Clustering

Hierarchical and Agglomerative
Approaches
BFR Algorithm
CURE Algorithm

Cloud and Big Data Summer School, Stockholm, Aug., 2015 Jeffrey D. Ullman

The Problem of Clustering

Given a set of points, with a notion of distance between points, group the points into some number of *clusters*, so that members of a cluster are "close" to each other, while members of different clusters are "far."

Example

Problems With Clustering

- Clustering in two dimensions looks easy.
- Clustering small amounts of data looks easy.
- And in most cases, looks are not deceiving.

The Curse of Dimensionality

- Many applications involve not 2, but 10 or 10,000 dimensions.
- High-dimensional spaces look different: almost all pairs of points are at about the same distance.

Example: Curse of Dimensionality

- Assume random points within a bounding box, e.g., values between 0 and 1 in each dimension.
- In 2 dimensions: a variety of distances between 0 and 1.41.
- In 10,000 dimensions, the distance between two random points in any one dimension is distributed as a triangle.

Example – Continued

- The law of large numbers applies.
- Actual distance between two random points is the sqrt of the sum of squares of essentially the same set of differences.

Euclidean and Non-Euclidean Distances

- Euclidean spaces have dimensions, and points have coordinates in each dimension.
- Distance between points is usually the squareroot of the sum of the squares of the distances in each dimension.
- Non-Euclidean spaces have a distance measure that satisfies the triangle inequality $d(x,y) \le d(x,z) + d(z,y)$, but points do not really have a position in the space.
 - Examples: Jaccard and edit distances.

Example: Clustering Documents

- Represent a document by the set of words that appear in the document.
- Documents with similar sets of words may be about the same topic.
- Distance between two documents = Jaccard distance of their sets of words.
 - *Jaccard distance* = 1 Jaccard similarity.

Example: DNA Sequences

- Objects are sequences of {C,A,T,G}.
- Distance between sequences = edit distance = the minimum number of inserts and deletes needed to turn one into the other.

Methods of Clustering

- Hierarchical (Agglomerative):
 - Initially, each point in cluster by itself.
 - Repeatedly combine the two "nearest" clusters into one.
- Point Assignment:
 - Maintain a set of clusters.
 - Place points into their "nearest" cluster.

Hierarchical Clustering

- Two important questions:
 - 1. How do you determine the "nearness" of clusters?
 - 2. How do you represent a cluster of more than one point?

Hierarchical Clustering — (2)

- Key problem: as you build clusters, how do you represent the location of each cluster, to tell which pair of clusters is closest?
- Euclidean case: each cluster has a centroid = average of its points.
 - Measure intercluster distances by distances of centroids.

Example

And in the Non-Euclidean Case?

- The only "locations" we can talk about are the points themselves.
 - I.e., there is no "average" of two points.
- Approach 1: clustroid = point "closest" to other points.
 - Treat clustroid as if it were centroid, when computing intercluster distances.

"Closest" Point?

- Possible meanings:
 - 1. Smallest maximum distance to the other points.
 - 2. Smallest average distance to other points.
 - 3. Smallest sum of squares of distances to other points.
 - 4. Etc., etc.

Example: Intercluster Distance

Other Approaches to Defining "Nearness" of Clusters

- Approach 2: intercluster distance = minimum of the distances between any two points, one from each cluster.
- Approach 3: Pick a notion of "cohesion" of clusters, e.g., maximum distance from the clustroid.
 - Merge clusters whose union is most cohesive.

Cohesion

- Approach 1: Use the diameter of the merged cluster = maximum distance between points in the cluster.
- Approach 2: Use the average distance between points in the cluster.
- Approach 3: Density-based approach: take the diameter or average distance, e.g., and divide by the number of points in the cluster.
 - Perhaps raise the number of points to a power first, e.g., square-root.

k-Means Algorithm(s)

- Assumes Euclidean space.
- Start by picking k, the number of clusters.
- Initialize clusters with one point per cluster.
 - Example: pick one point at random, then k-1 other points, each as far away as possible from the previous points.
 - OK, as long as there are no outliers (points that are far from any reasonable cluster).
 - Example: use a sample of points, cluster them by any means, and use one point per sample cluster.

Populating Clusters

- For each point, place it in the cluster whose current centroid it is nearest.
- After all points are assigned, fix the centroids of the k clusters.
- Optional: reassign all points to their closest centroid.
 - Sometimes moves points between clusters.

Example: Assigning Clusters

Clusters after first round

Getting k Right

- Try different k, looking at the change in the average distance to centroid, as k increases.
- Average falls rapidly until right k, then changes little.

Example: Picking k

Too few; many long distances to centroid.

Example: Picking k

Just right; distances rather short.

Example: Picking k

Too many; little improvement in average distance.

BFR Algorithm

- BFR (Bradley-Fayyad-Reina) is a variant of k-means designed to handle very large (disk-resident) data sets.
- It assumes that clusters are normally distributed around a centroid in a Euclidean space.
 - Standard deviations in different dimensions may vary.

BFR – (2)

- Points are read one main-memory-full at a time.
- Most points from previous memory loads are summarized by simple statistics.
- To begin, from the initial load we select the initial k centroids by some sensible approach.

Three Classes of Points

- The discard set (DS): points close enough to a centroid to be summarized.
- 2. The compression set (CS): groups of points that are close together but not close to any centroid. They are summarized, but not assigned to a cluster.
- 3. The *retained set (RS)*: isolated points.

Summarizing Sets of Points

- The discard set and each compression set is summarized by:
 - 1. The number of points, N.
 - 2. The vector SUM, whose i th component is the sum of the coordinates of the points in the i th dimension.
 - 3. The vector SUMSQ: i^{th} component = sum of squares of coordinates in i^{th} dimension.

Comments

- \blacksquare 2*d* + 1 values represent any number of points.
 - $\blacksquare d$ = number of dimensions.
- Averages in each dimension (centroid coordinates) can be calculated easily as SUM_i/N.
 - $SUM_i = i^{th}$ component of SUM.
- Variance in dimension i can be computed by:
 (SUMSQ_i/N) (SUM_i/N)²
 - And the standard deviation is the square root of that.

"Galaxies" Picture

Processing a "Memory-Load" of Points

- 1. Find those points that are "sufficiently close" to a cluster centroid; add those points to that cluster and the DS.
- Use any main-memory clustering algorithm to cluster the remaining points and the old RS.
 - Clusters go to the CS; outlying points to the RS.

Processing – (2)

- Adjust statistics of the clusters to account for the new points.
 - Consider merging compressed sets in the CS.
- 4. If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster.

A Few Details . . .

- How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- How do we decide whether two compressed sets deserve to be combined into one?

How Close is Close Enough?

- We need a way to decide whether to put a new point into a cluster.
- BFR suggest two ways:
 - 1. The *Mahalanobis distance* is less than a threshold.
 - Low likelihood of the currently nearest centroid changing.

Mahalanobis Distance

- Normalized Euclidean distance from centroid.
- For point $(x_1,...,x_k)$ and centroid $(c_1,...,c_k)$:
 - 1. Normalize in each dimension: $y_i = (x_i c_i)/\sigma_i$
 - σ_i = standard deviation in i^{th} dimension.
 - 2. Take sum of the squares of the y_i 's.
 - Take the square root.

Mahalanobis Distance — (2)

- If clusters are normally distributed in d dimensions, then after transformation, one standard deviation = \sqrt{d} .
 - I.e., 70% of the points of the cluster will have a Mahalanobis distance $< \sqrt{d}$.
- Accept a point for a cluster if its M.D. is < some threshold, e.g. 4 standard deviations.

Picture: Equal M.D. Regions

Should Two CS Subclusters Be Combined?

- Compute the variance of the combined subcluster.
 - N, SUM, and SUMSQ allow us to make that calculation quickly.
- Combine if the variance is below some threshold.
- Many alternatives: treat dimensions differently, consider density.

The CURE Algorithm

- Problem with BFR/k-means:
 - Assumes clusters are normally distributed in each dimension.
 - And axes are fixed ellipses at an angle are not OK.
- CURE:
 - Assumes a Euclidean distance.
 - Allows clusters to assume any shape.

Example: Stanford Faculty Salaries

Starting CURE

- Pick a random sample of points that fit in main memory.
- Cluster these points hierarchically group nearest points/clusters.
- 3. For each cluster, pick a sample of points, as dispersed as possible.
- 4. From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster.

Example: Initial Clusters

Example: Pick Dispersed Points

Example: Pick Dispersed Points

Finishing CURE

- Now, visit each point p in the data set.
- Place it in the "closest cluster."
 - Normal definition of "closest": that cluster with the closest (to p) among all the sample points of all the clusters.