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 Intuition: solve the recursive equation: “a page 
is important if important pages link to it.” 

 Technically, importance = the principal 
eigenvector of the transition matrix of the Web. 

 A few fixups needed. 
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 Number the pages 1, 2,… . 

 Page i corresponds to row and column i. 

 M [i, j] = 1/n if page j links to n pages, 
including page i ; 0 if j does not link to i. 

 M [i, j] is the probability we’ll next be at page i if 
we are now at page j. 
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Suppose page j  links to 3 pages, including i  but not x. 

1/3 
x 
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 Suppose v is a vector whose i th component is 
the probability that a random walker is at 
page i at a certain time. 

 If a walker follows a link from i at random, the 
probability distribution for walkers is then 
given by the vector Mv. 



6 

 Starting from any vector v, the limit                 
M (M (…M (M v ) …)) is the long-term 
distribution of walkers. 

 Intuition: pages are important in proportion to 
how likely a walker is to be there. 

 The math: limiting distribution = principal 
eigenvector of M = PageRank. 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      1 
m   0    1/2   0 

         y    a   m 
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 Because there are no constant terms, the 
equations v = Mv do not have a unique 
solution. 

 In Web-sized examples, we cannot solve by 
Gaussian elimination anyway; we need to use 
relaxation (= iterative solution). 

 Can work if you start with a fixed v. 
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 Start with the vector v  = [1, 1,…, 1] 
representing the idea that each Web page is 
given one unit of importance. 

 Repeatedly apply the matrix M to v, allowing 
the importance to flow like a random walk. 

 About 50 iterations is sufficient to estimate 
the limiting solution.  
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 Equations v  = Mv: 

y  = y /2 + a /2 

a  = y /2 + m 

m = a /2 

 

y 
a    = 
m 

1 
1 
1 

1 
3/2 
1/2 

5/4 
 1 
3/4 

9/8 
11/8 
1/2 

6/5 
6/5 
3/5 

. . . 

Note: “=” is 
really “assignment.” 
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 Some pages are dead ends (have no links out). 

 Such a page causes importance to leak out. 

 Other groups of pages are spider traps (all out-
links are within the group). 

 Eventually spider traps absorb all importance. 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      0 
m   0    1/2   0 

         y    a   m 
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 Equations v = Mv: 

y  = y /2 + a /2 

a  = y /2 

m = a /2 

 

y 
a    = 
m 

1 
1 
1 

1 
1/2 
1/2 

3/4 
1/2 
1/4 

5/8 
3/8 
1/4 

0 
0 
0 

. . . 
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Yahoo 

M’soft Amazon 

y   1/2  1/2   0 
a   1/2   0      0 
m   0    1/2   1 

         y    a   m 
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 Equations v = Mv: 

y  = y /2 + a /2 

a  = y /2 

m = a /2 + m 

 

y 
a    = 
m 

1 
1 
1 

1 
1/2 
3/2 

3/4 
1/2 
7/4 

5/8 
3/8 
2 

0 
0 
3 

. . . 
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 “Tax” each page a fixed percentage at each 
interation. 

 Add a fixed constant to all pages. 

 Good idea: distribute the tax, plus whatever is lost in 
dead-ends, equally to all pages. 

 Models a random walk with a fixed probability 
of leaving the system, and a fixed number of 
new walkers injected into the system at each 
step. 
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 Equations  v = 0.8(Mv) + 0.2: 

y   = 0.8(y /2 + a/2) + 0.2 

a   = 0.8(y /2) + 0.2 

m  = 0.8(a /2 + m) + 0.2 

 

y 
a    = 
m 

1 
1 
1 

1.00 
0.60 
1.40 

0.84 
0.60 
1.56 

0.776 
0.536 
1.688 

  7/11 
  5/11 
21/11 

. . . 
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 Goal: Evaluate Web pages not just according 
to their popularity, but by how relevant they 
are to a particular topic, e.g. “sports” or 
“history.” 

 Allows search queries to be answered based 
on interests of the user. 

 Example: Search query [SAS] wants different pages 
depending on whether you are interested in travel 
or technology. 
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 Assume each walker has a small probability of 
“teleporting” at any tick. 

 Teleport can go to: 

1. Any page with equal probability. 

 As in the “taxation” scheme. 

2. A set of “relevant” pages (teleport set). 

 For topic-specific PageRank. 
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 Only Microsoft is in the teleport set. 
 Assume 20% “tax.” 

 I.e., probability of a teleport is 20%. 
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Yahoo 

M’soft Amazon 

Dr. Who’s 
phone 
booth. 
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1. Choose the pages belonging to the topic in 
Open Directory. 

2. “Learn” from examples the typical words in 
pages belonging to the topic; use pages heavy 
in those words as the teleport set. 
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 Spam farmers create networks of millions of 
pages designed to focus PageRank on a few 
undeserving pages. 

 We’ll discuss this technology shortly. 

 To minimize their influence, use a teleport set 
consisting of trusted pages only. 

 Example: home pages of universities. 
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 Mutually recursive definition: 

 A hub links to many authorities; 

 An authority is linked to by many hubs. 

 Authorities turn out to be places where 
information can be found. 

 Example: course home pages. 

 Hubs tell where the authorities are. 

 Example: Departmental course-listing page. 
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 HITS uses a matrix A[i, j] = 1 if page i links to 
page j, 0 if not. 

 AT, the transpose of A, is similar to the PageRank 
matrix M, but AT has 1’s where M has fractions. 
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Yahoo 

M’soft Amazon 

A = 
y     1    1    1 
a     1    0    1 
m   0    1    0 

         y    a   m 
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 Powers of A and AT have elements of 
exponential size, so we need scale factors. 

 Let h and a be vectors measuring the 
“hubbiness” and authority of each page. 

 Equations: h = λAa; a = μAT h. 

 Hubbiness = scaled sum of authorities of successor 
pages (out-links). 

 Authority = scaled sum of hubbiness of 
predecessor pages (in-links).  
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 From h = λAa; a = μAT h we can derive: 
 h = λμAAT h 

 a = λμATA a 
 Compute h and a by iteration, assuming 

initially each page has one unit of hubbiness 
and one unit of authority. 
 Pick an appropriate value of λμ. 
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         1  1  1 
A =    1  0  1 
           0  1  0 

         1  1  0 
AT =   1  0  1 
           1  1  0 

           3  2  1 
AAT=   2  2  0 
             1   0  1 

           2  1  2 
ATA=    1  2  1 
              2  1  2 

a(yahoo) 
a(amazon) 
a(m’soft) 

= 
= 
= 

1 
1 
1 

5 
4 
5 

24 
18 
24 

114 
  84 
114 

. . . 

. . . 

. . . 

1+3 
2 
1+3 

h(yahoo)               =            1 
h(amazon)           =            1 
h(microsoft)        =            1 

6 
4 
2 

132 
  96 
  36 

. . . 

. . . 

. . . 

1.000 
0.735 
0.268 

28 
20 
  8 
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 Iterate as for PageRank; don’t try to solve 
equations. 

 But keep components within bounds. 

 Example: scale to keep the largest component 
of the vector at 1. 

 Trick: start with h = [1,1,…,1]; multiply by AT  

to get first a; scale, then multiply by A to 
get next h,… 
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 You may be tempted to compute AAT and ATA 
first, then iterate these matrices as for 
PageRank. 

 Bad, because these matrices are not nearly as 
sparse as A and AT. 



 PageRank prevents spammers from using term 
spam (faking the content of their page by 
adding invisible words) to fool a search engine. 

 Spammers now attempt to fool PageRank by 
link spam by creating structures on the Web, 
called spam farms,  that increase the PageRank 
of undeserving pages. 

52 
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 Three kinds of Web pages from a spammer’s 
point of view: 

1. Own pages. 

 Completely controlled by spammer. 

2. Accessible pages. 

 E.g., Web-log comment pages: spammer can post links 
to his pages. 

3. Inaccessible pages. 
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 Spammer’s goal: 

 Maximize the PageRank of target page t. 

 Technique: 

1. Get as many links from accessible pages as possible 
to target page t. 

2. Construct “link farm” to get PageRank multiplier 
effect. 
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Inaccessible 

t 

Accessible Own 

1 

2 

M 

Goal: boost PageRank of page t. 
One of the most common and effective 
organizations for a spam farm. 
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Suppose rank from accessible pages = x. 
PageRank of target page = y. 
Taxation rate = 1-b. 
Rank of each “farm” page = by/M + (1-b)/N. 

 
Inaccessible 

t 

Accessible Own 

1 
2 

M 

From t; M = number 
of farm pages 

Share of “tax”; 
N = size of the Web 
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y = x + bM[by/M + (1-b)/N] + (1-b)/N 
y = x + b2y + b(1-b)M/N 
y = x/(1-b2) + cM/N where c = b/(1+b) 

 
Inaccessible 

t 

Accessible Own 

1 
2 

M 

Tax share 
for t. 
Very small; 
ignore. 

PageRank of 
each “farm” page 
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 y = x/(1-b2) + cM/N where c = b/(1+b). 
 For b = 0.85, 1/(1-b2)= 3.6. 

 Multiplier effect for “acquired” page rank. 

 By making M large, we can make y as large 
as we want. 

 
Inaccessible 

t 

Accessible Own 

1 
2 

M 
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 Topic-specific PageRank, with a set of “trusted” 
pages as the teleport set is called TrustRank. 

 Spam Mass =                                            
(PageRank – TrustRank)/PageRank. 

 High spam mass means most of your PageRank 
comes from untrusted sources – you may be link-
spam. 
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 Two conflicting considerations: 

 Human has to inspect each seed page, so seed set 
must be as small as possible. 

 Must ensure every “good page” gets adequate 
TrustRank, so all good pages should be reachable 
from the trusted set by short paths. 
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1. Pick the top k pages by PageRank. 

 It is almost impossible to get a spam page to 
the very top of the PageRank order. 

2. Pick the home pages of universities. 

 Domains like .edu are controlled. 


