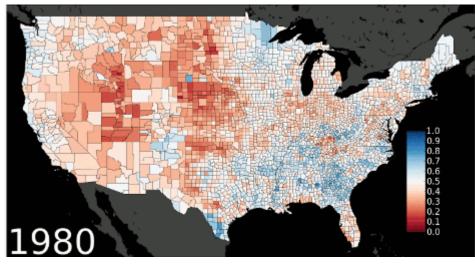
Raw data

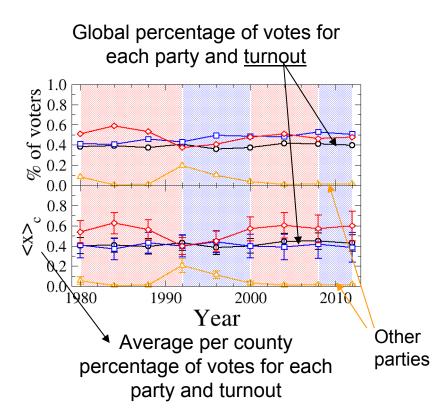
US presidential elections 1980-2012

Evolution of democrat shares



Evolution of republican shares

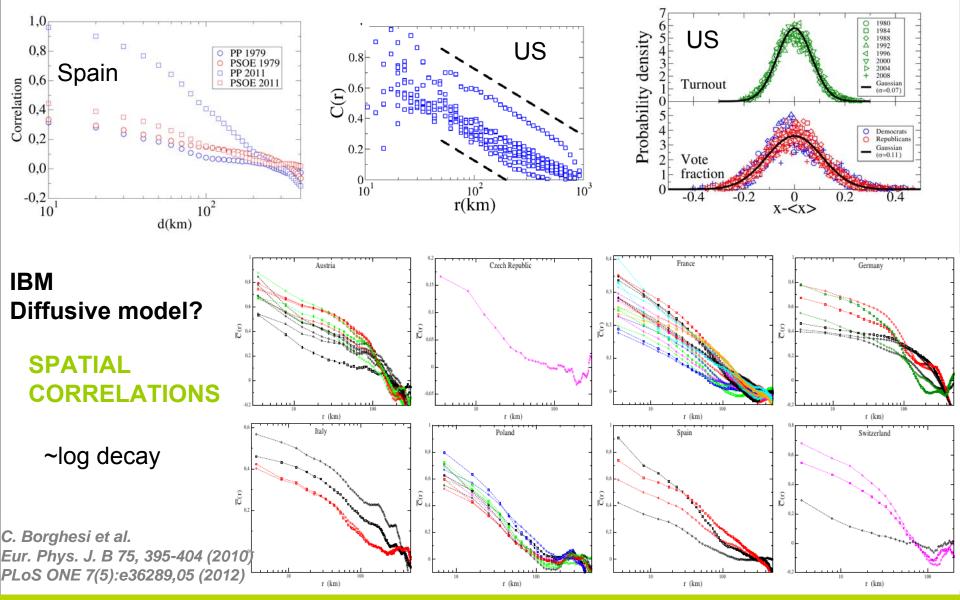




Basically two option system

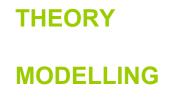
Blue: Democrat Red: Republican

Statistical regularities of elections data IFISC Irrespective of the winner!



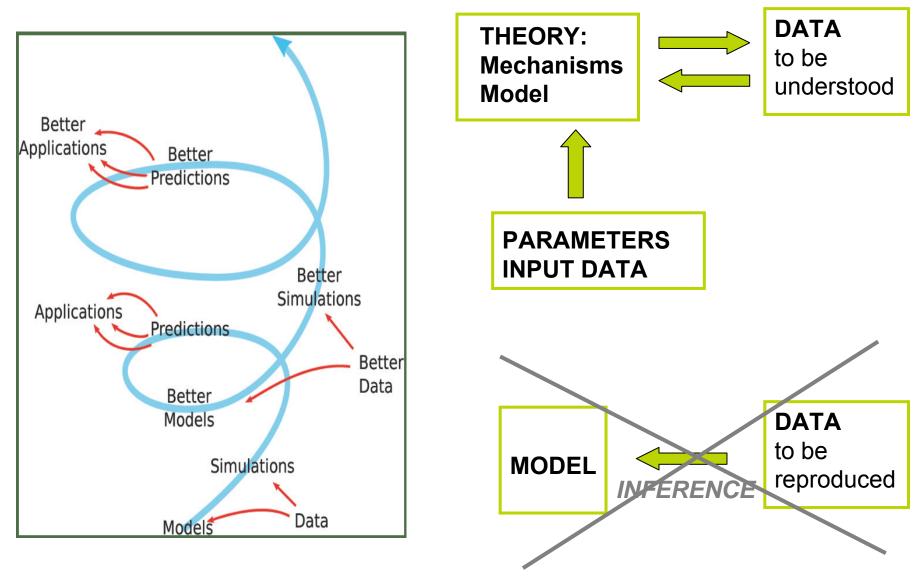
Ingredients of a social influence model:

a) Interaction mechanism: Imitation as basic manifestation of social influence.



b) **Social context:** Set of all possible interactions of an individual with any other peer. We model it as a network of interactions from census data for population and mobility.

MODELS and DATA



Ingredients of a social influence model:

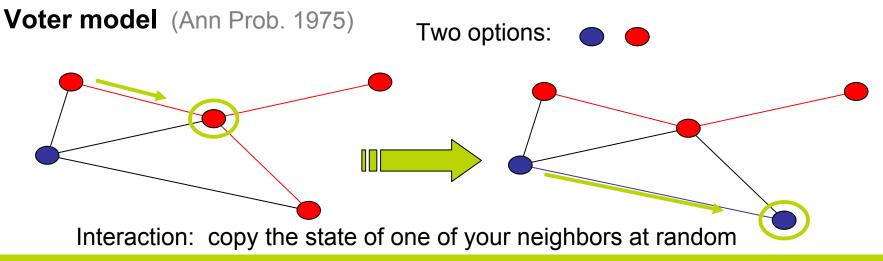
a) Interaction mechanism: Imitation as basic manifestation of social influence.

THEORY MODELLING

What can we learn from models of simple social behavior?

Reaching agreement by imitation?

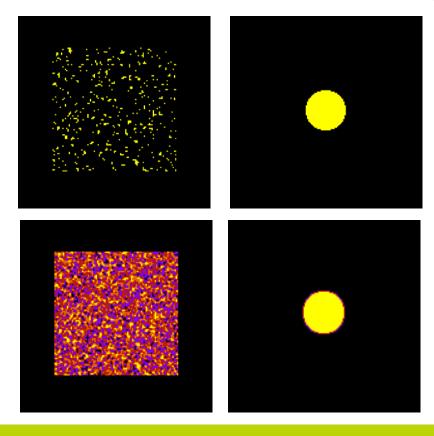
Imitation



 $\sigma_i = \pm 1 - \frac{1}{k_i} \sum_{i} L_{ij} \langle \sigma_j \rangle$

$$L_{ij} = a_{ij} - k_i \delta_{ij}$$

IFISC



Voter Model as a diffusion model

Value of the state at site i.

 $\sum_{j} L_{ij} = 0$

 $\frac{d}{dt} \frac{\sum_{i} k_i \langle \sigma_i \rangle}{\sum_{i} k_i} = 0$

Laplacian matrix

 a_{ii} adjacency

 k_i degree

Conserved quantity: Ensemble average weighted magnetization

Klemm et al, Sci. Rep. 2, 292 (2012)

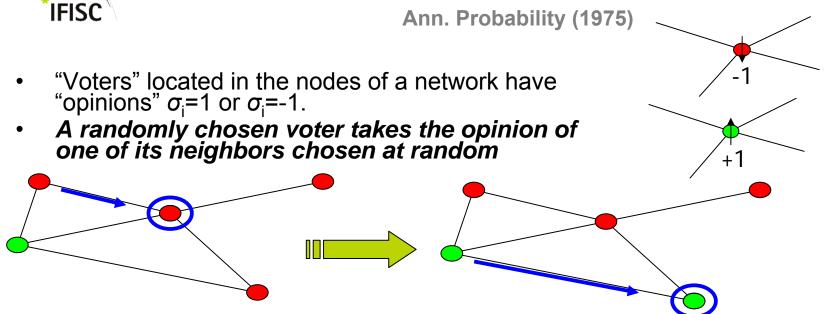
For a noisy diffussive model, spatial correlations decay logarithmically in 2d.

$$\begin{split} \dot{\psi} &= \nabla^2 \psi + \eta \\ \Rightarrow \langle \psi(\vec{r}) \psi(\vec{r'}) \rangle \xrightarrow{d=2} a - b \ln(|\vec{r} - \vec{r'}|) \end{split}$$

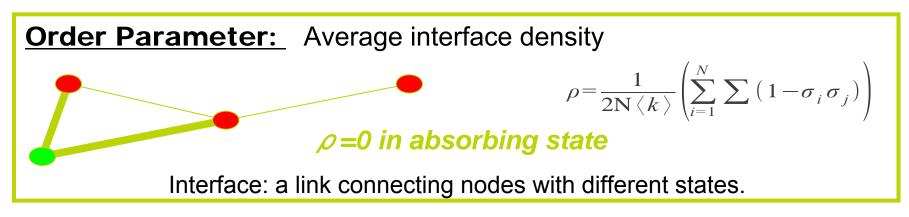
 $\eta \longrightarrow$ Uncorrelated gaussian white noise.

Spatial correlation and average over realizations do not commute

Voter Model: IMITATION DYNAMICS



Question: When and how one of the two absorbing states (agreement or consensus) is reached by imitation dynamics?

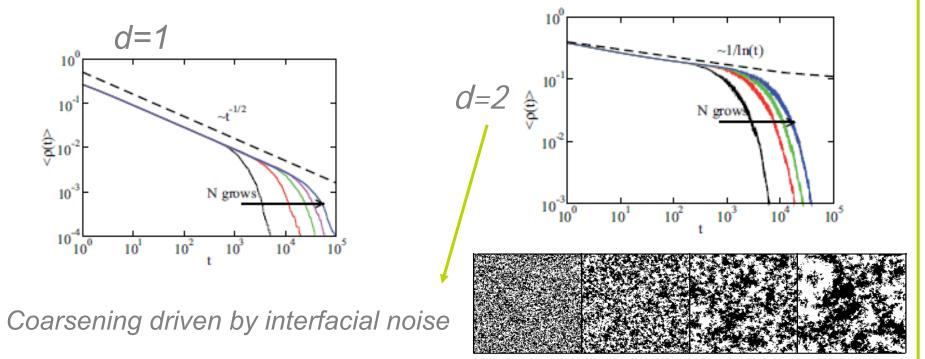


***IFISC**

$$< \rho > \sim \begin{cases} t^{-1/2}, d = 1 \\ (\ln t)^{-1}, d = 2 \\ \xi - bt^{-d/2}, d > 2 \end{cases}$$
t $\sim \begin{cases} N^2, d = 1, \text{ time to reach absorbing state} \\ N \ln N, d = 2, \text{ time to reach absorbing state} \\ N, d > 2, \text{ survival time of metastable state} \end{cases}$

d=1,2: Coarsening/Ordering

Unbounded growth of domains of absorbing states



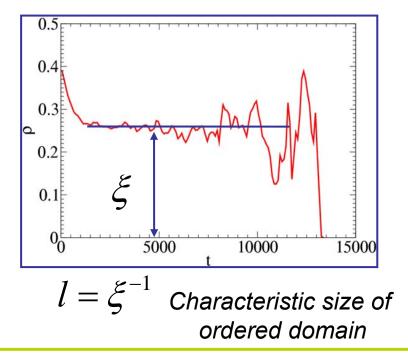
 $<\!\rho\!>\sim\!\xi$

d>2 regular and complex networks

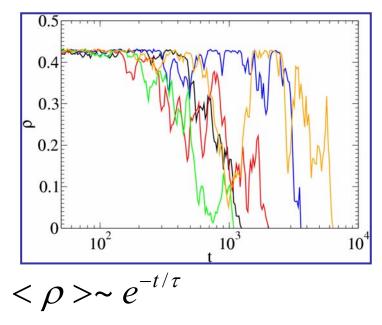
 $\tau(N) \approx N$, survival time of metastable state

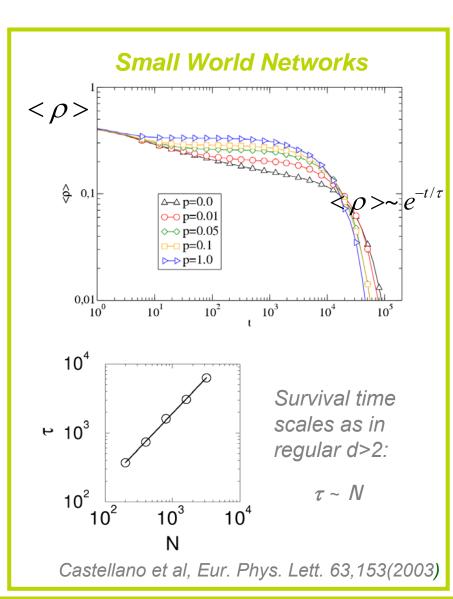
d>2: No Coarsening : Dynamical Metastability

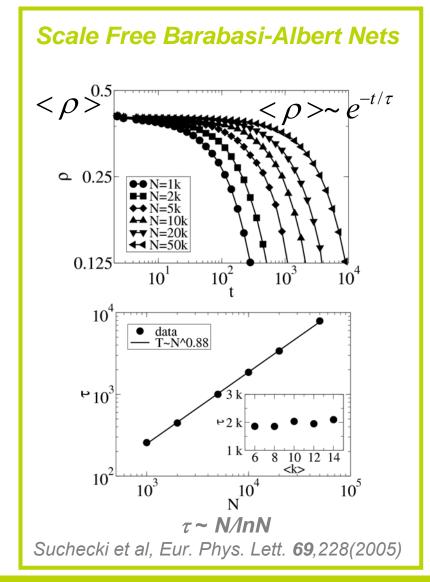
Disordered states.



Finite size fluctuations take the system to an absorbing state



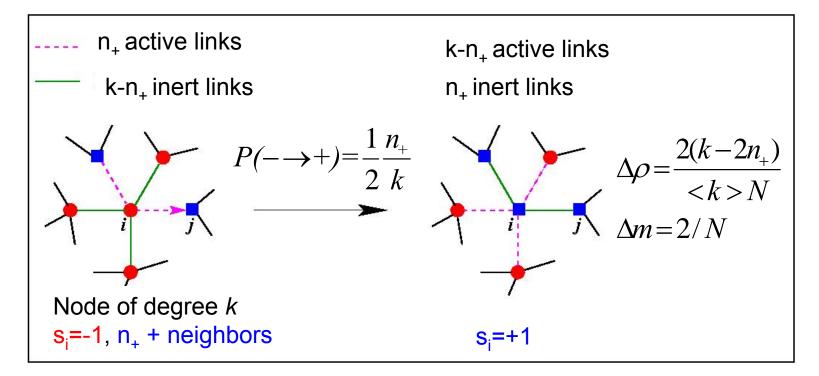




Voter Model

F. Vazquez, V.M. Eguiluz, New J. Phys. 10 (2008) 063011

UNCORRELATED NETWORKS



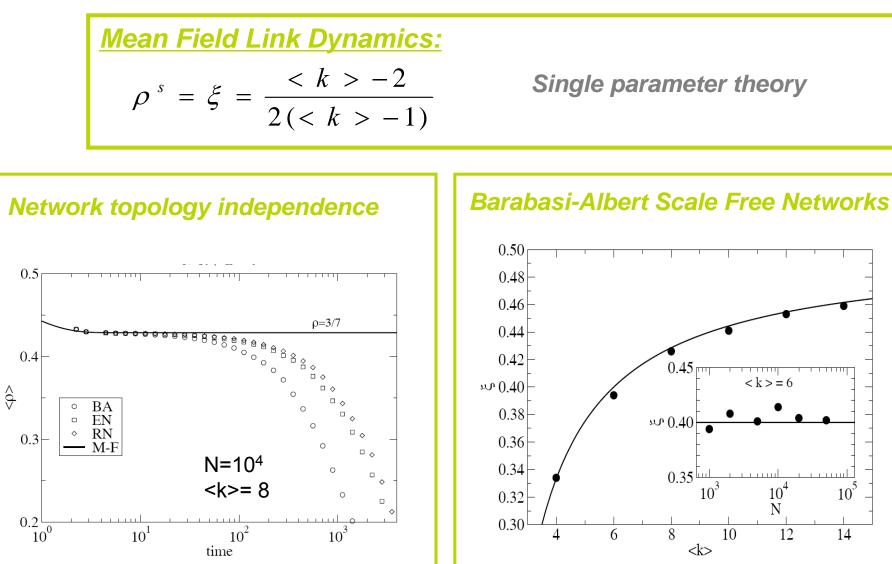
Coupled eqs. for <m> and $<\rho>$

Mean field link approx. for *Prob* $(k, -, n_+)$:

Neglect 2nd nearest-neighbor correlations

Voter Model in Uncorrelated Networks

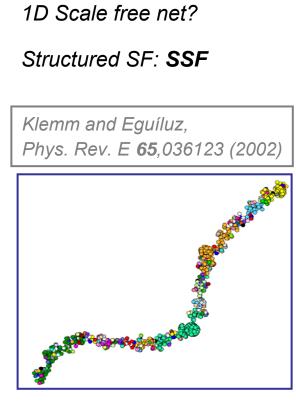
F. Vázquez et al. Phys. Rev. Lett. 100, 108702 (2008)



Voter Model

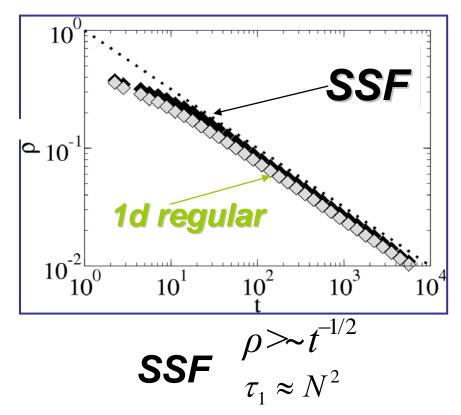
K. Suchecki, et al Phys. Rev. E 72, 036132(2005)

Role of dimensionality



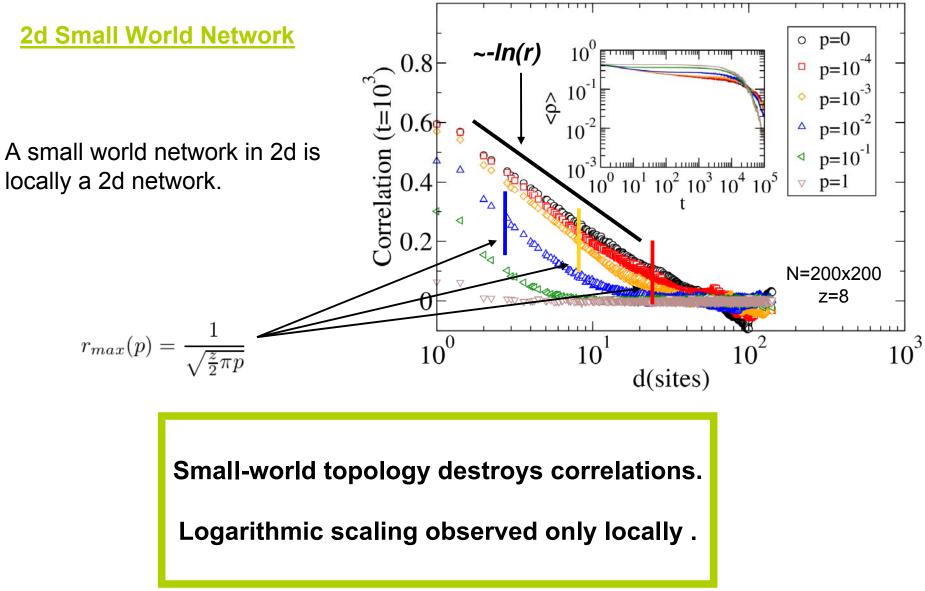
Scale free but high clustering and 1d

 $P(k) \sim k^{-3}$ $L \sim N \qquad C \sim N^{0}$



Dimensionality determines when voter dynamics orders the system
 Degree distribution or network disorder are not relevant

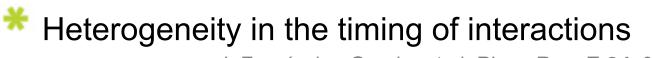
Spatial correlations in the Voter Model



REACHING AGREEMENT BY IMITATION?



Coevolution (non persistent ties): Imitating neighbors vs Choosing neighbors F. Vazquez, et. al, Phys. Rev. Lett. 100, 108702 (2008)



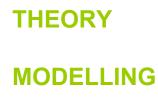
J. Fernández-Gracia, et al. Phys. Rev. E 84, 015103 (2011)

Imitation vs Rational Behavior

D. Vilone, et al. Sci. Rep. 2, 686 (2012)

Ingredients of a social influence model:

a) Interaction mechanism: Imitation as basic manifestation of social influence.

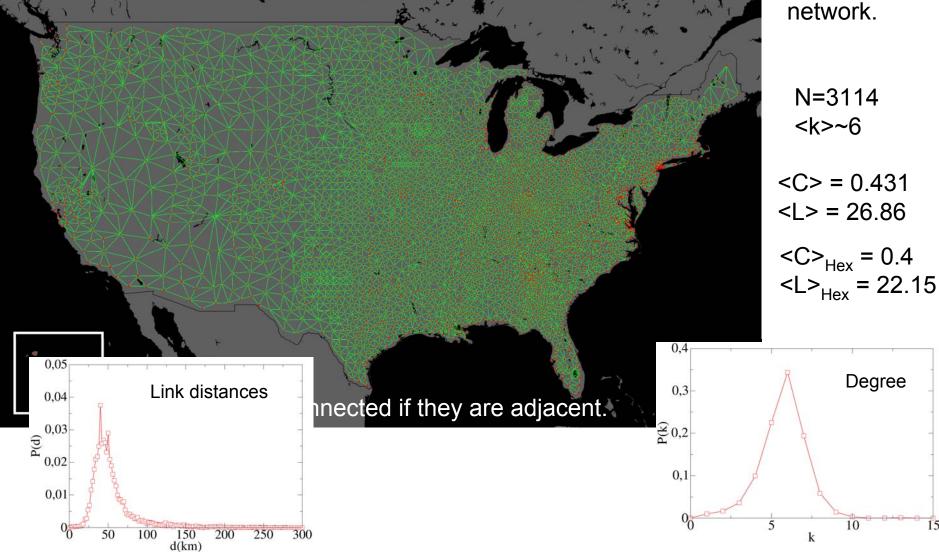


b) Social context: Set of all possible interactions of an individual with any other peer. We model it as a network of interactions from census data for population and mobility.

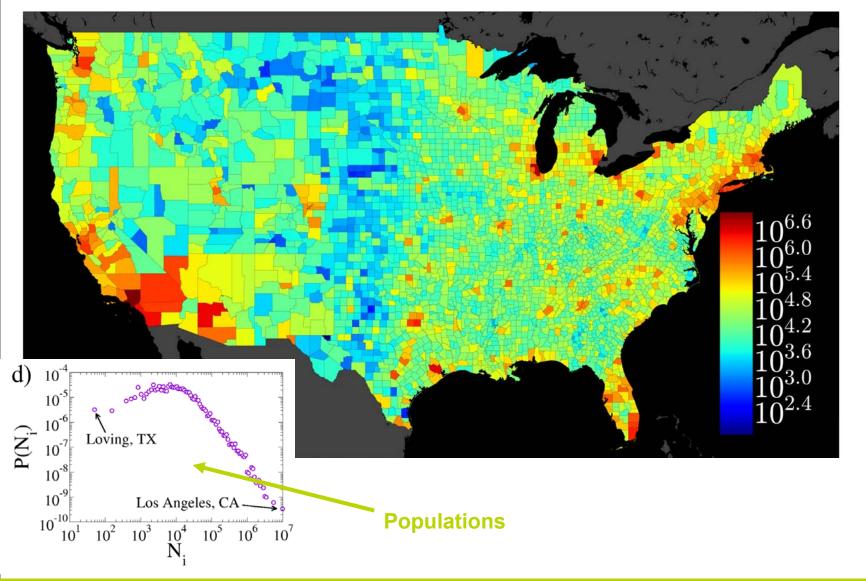
INPUT DATA

US: geographical adjacency of populations

Undirected, unweighted network.

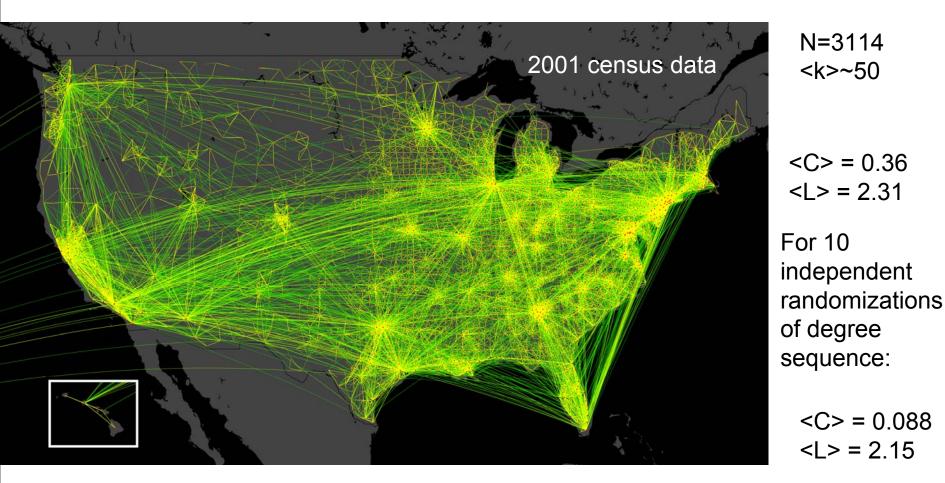


US: Heterogeneous population distribution

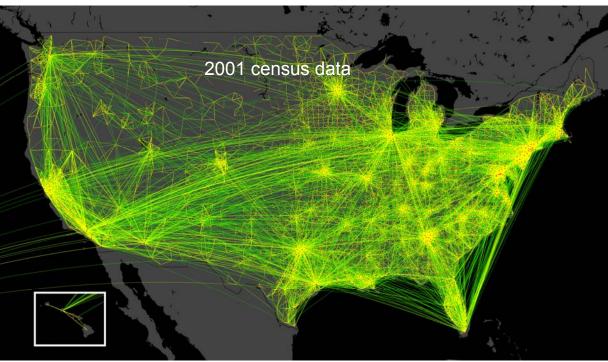


US: commuter network for human mobility

Directed, weighted network.



Counties linked by fluxes of commuters. Color indicates number of commuters. 20% of all connections shown.

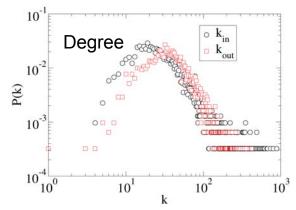


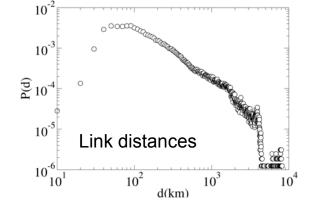
US: commuter network for human mobility

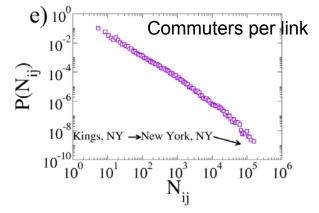
Directed, weighted network. N=3114 <k>~50

Not a 2d network

Heterogeneous network in many characteristics







Undirected,

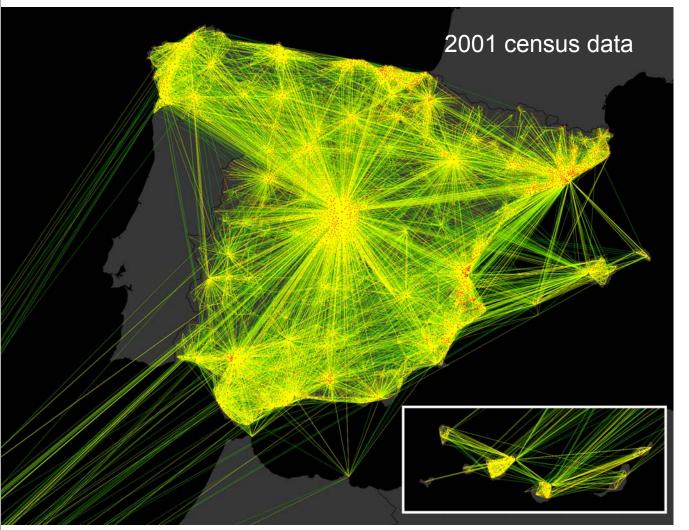
Spain: geographical adjacency of populations

unweighted network. N=8104 <k>~6 0,25 Degree 0,2 (¥) 0,15 0,1 0,05 15 20 <C> = 0.49; <C>_{Hex} = 0.4 <L> = 25.79; <L>_{Hex}= 35.32 0,15 Link distances 0,10 P(d) 0,05 10 30 20 40 d(km)

Municipalities in Spain connected if they are adjacent.

IFISC

Spain: commuter network for human mobility



IFISC

Directed, weighted network.

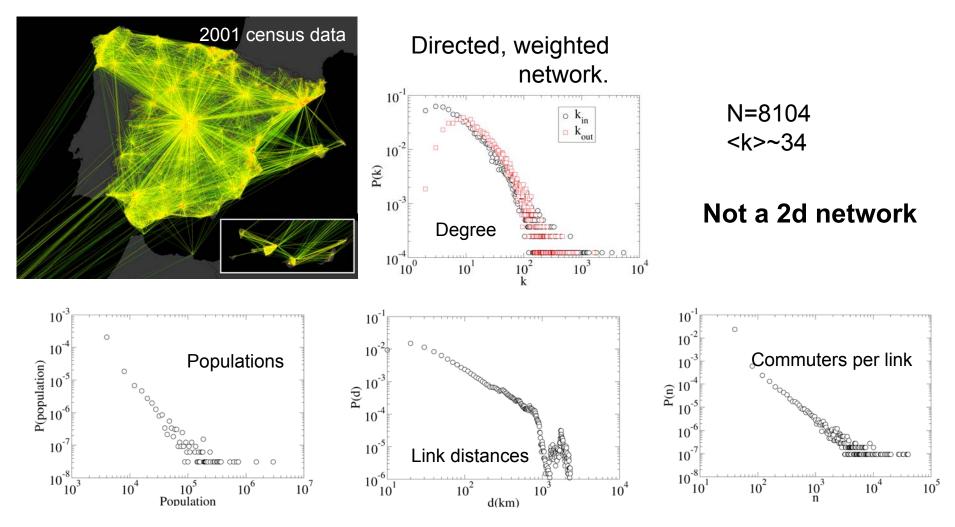
<C> = 0.54 <L> = 2.34

For 10 independent randomizations of degree sequence:

<C> = 0.096 <L> = 2.53

Municipalities linked by fluxes of commuters. Color indicates number of commuters. 20% of all connections shown.

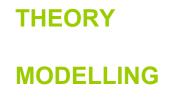
Spain: commuter network for human mobility



Heterogeneous network in many characteristics

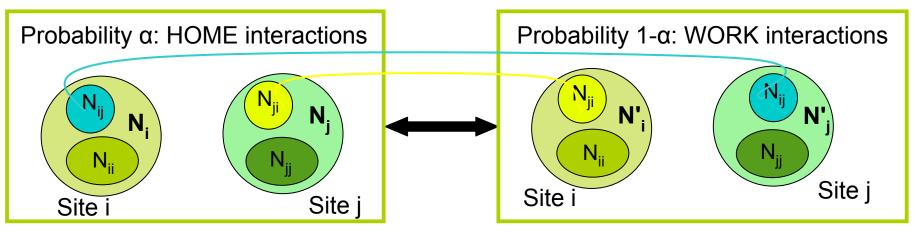
Ingredients of a social influence model:

a) Interaction mechanism: Imitation as basic manifestation of social influence.



b) **Social context:** Set of all possible interactions of an individual with any other peer. We model it as a network of interactions from census data for population and mobility.

- N agents with a binary variable (state, opinion,...) with voter-like interaction
- There are N_{sites} (counties).
- Each agent is considered in two sites: where she lives and where she works.

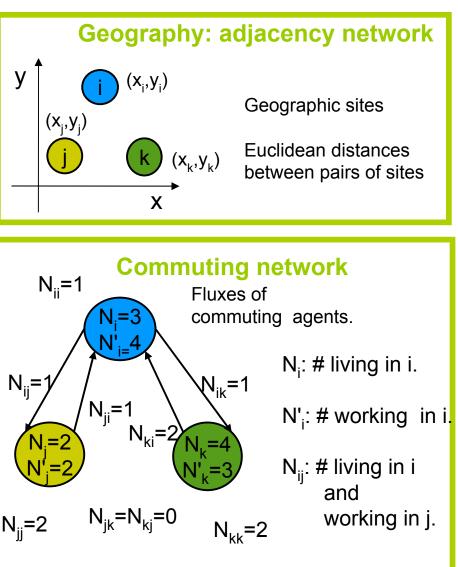


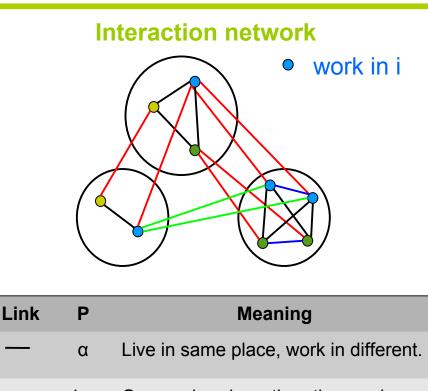
- $-N_{ij}$ = # of agents living in i and working in j. $-N_i$ = # number of agents living in i = N_{ij} + N_{ii}

= # number of agents working in i. -N';

An agent interacts with probability α with anyone in N_i: lives where she lives. With probability 1- α interacts with anyone in N'_i : works where she works.

Networks in Metapopulation Voter Model





1-α One works where the other works and lives.

1-α Live in different places, work in same place.

1 Live in same place, work in same place.

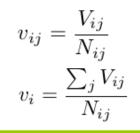
Parameters (census)

 $\begin{array}{ll} \mathsf{N}_{ij} \text{: number of agents} & N_i = \sum_j N_{ij} \\ \text{living in i and working in j.} & \mathsf{N}_i = \sum_j N_{ji} \\ \mathsf{X}_{ij}, \mathsf{Y}_{ij} \text{: location of city i.} & N_i' = \sum_i N_{ji} \end{array}$

Variables

V_{ij}: number of agents living in i and working in j holding opinion +1.

Correlations $\langle v_i v_j \rangle$ of densities



Transition rates

$$r_{ij}^{+}(V_{ij} \to V_{ij} + 1) = (N_{ij} - V_{ij}) \left[\alpha \frac{V_i}{N_i} + (1 - \alpha) \frac{V_j'}{N_j'} \right]$$
$$r_{ij}^{-}(V_{ij} \to V_{ij} - 1) = V_{ij} \left[\alpha \frac{N_i - V_i}{N_i} + (1 - \alpha) \frac{N_j' - V_j'}{N_j'} \right]$$

Simulation step: Update in random order each of the V_{ij}

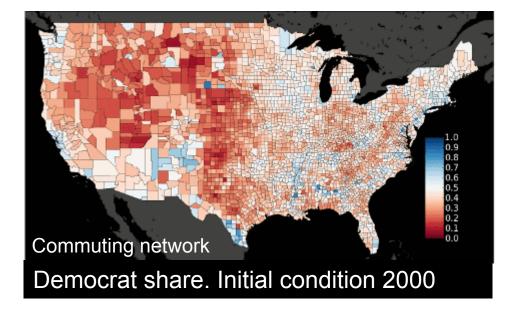
Master equation

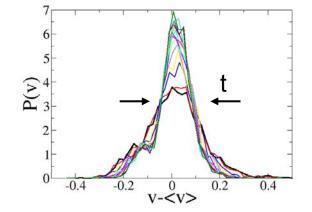
$$\frac{\partial P(\{V_{ij}\};t)}{\partial t} = \sum_{i,j} \left[r_{ij}^{+}(\{\dots, V_{ij} - 1, \dots\}) \rightarrow \{V_{ij}\}) P(\{\dots, V_{ij} - 1, \dots\};t) + r_{ij}^{-}(\{\dots, V_{ij} + 1, \dots\}) \rightarrow \{V_{ij}\}) P(\{\dots, V_{ij} + 1, \dots\};t) - \left(r_{ij}^{+}(\{V_{ij}\}) \rightarrow \{\dots, V_{ij} + 1, \dots\}) + r_{ij}^{-}(\{V_{ij}\}) \rightarrow \{\dots, V_{ij} - 1, \dots\}) \right) P(\{V_{ij}\};t) \right]$$

Langevin equation

$$+\frac{1}{\sqrt{N_{ij}}}\sqrt{\left(1-2v_{ij}\right)\left(\alpha\frac{\sum_{l}N_{il}v_{il}}{N_{i}}+(1-\alpha)\frac{\sum_{l}N_{lj}v_{lj}}{N'_{j}}\right)+v_{ij}\ \eta^{*}_{ij}(t)}$$

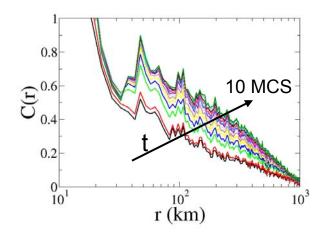
Laplacian model: Conserved quantity: $\sum_{ij} \langle V_{ij} \rangle$ <Number of + voters>





α=1/2

Diffusion process: \rightarrow correlations grow, share distribution narrows.



Extra ingredient needed for stationarity: Imperfect imitation or External noise

Parameters (census)

N_{ij}: number of agents $N_i = \sum_j N_{ij}$ living in i and working in j. $N_i = \sum_j N_{ji}$ X_j,Y_j: location of county i. $N'_i = \sum_j N_{ji}$

Variables

V_{ij}: number of agents living in i and working in j holding opinion +1.

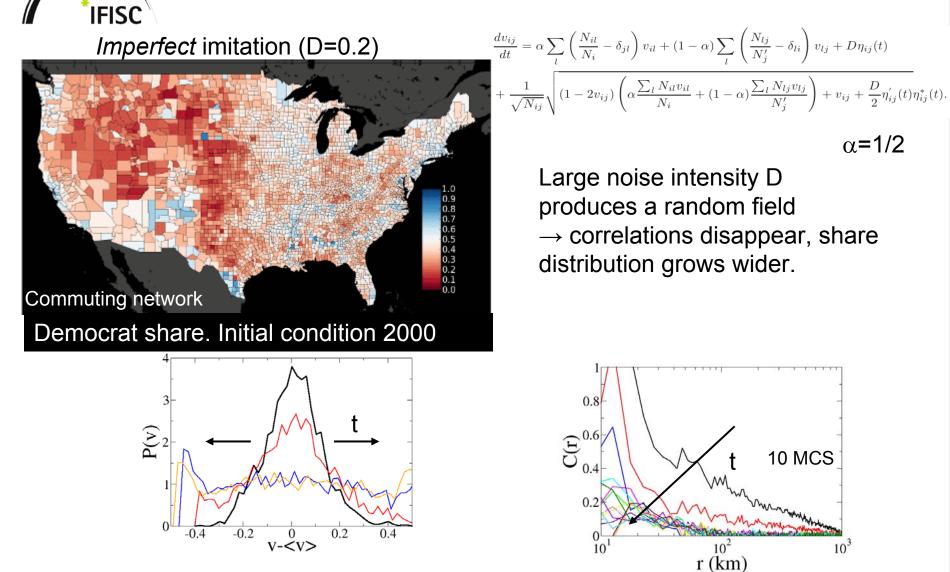
Correlations $\langle v_i v_j \rangle$ of densities

$$\begin{aligned} v_{ij} &= \frac{V_{ij}}{N_{ij}} \\ v_i &= \frac{\sum_j V_{ij}}{N_{ij}} \end{aligned}$$

$$r_{ij}^{+}(V_{ij} \rightarrow V_{ij} + 1) = (N_{ij} - V_{ij}) \left[\alpha \frac{V_i}{N_i} + (1 - \alpha) \frac{V_j'}{N_j'} \right] + N_{ij} \frac{D}{2} \eta_{ij}^{+}(t),$$

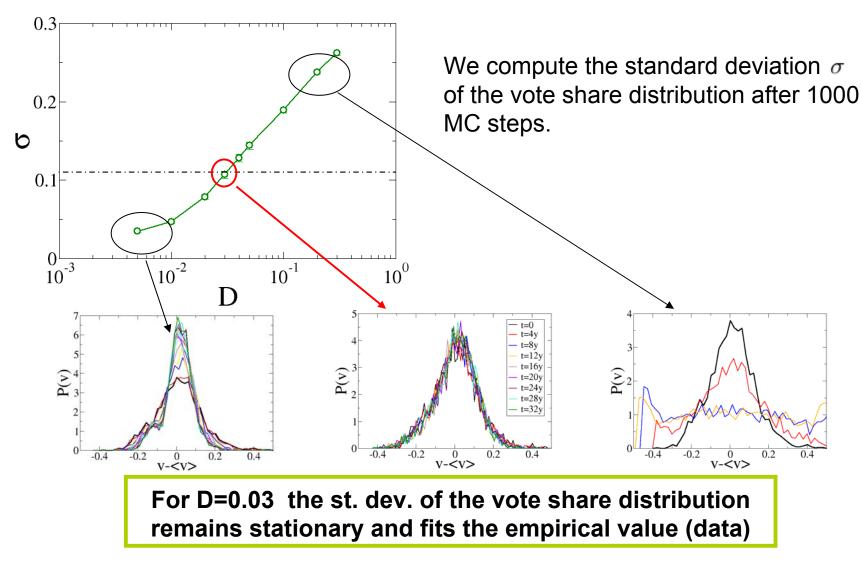
$$r_{ij}^{-}(V_{ij} \rightarrow V_{ij} - 1) = V_{ij} \left[\alpha \frac{N_i - V_i}{N_i} + (1 - \alpha) \frac{N_j' - V_j'}{N_j'} \right] + N_{ij} \frac{D}{2} \eta_{ij}^{-}(t)$$
Imperfect initiation
$$\frac{dv_i}{dt} \frac{dv_{ij}}{dt} = \alpha \sum_l \left(\frac{N_{il}}{N_i} - \delta_{jl} \right) v_{il} + (1 - \alpha) \sum_l \left(\frac{N_{lj}}{N_j'} - \delta_{li} \right) v_{lj} + \frac{D}{a} \eta_{ij}^{-}(t)$$

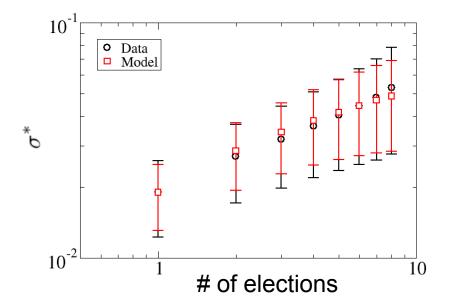
$$+ \frac{1}{\sqrt{N_{ij}}} \sqrt{\left(1 - 2v_{ij} \right) \left(\alpha \frac{\sum_l N_{il} v_{il}}{N_i} + (1 - \alpha) \frac{\sum_l N_{lj} v_{lj}}{N_j'} \right) + v_{ij} + \frac{D}{2} \eta_{ij}^{'}(t) \eta_{ij}^{*}(t) \cdot v_{ij}}$$



Question: Is there a value of D for which the process reproduces the noisy diffusive data between a diffusive variable a random field?

Noise calibration $\alpha = 1/2$





IFISC

Time calibration

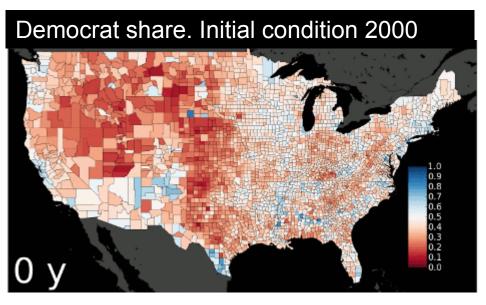
For each time series of a county share we compute the standard deviation σ^* as a function of the number of election points. Black symbols in the figure represent the average of this quantity over all counties.

Both data and model show a growth

 $\sigma^* \simeq t^{1/2}$

To make the curves overlapping we have to calibrate how many MC steps correspond to the time between two consecutive elections

10 MC steps =4 years=1 election period St. dev. of county share grows in time equally for model and data.



Calibrated Model

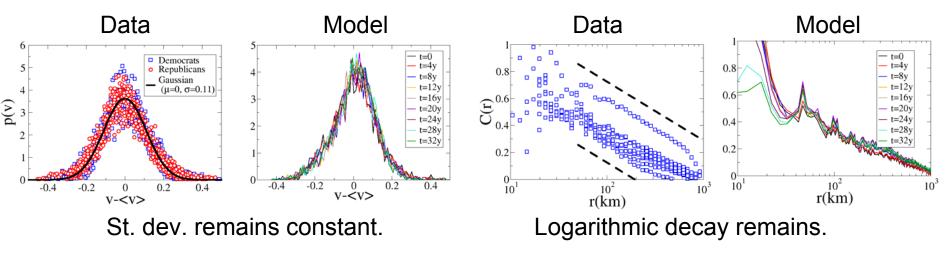
Reproduces the statistical regularities found in election data

(Single fitted parameter: D)

 $\alpha = 1/2$

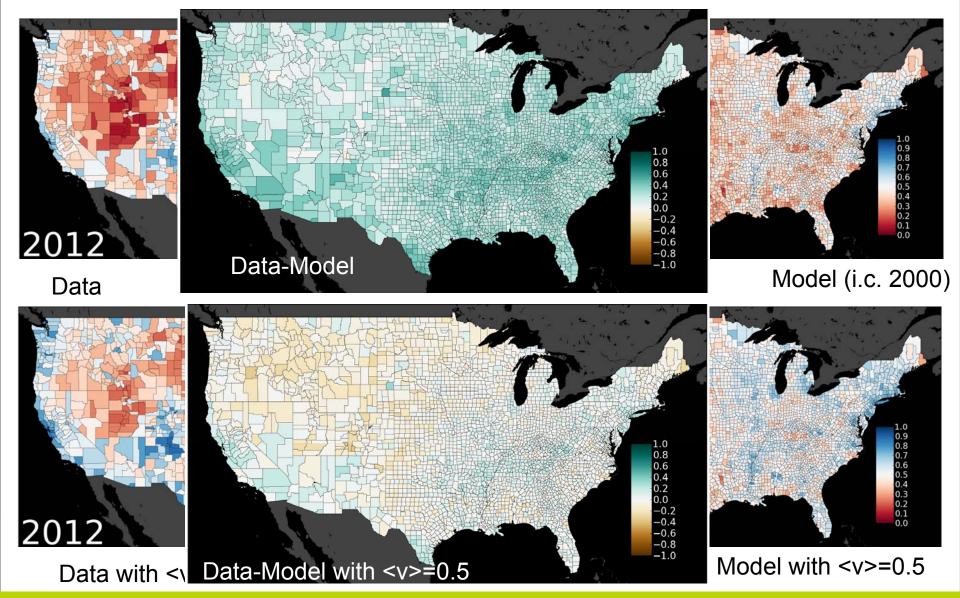
Vote share distribution

Spatial correlations

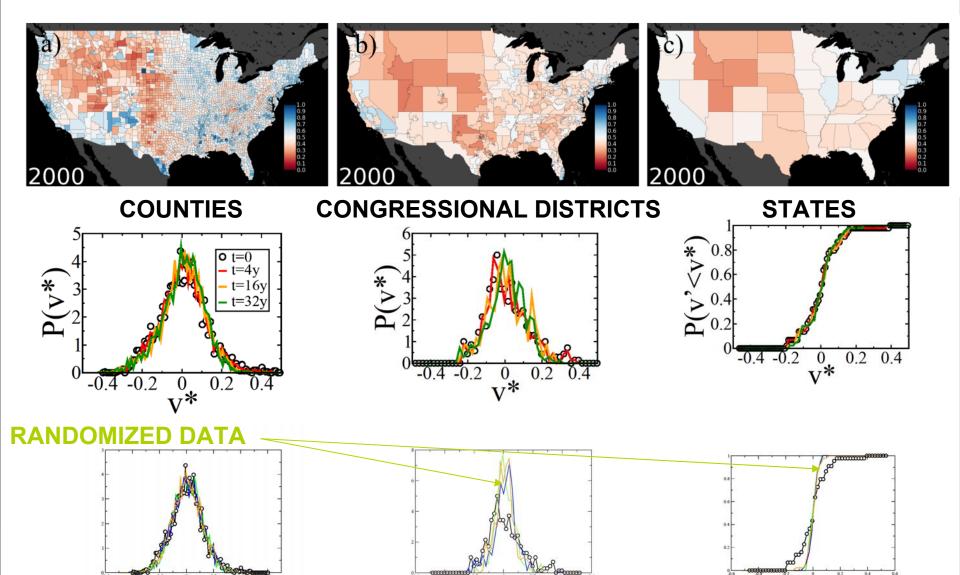


Electoral predictions?

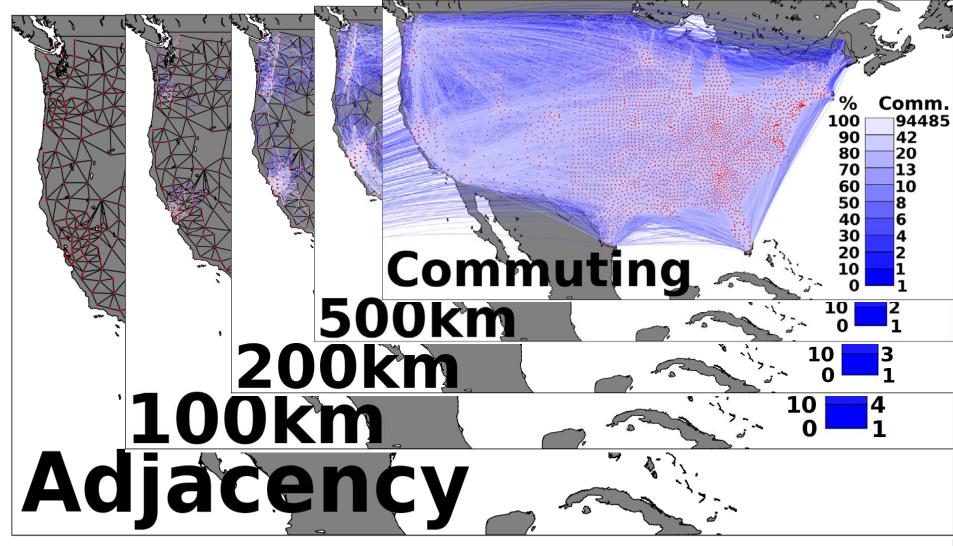
Results for democrat party



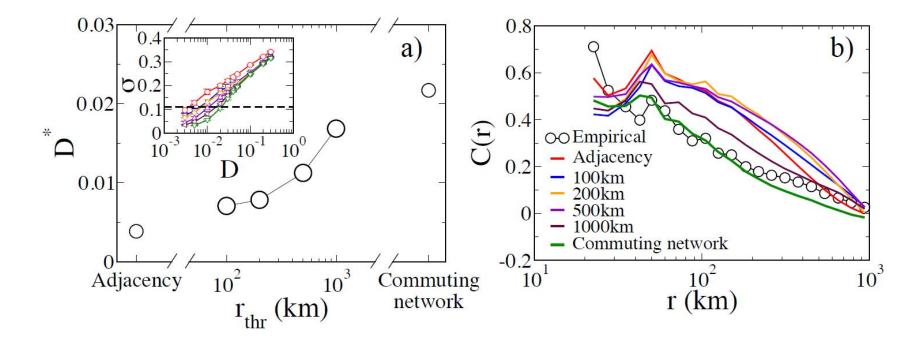
Predictions at different length scales!!



MOBILITY RANGE



MOBILITY RANGE



Noise calibration for different mobility ranges

Spatial correlations in different networks:

LONG RANGE CORRELATIONS NEEDED TO REPRODUCE DATA

- IBM implementation of a microscopic mechanism leading to diffusive mesoscopic stochastic dynamics reproducing statistical regularities of election data.
- Data Based Modeling: Input parameters from census data for populations and commuting fluxes.
- Single calibrated model parameter: D, the noise intensity. Also calibration of time scale.

What do we explain?

-Two generic features in the background of election results:

i)Stationarity of the dispersion of vote shares and ii) the time persistent logarithmic decay of spatial correlations.

-Spatiotemporal fluctuations in electoral results at **different length scales** -No attempt to predict electoral results

Open question: Role of network (dimensionality, range and weights of links), vs noise (imperfect imitation) in spatial log correlations.