

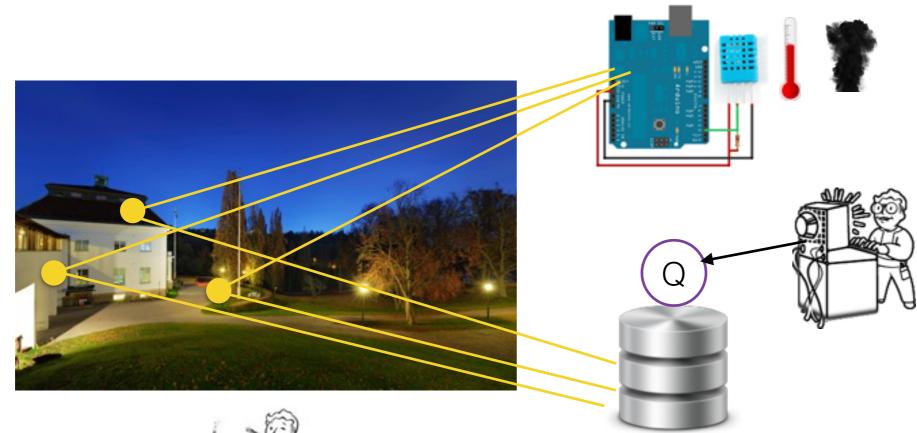
An Introduction to Distributed Data Streaming

Elements and Systems

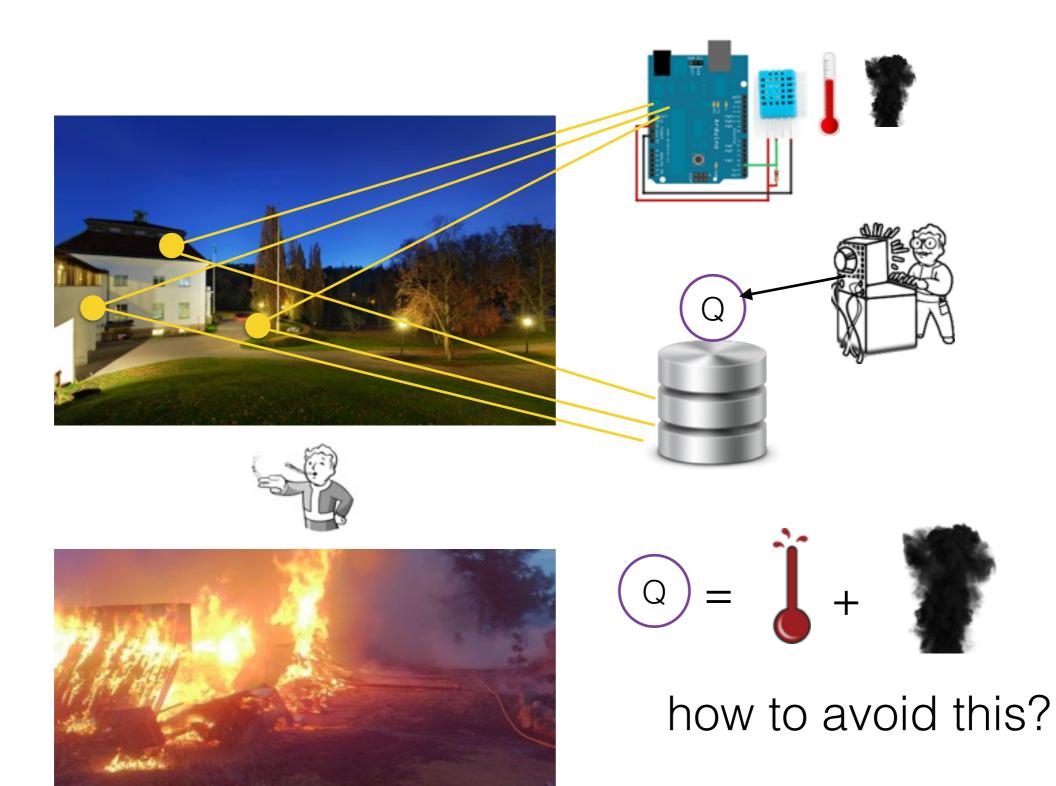
Paris Carbone<parisc@kth.se> PhD Candidate KTH Royal Institute of Technology

how to avoid this?

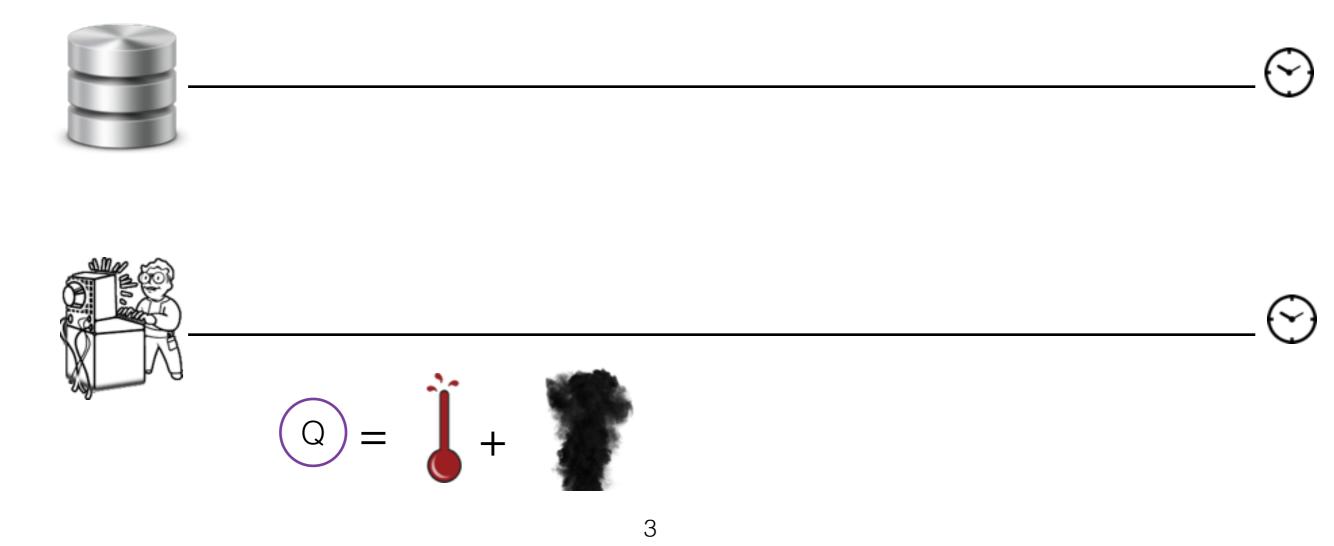
how to avoid this?

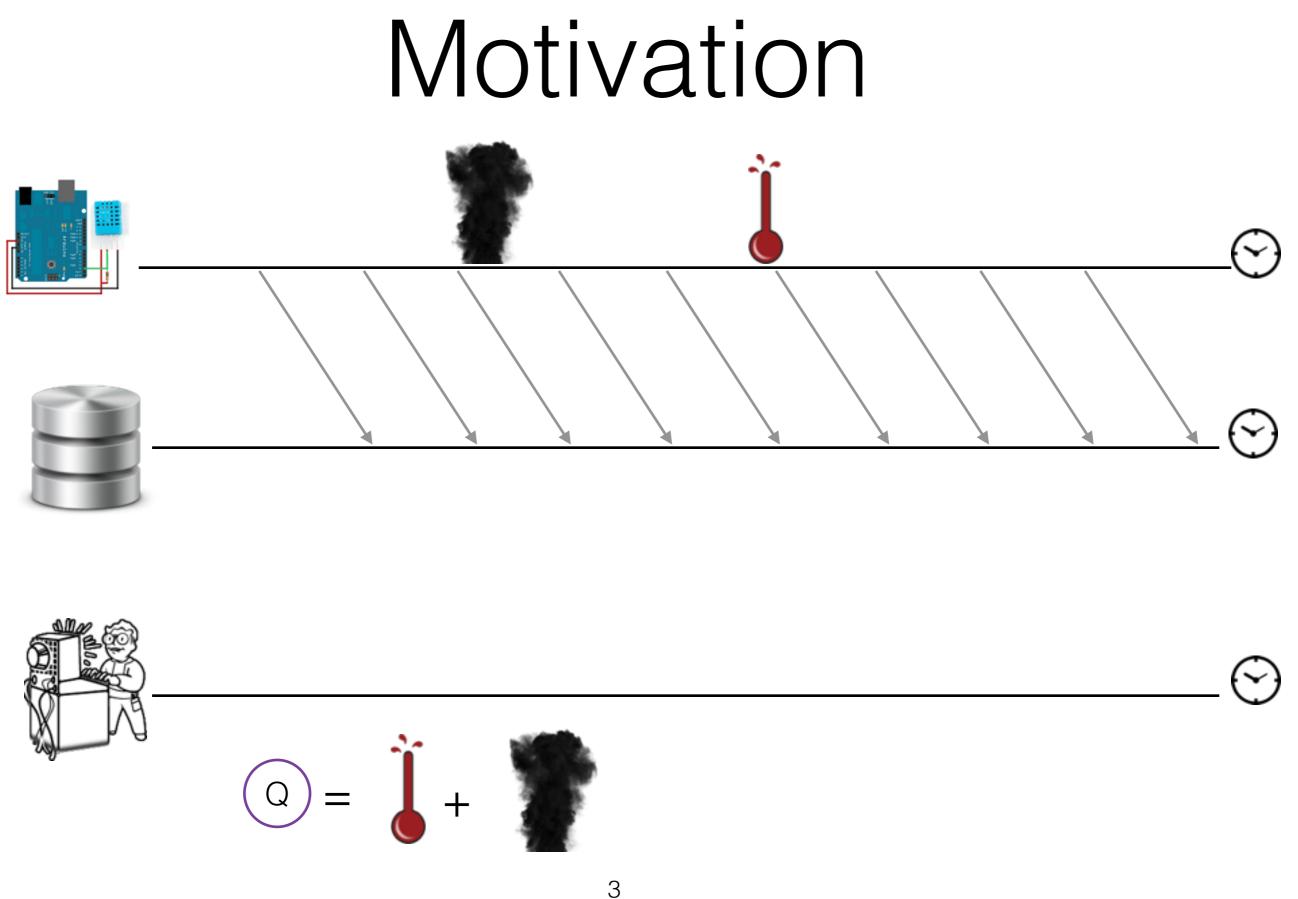


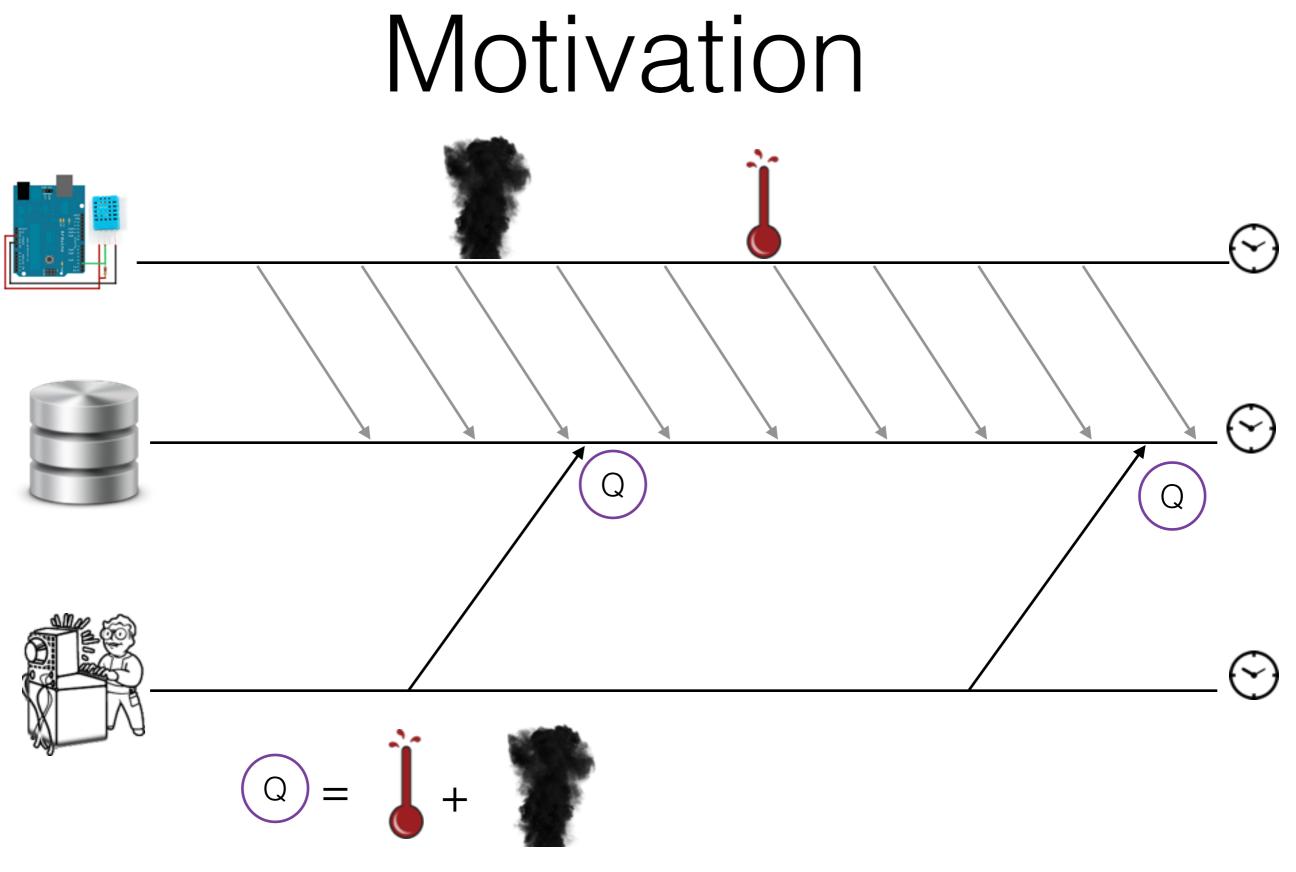
how to avoid this?

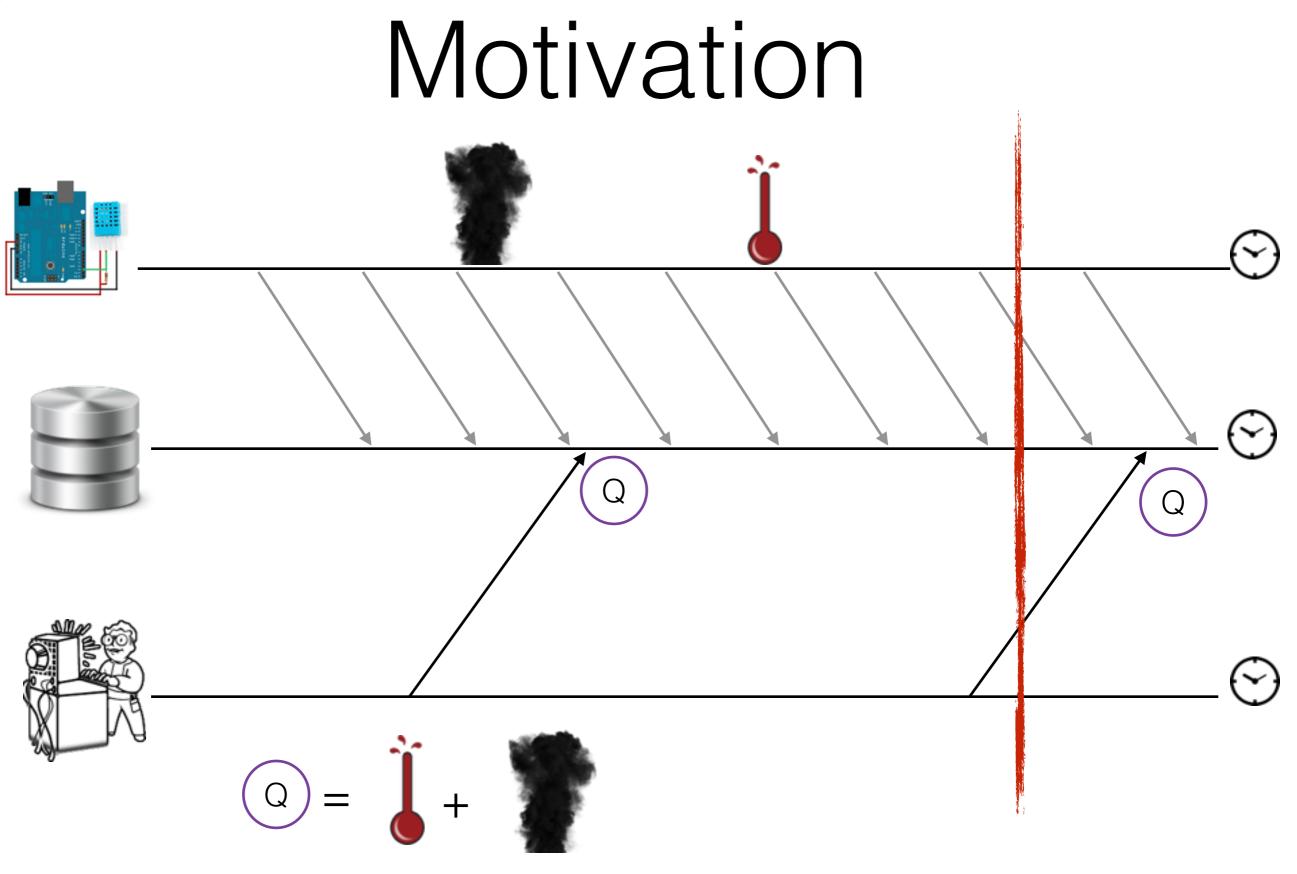


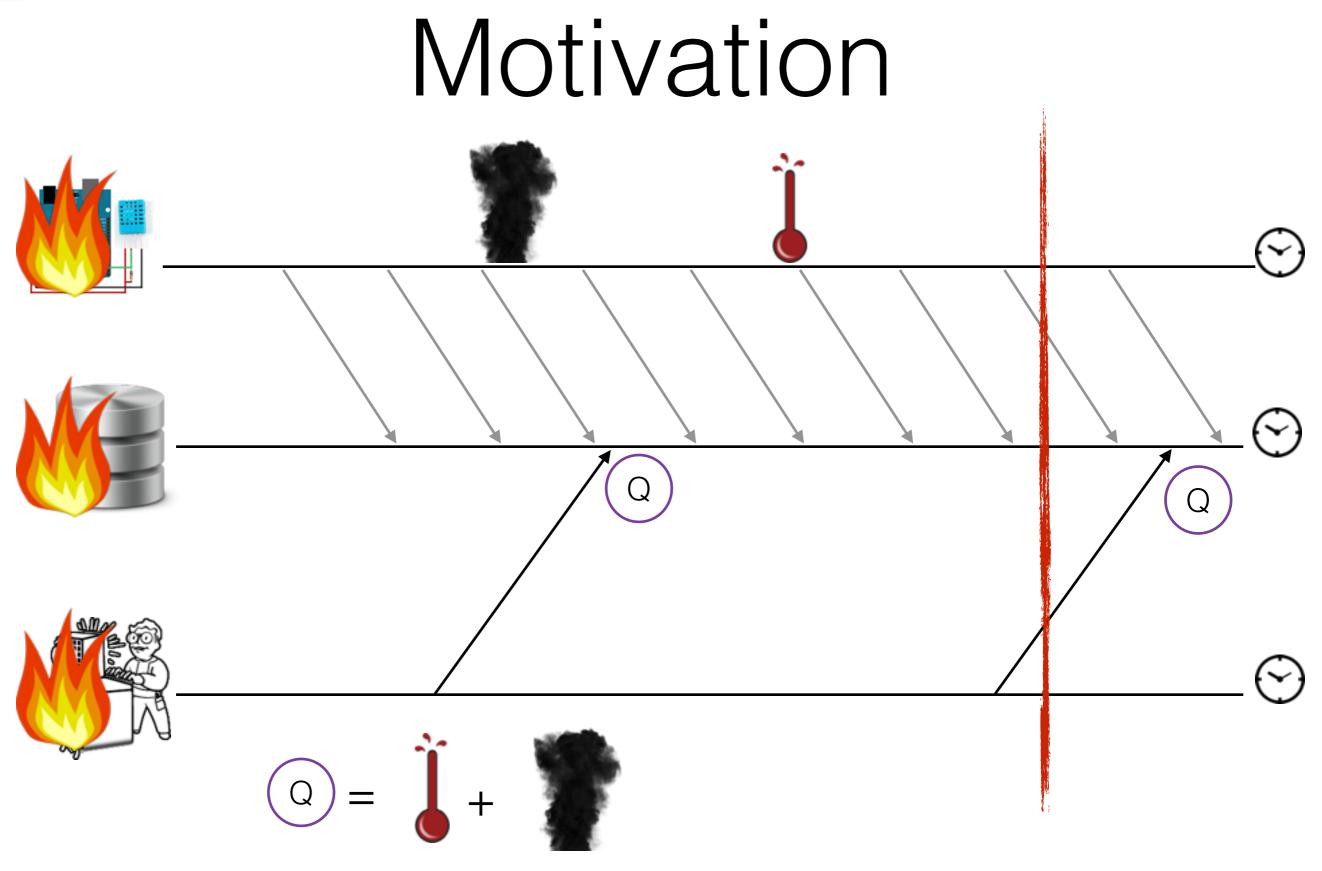
 (\sim)

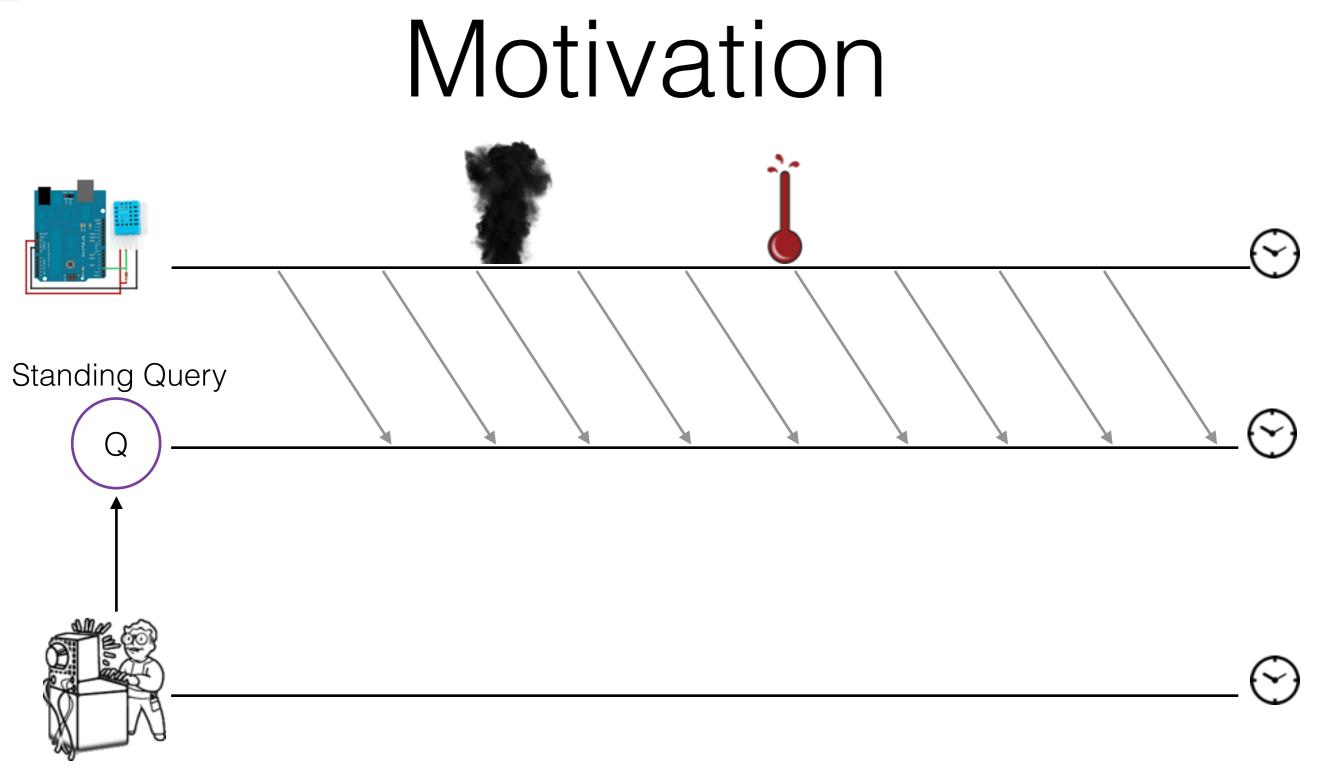


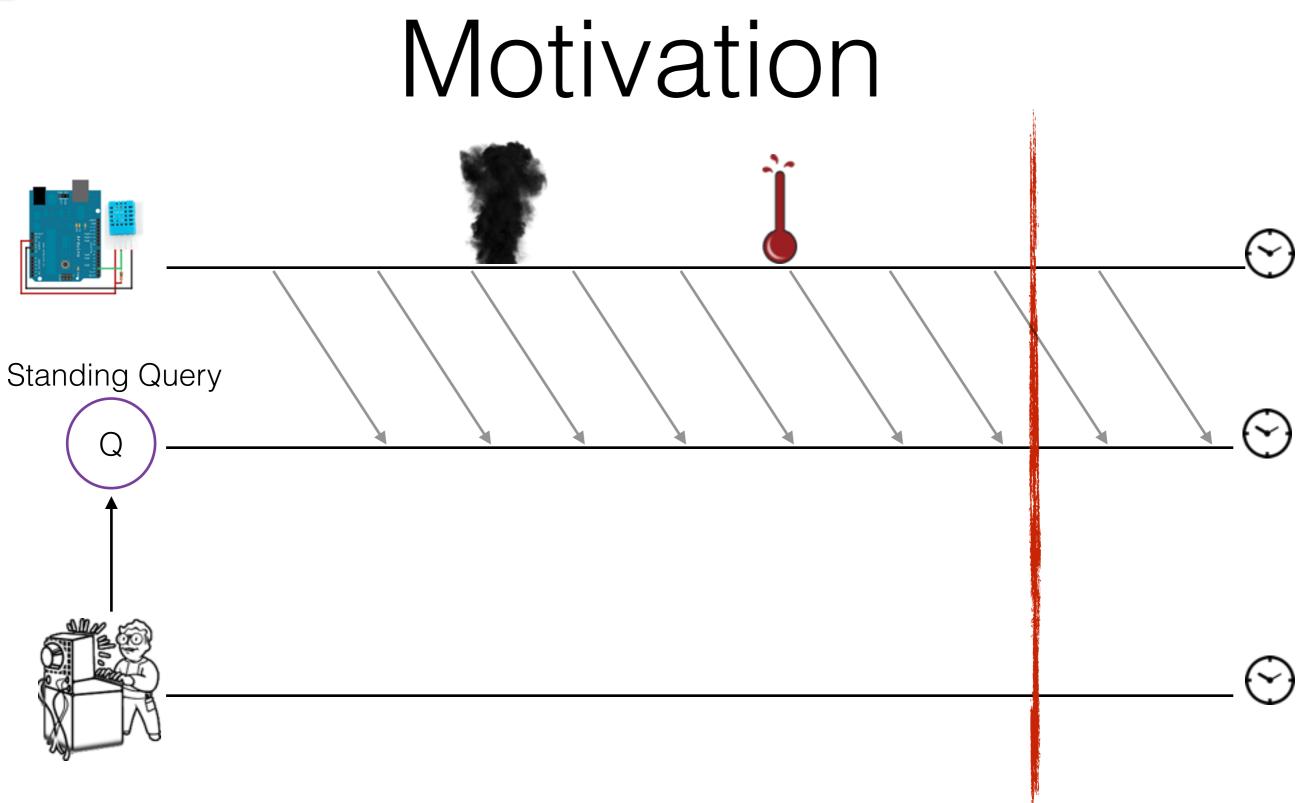


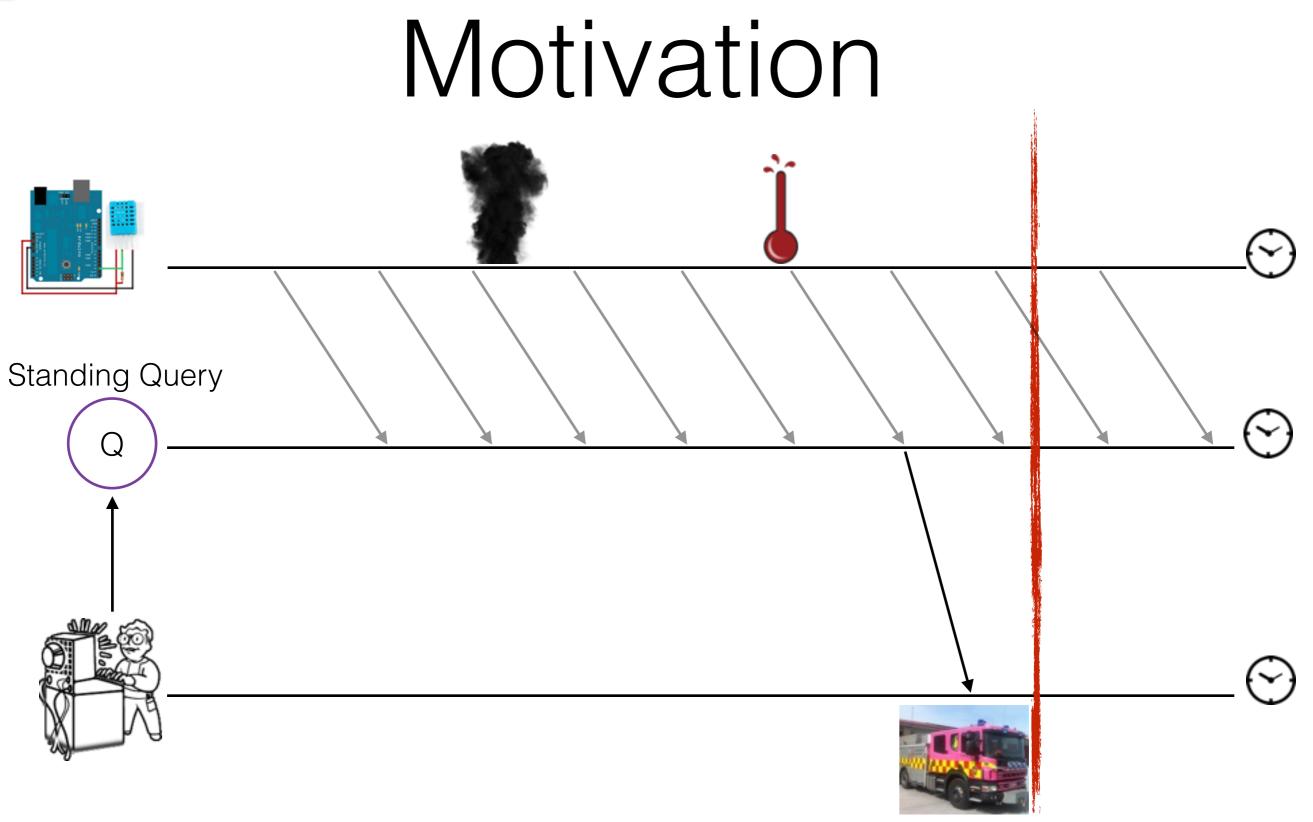


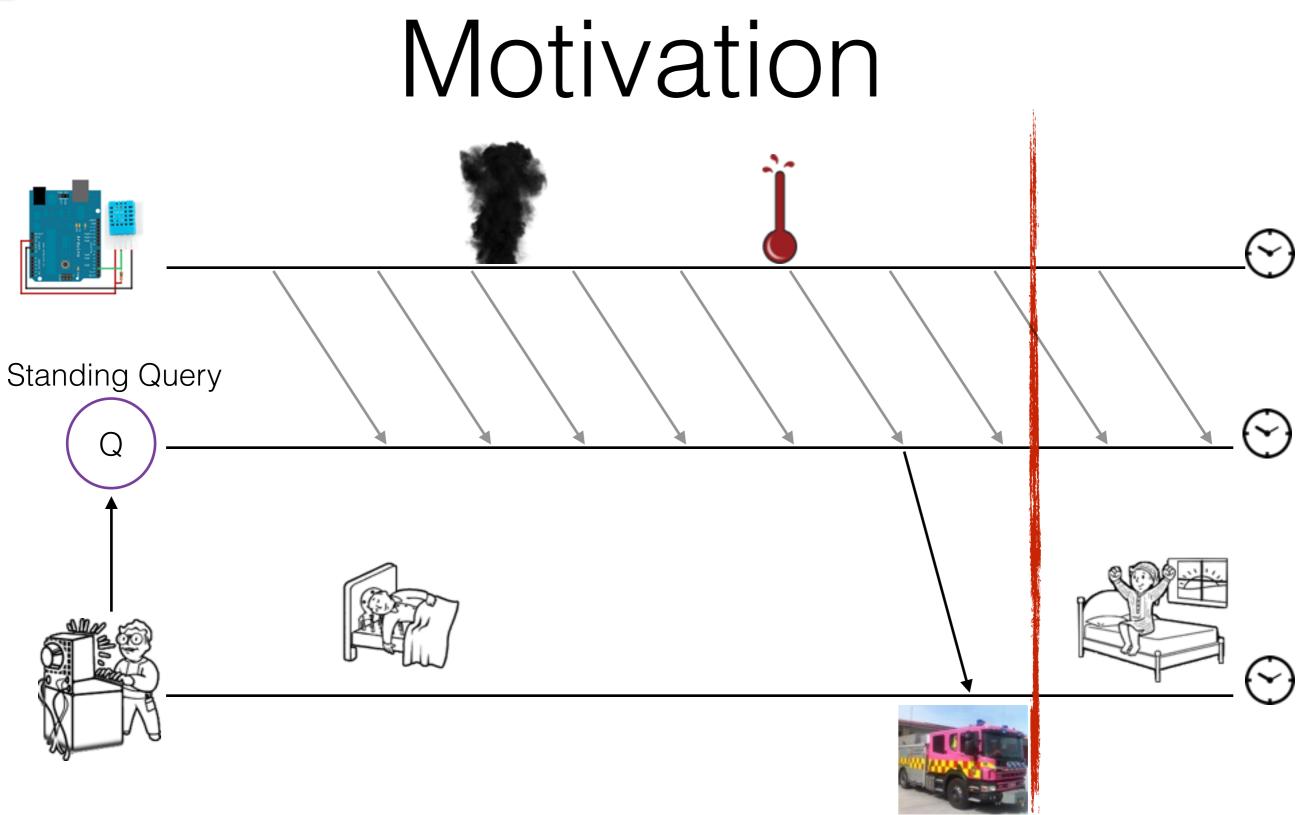










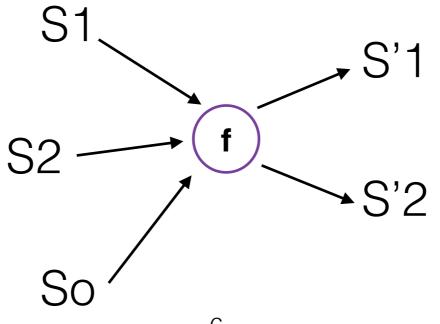


Preliminaries

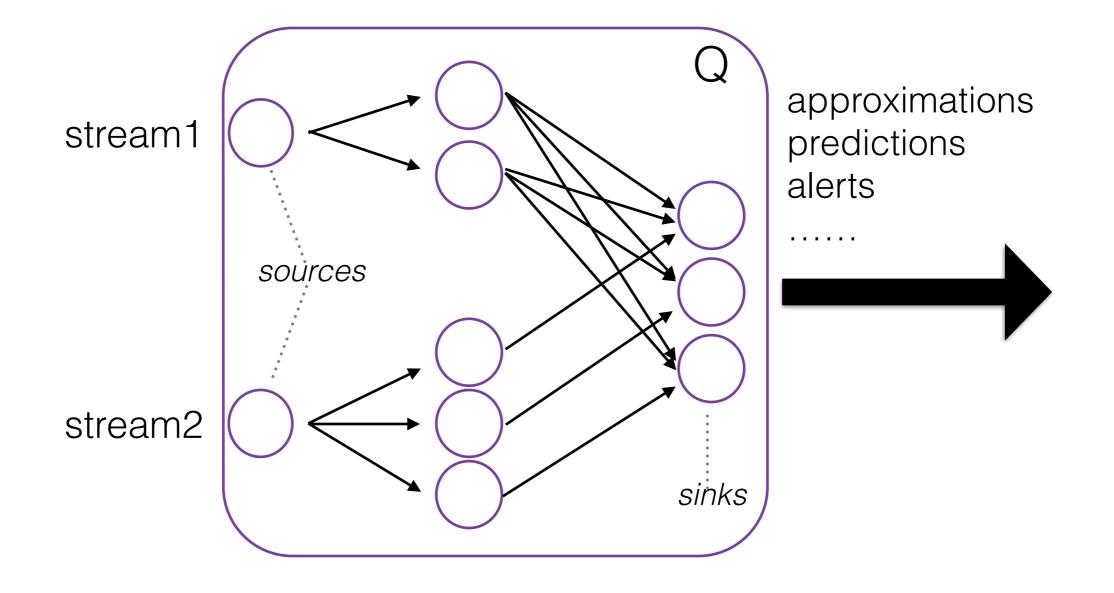
- Data Streaming Paradigm
 - Incoming data is unbound continuous arrival
 - Standing queries are evaluated <u>continuously</u>
 - Queries operate on the full data stream or on the most recent views of the stream ~ windows

Data Streams Basics

- Events/Tuples : elements of computation respect a schema
- Data Streams : <u>unbounded</u> sequences of events
- Stream Operators: consume streams and generate new ones.
 - Events are consumed once no backtracking!



Streaming Pipelines



Core Abstractions

- Windows
- Synopses (summary state)
- Partitioning

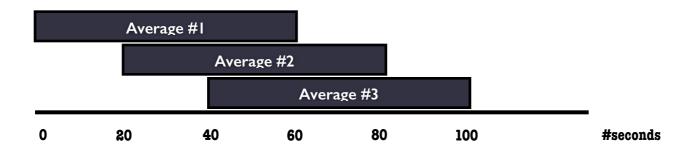
Windows

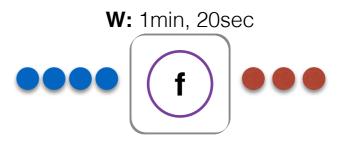
Discussion

Why do we need windows?

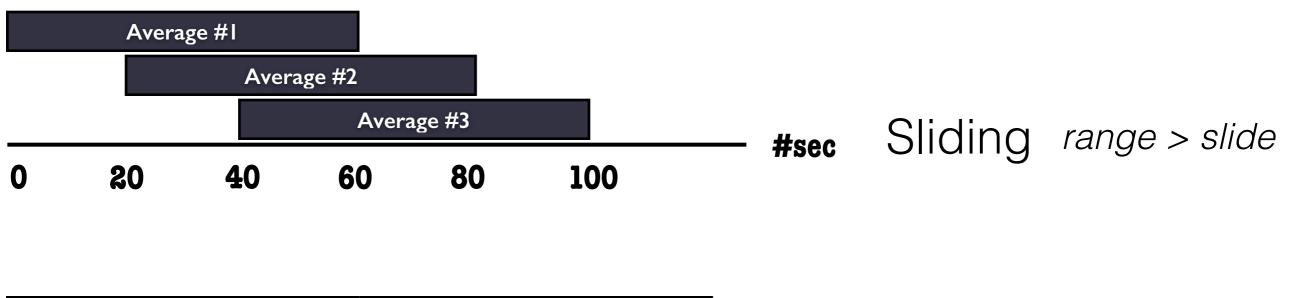
Windows

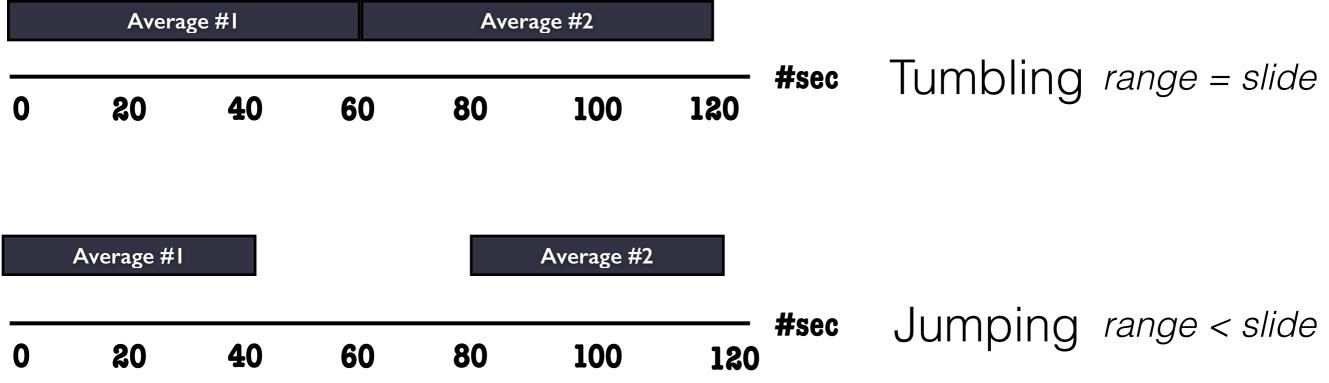
- We are often interested only in fresh data
 - f = "average temperature <u>over the last minute every 20 sec</u>"
- **Range:** Most data stream processing systems allow window operations on the most recent history (eg. 1 minute, 1000 tuples)
- **Slide:** The frequency/granularity f is evaluated on a given range





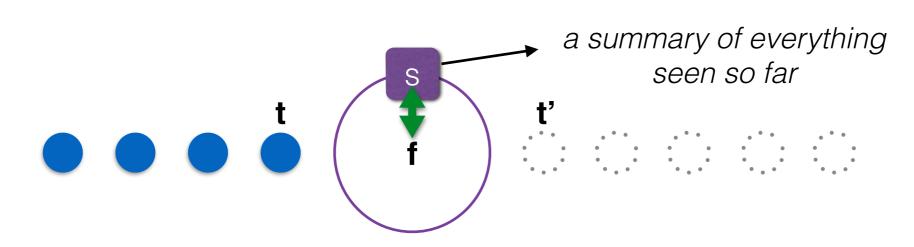
Window Types





We cannot infinitely store all events seen

- **Synopsis**: A summary of an infinite stream
 - It is in principle any streaming operator state
- Examples: samples, histograms, sketches, state machines...



- 1. process t, s
- 2. update s
- 3. produce t'

What about window synopses?

Synopses-Aggregations

- **Discussion** Rolling Aggregations
- Propose a synopsis, s=? when
 - f= max
 - f= ArithmeticMean
 - f= stDev

Synopses-Approximations

- **Discussion** Approximate Results
- Propose a synopsis, s=? when
 - f= uniform random sample of k records over the whole stream
 - f= filter distinct records over windows of 1000 records with a 5% error

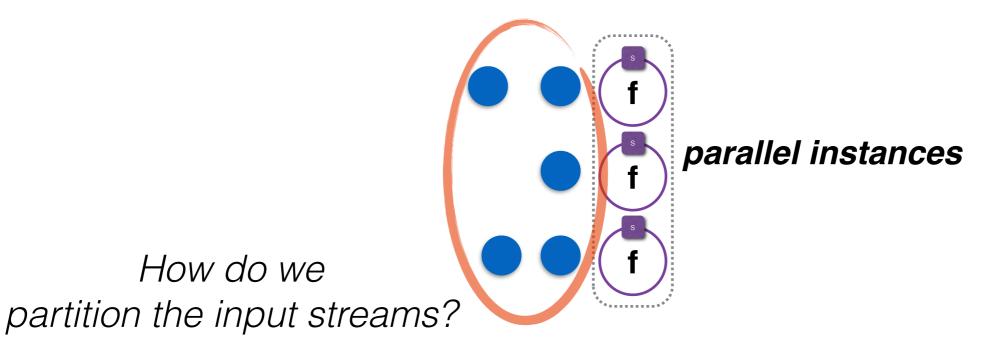
Synopses-ML and Graphs

- Examples of cool synopses to check out
 - Sparsifiers/Spanners approximating graph properties such as shortest paths
 - Change detectors detecting concept drift
 - Incremental decision trees continuous stream training and classification

•

Partitioning

- One stream operator is not enough
 - Data might be too large to process
 - e.g. very high input rate, too many stream sources
 - State could possibly not fit in memory

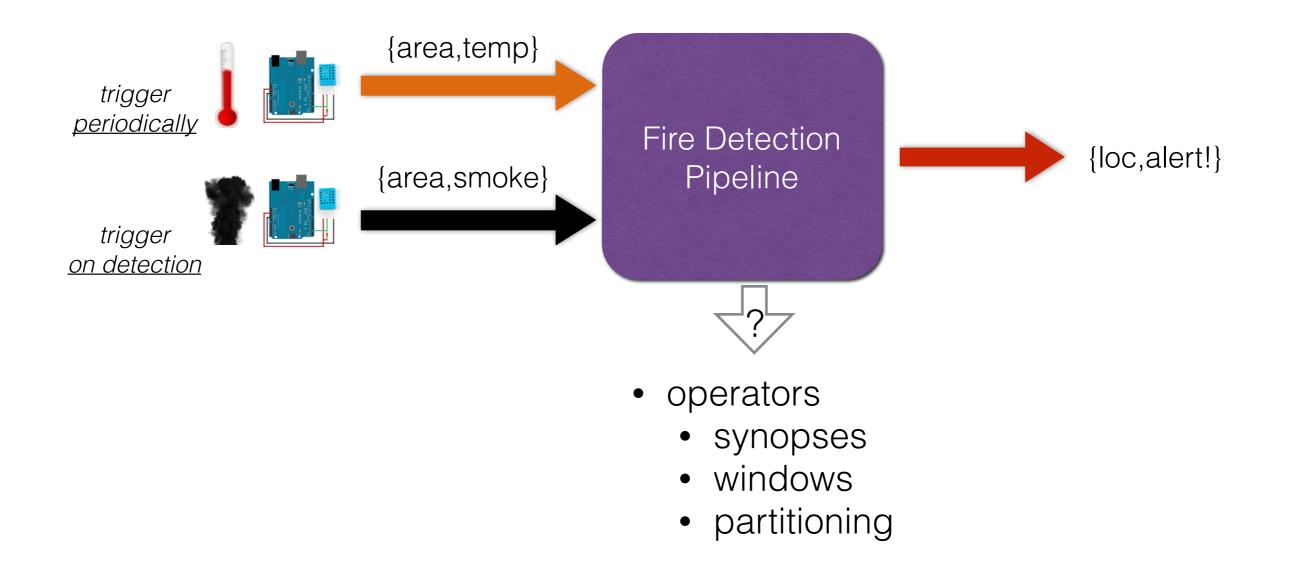




Partitioning

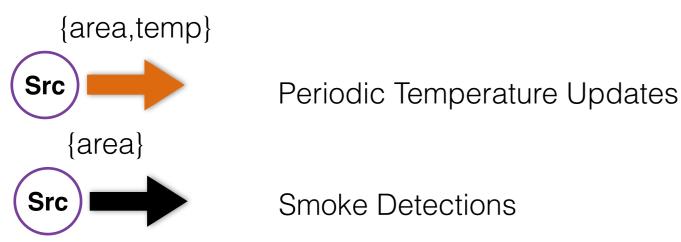
- Partitioning defines how we allocate events to each parallel instance. Typical partitioners are:
- Broadcast \bullet Ρ Shuffle by color Key-based

Putting Everything Together



Operators

Sensor Data Sources



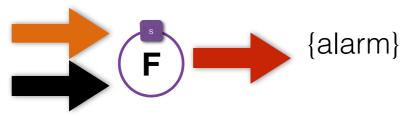
Rolling Arithmetic Mean of Temperatures

{area,temp} {

{area,avgTemp}

trivial...

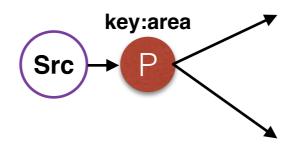
State Machine-based Fire Alarm



What is the state and its transitions?

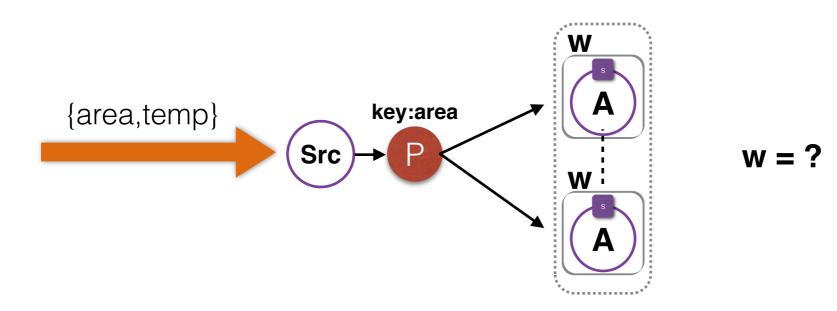
Partitioning

- We are only interested in correlating smoke and high temperature within the same area
- Events carry area information so we can partition our computation by **area**



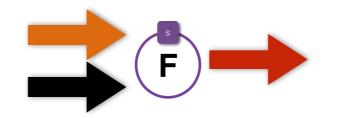
Windowing

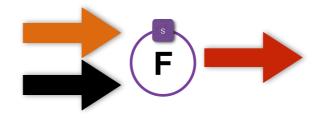
- Individual sensor data could be potentially faulty
- We need to gather data from all temperature sensors of an area and produce an average
- We want fresh average temperatures



The Fire Alarm

The Fire Alarm

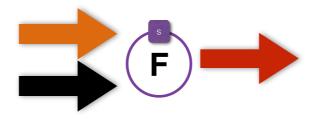




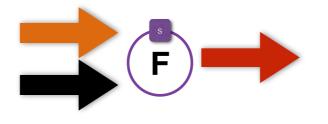
T:avgTemp>40

T:avgTemp<40

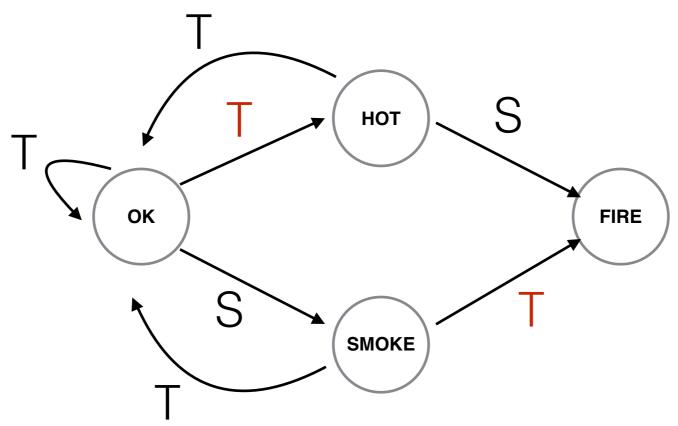
S : Smoke

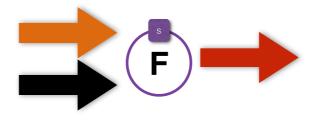


T : avgTemp>40 T : avgTemp<40 S : Smoke

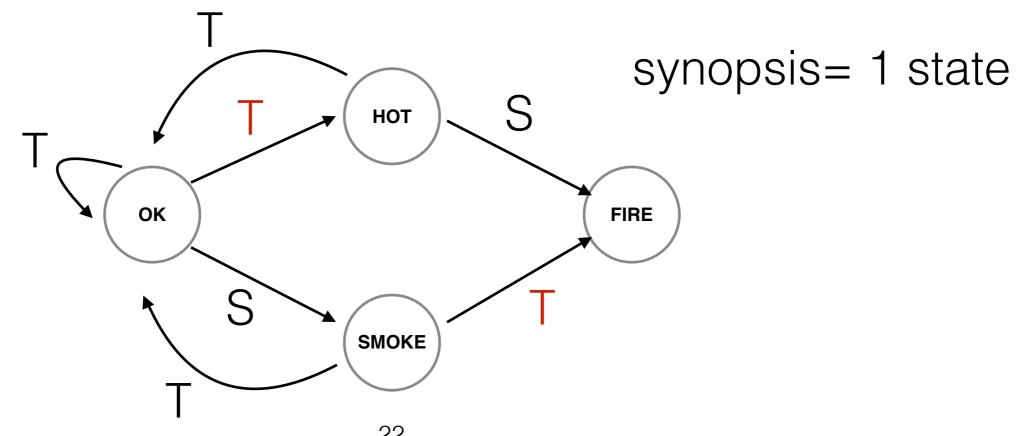


T : avgTemp>40 T : avgTemp<40 S : Smoke

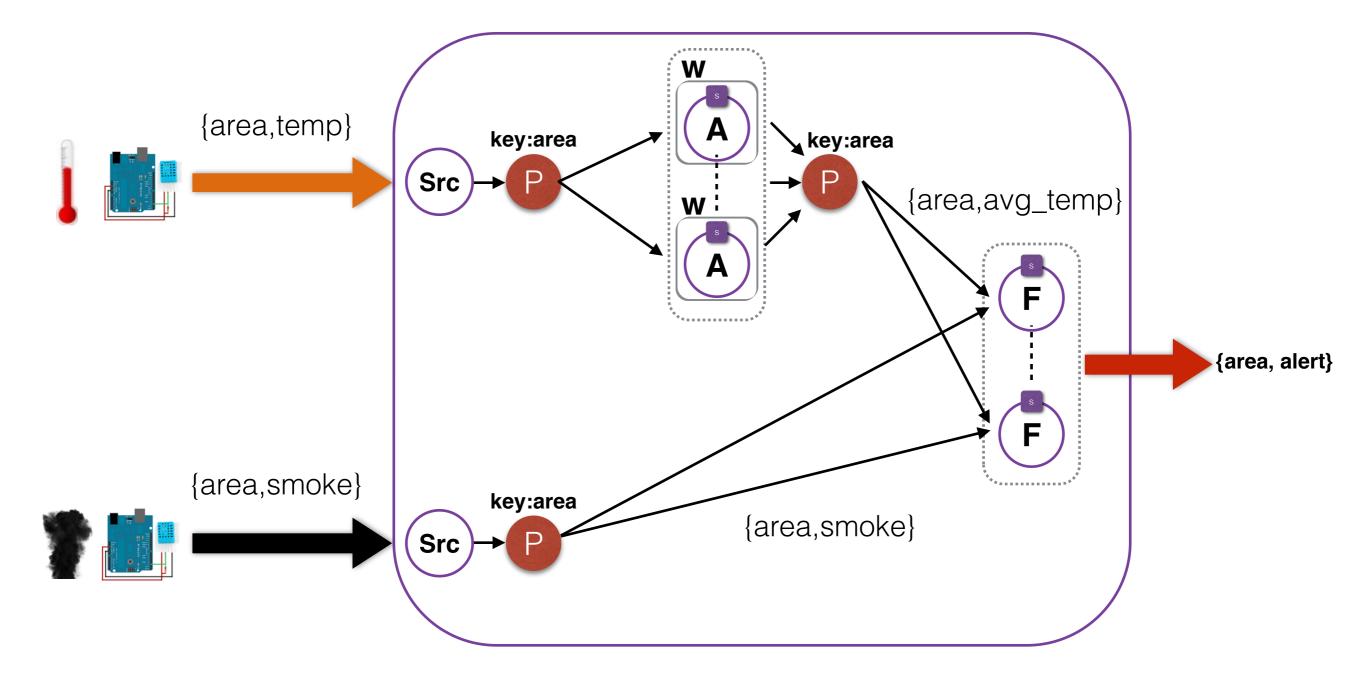




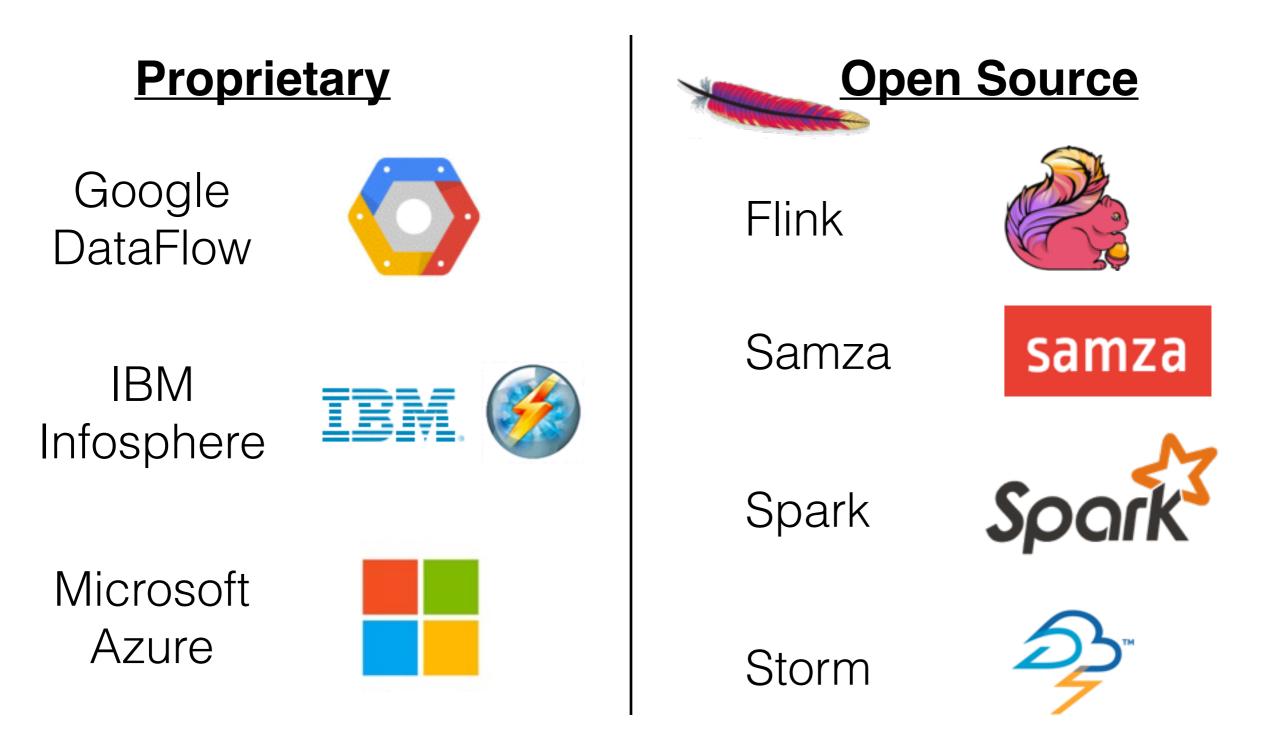
T: avgTemp>40 T:avgTemp<40 S: Smoke



Putting Everything Together



Systems: The Big Picture



Evolution

•		High Av	'05 igh Availability on Streaming			'13 arallel covery
'88 Active DataBases CONCEPtS	Cor Ev Proc	01 nplex vent essing	°C Decent Stream		'13 Discretize Streams	d '15 User-Defined Windows
systems '88 HiPac	02 Aurora '00 Eddies	°03 STREAM	'03 egraphCQ '0 Bore	'12 Twitter Storm	'12 Twitter Storm '12 '1 IBM Spa ystem S Strea	ark

Programming Models

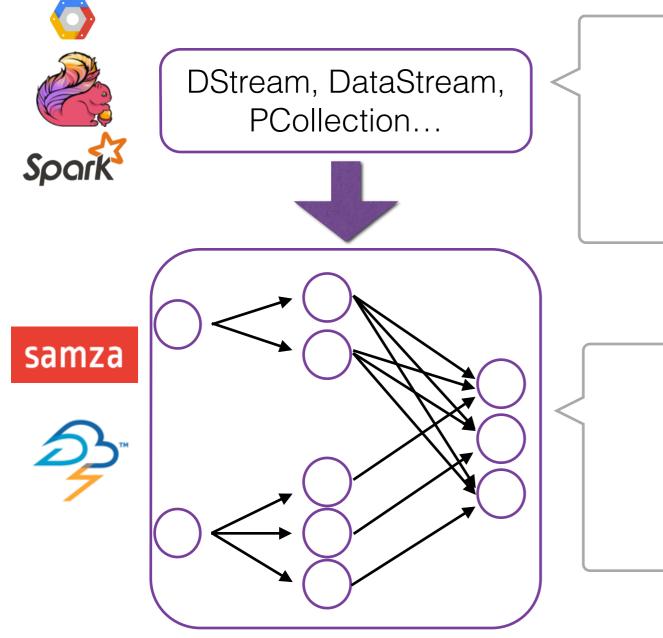
Compositional

Declarative

- Offer basic building blocks for composing custom operators and topologies
- Advanced behaviour such as windowing is often missing
- Custom Optimisation

- Expose a high-level API
- Operators are higher order functions on abstract data stream types
- Advanced behaviour such as windowing is supported
- Self-Optimisation

Programming Model Types

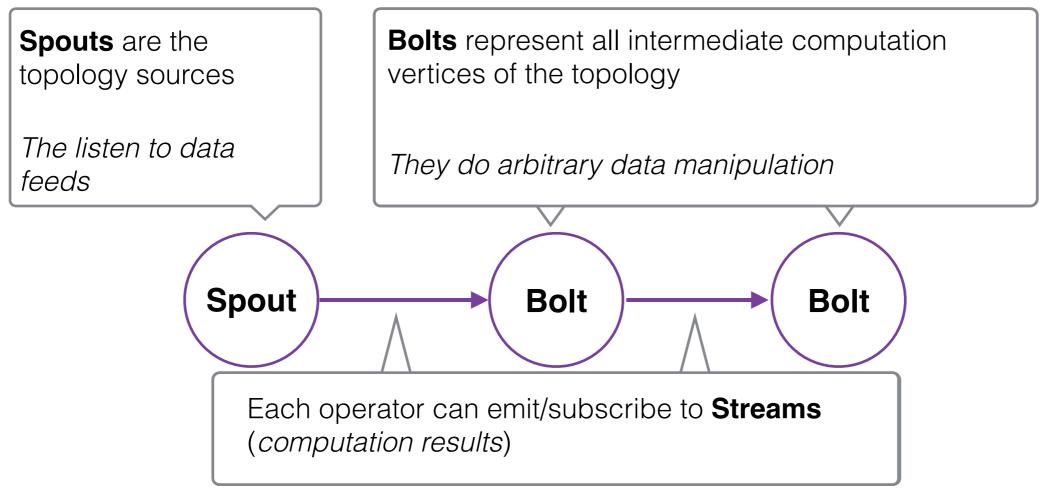


- Transformations abstract operator details
- Suitable for engineers and data analysts

- Direct access to the execution graph / topology
- Suitable for engineers

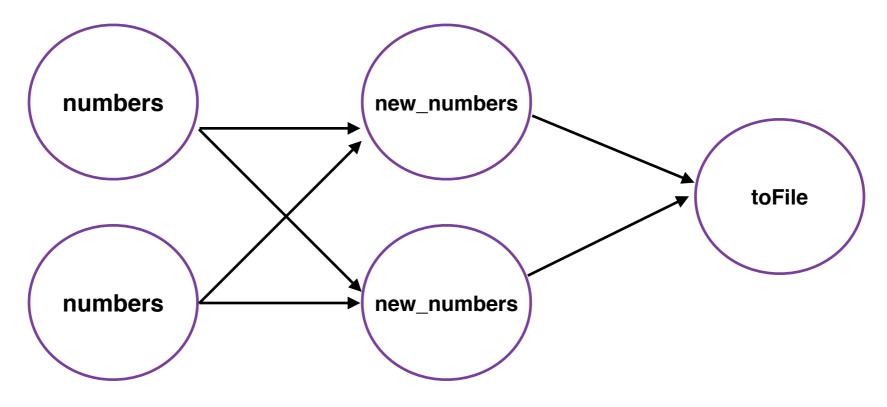
Standing Queries with Apache Storm

- Step1: Implement input (Spouts) and intermediate operators (Bolts)
- Step 2: Construct a **Topology** by combining operators

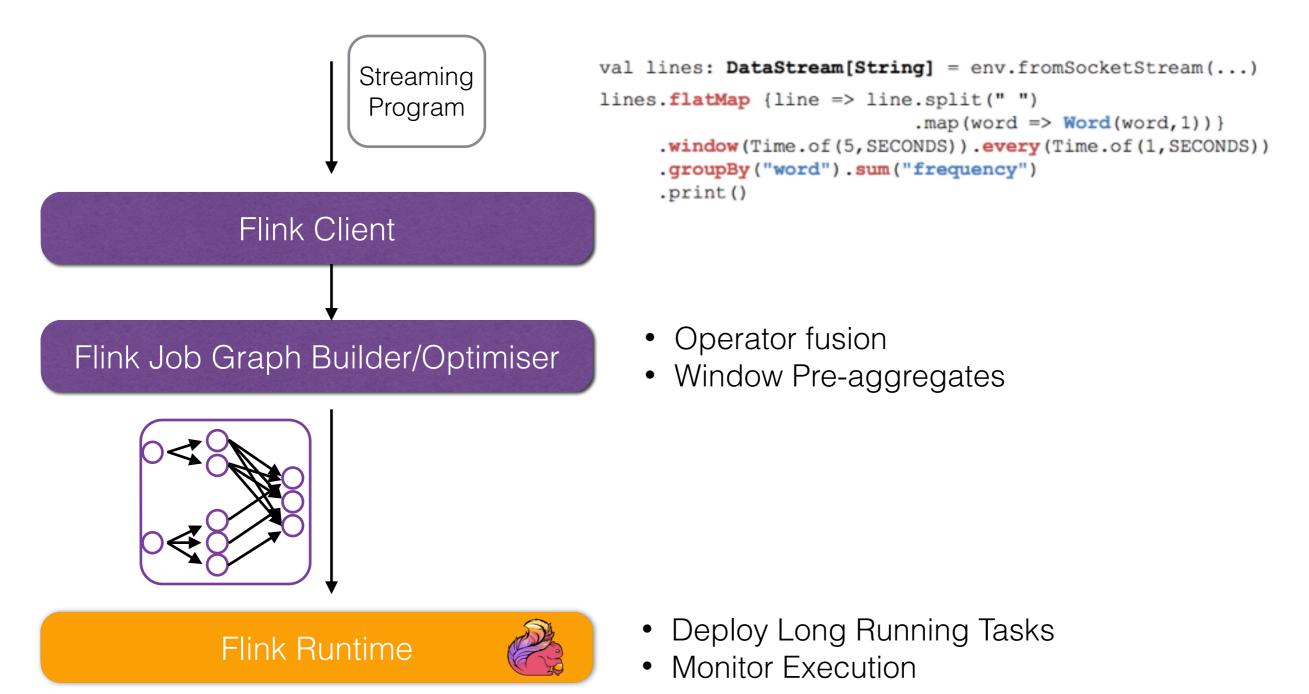


Example: Topology Definition

TopologyBuilder builder = new TopologyBuilder()
builder.setSpout("numbers" new NumberGenerator(), 2);
builder.setBolt("new_numbers", new DoubleAndTripleBolt(), 2)
 .shuffleGrouping("numbers");
builder.setBolt("toFile", new DumpToFileBolt(), 1);
 .allGrouping("new_numbers");



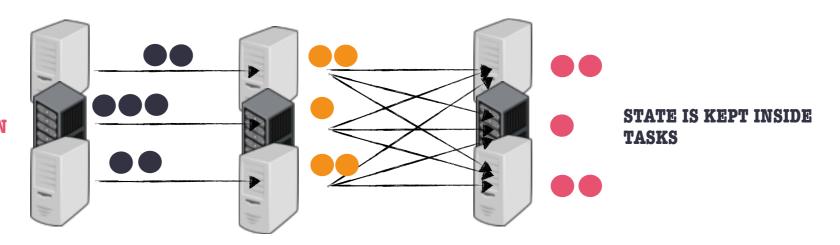
Standing Queries with Apache Flink



samza

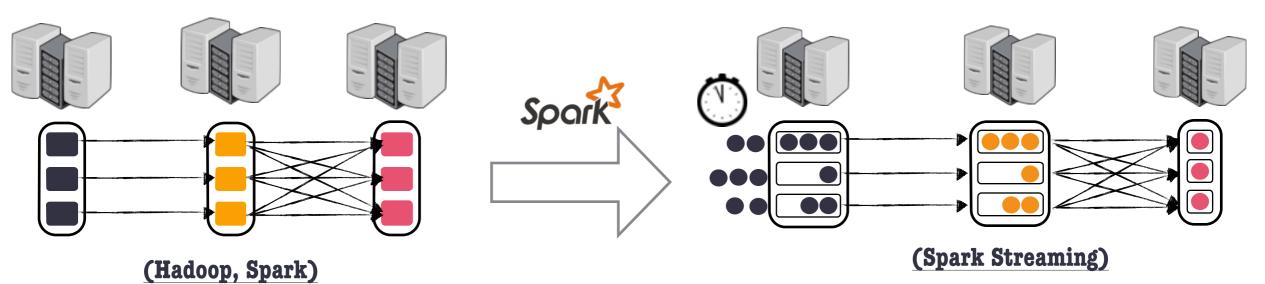
Distributed Stream Execution Paradigms

1) Real Streaming (Distributed Data Flow) 🌮

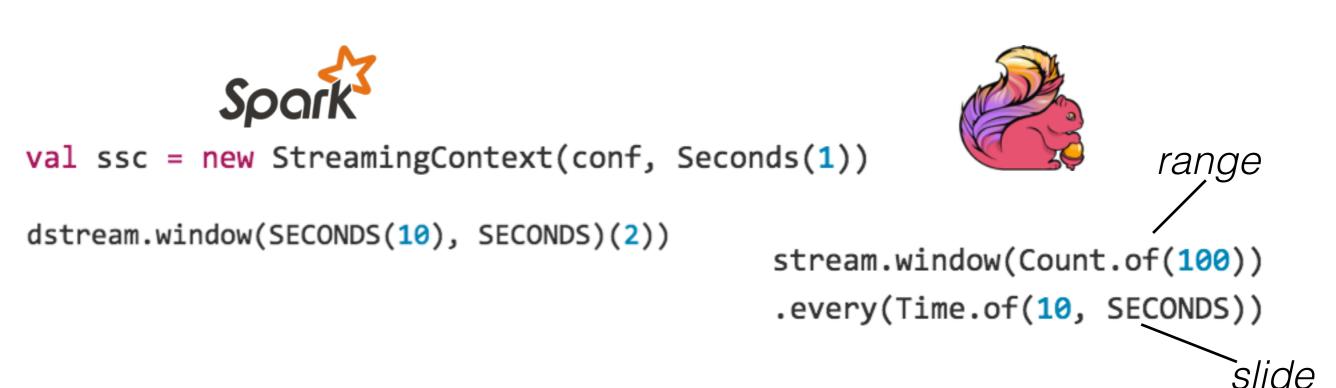


LONG-LIVED TASK EXECUTION

2) Batched Execution



Windows in Action



- DStreams are already partitioned in time windows
- Only time windows supported
- Windows decomposed into policies
- Policies can be user-defined too

Windows on Storm?

```
@Override
public void execute(Tuple tuple) {
  if (TupleHelpers.isTickTuple(tuple)) {
    LOG.info("Received tick tuple, triggering emit of current window counts");
    emitCurrentWindowCounts();
  }
  else {
    countObjAndAck(tuple);
  }
}
private void emitCurrentWindowCounts() {
  Map<Object, Long> counts = counter.getCountsThenAdvanceWindow();
  ...
  emit(counts, actualWindowLengthInSeconds);
}
private void emit(Map<Object, Long> counts) {
  for (Entry<Object, Long> entry : counts.entrySet()) {
    Object obj = entry.getKey();
    Long count = entry.getValue();
    collector.emit(new Values(obj, count));
  }
}
private void countObjAndAck(Tuple tuple) {
  Object obj = tuple.getValue(0);
  counter.incrementCount(obj);
  collector.ack(tuple);
3
```

src-http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

Partitioning in Action

forward() shuffle() broadcast() keyBy()

shuffleGrouping()
allGrouping()
fieldsGrouping()

partitionCustom() customGrouping()

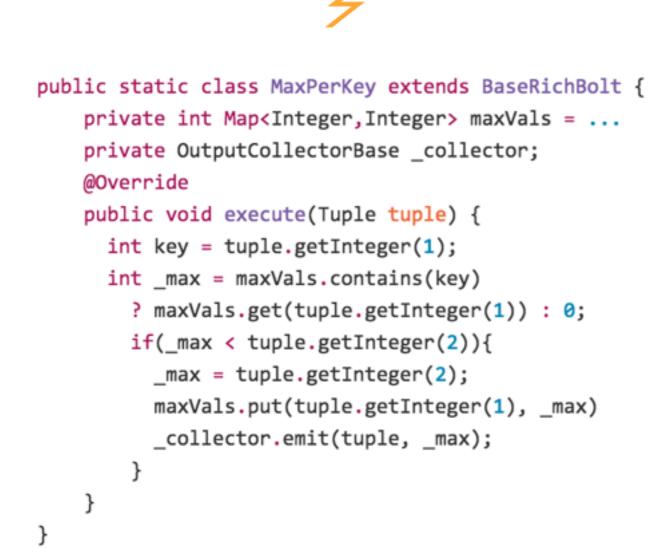
full control

repartition(num)
reduceByKey()
updateStateByKey()

no fine-grained control

Synopses in Action

implementing a rolling max per key

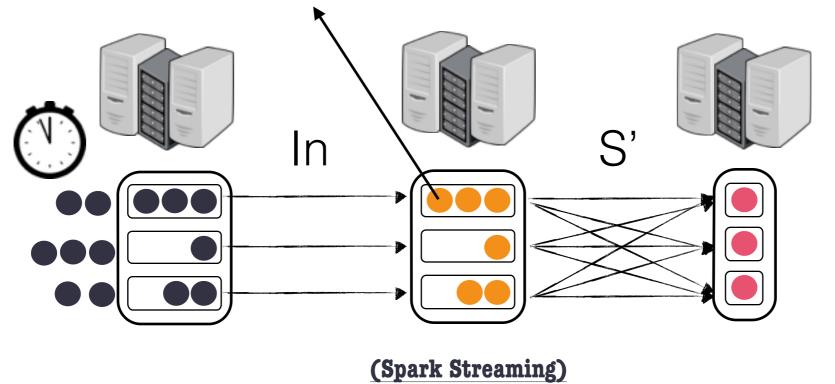


State in Spark?

- Streams are partitioned into small batches
- There is practically no state kept in workers (stateless)
- How do we keep state??

dstream.updateStateByKey(...)

put new states in output RDD



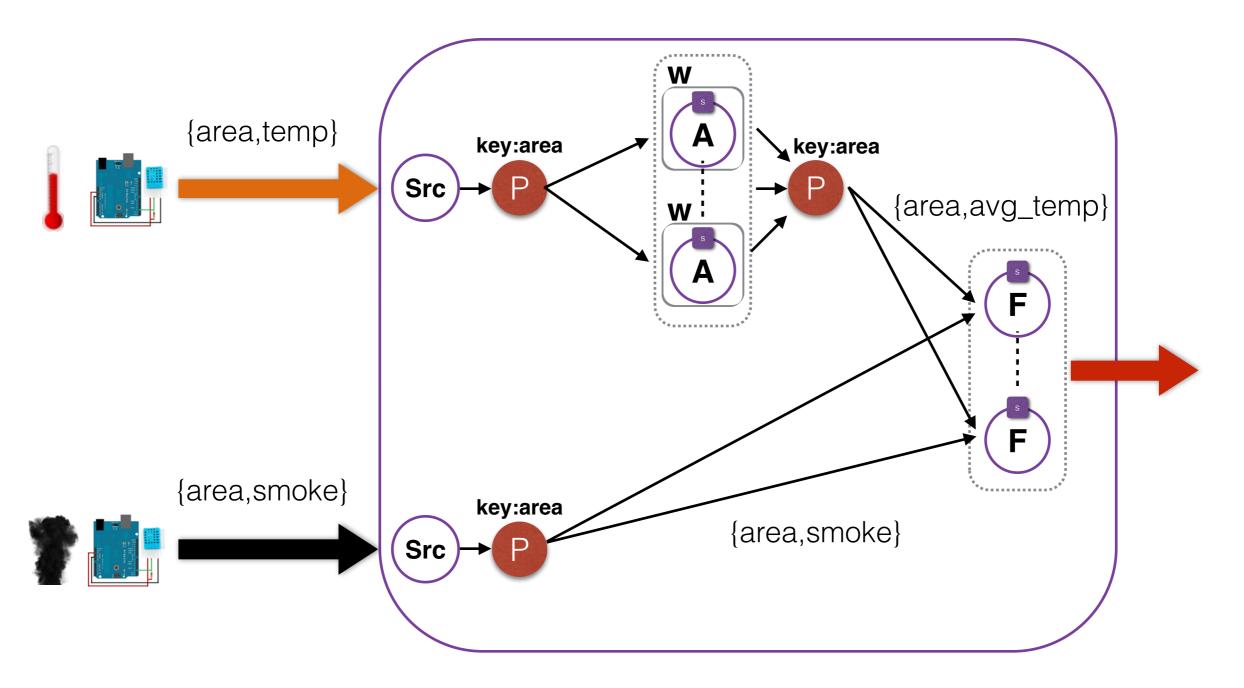
Implementing the alarm in Flink

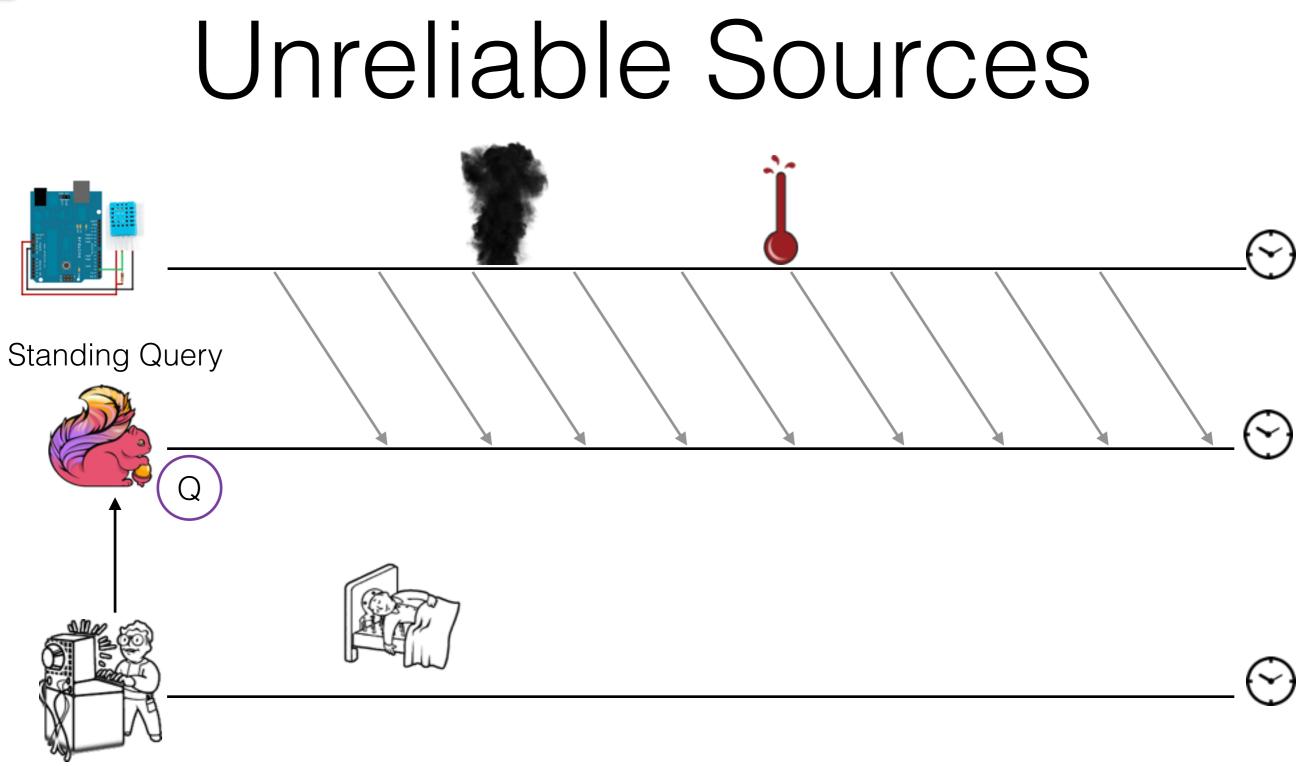
val temperatures = env.socketTextStream(...).keyBy("area")
val smokes = env.socketTextStream(...).keyBy("area")

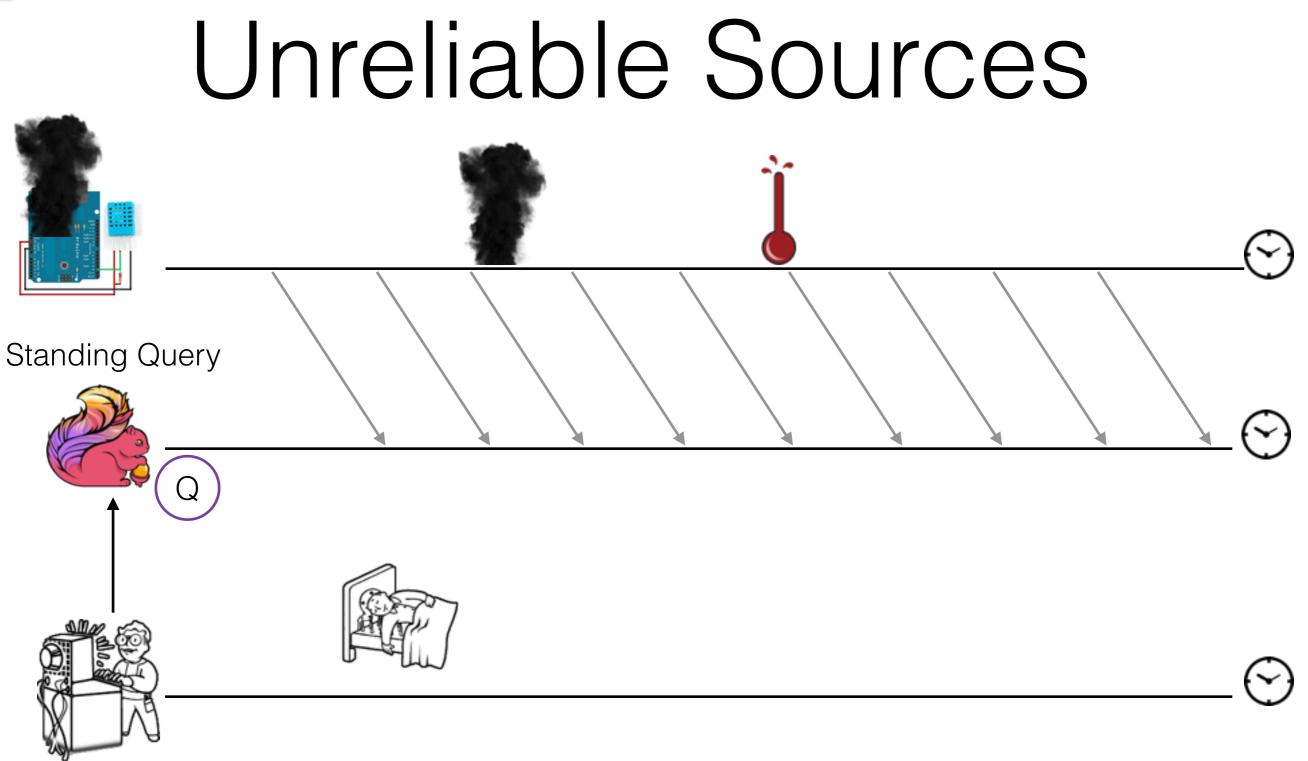
```
val avgTemp = temperatures
  .window(Time.of(60, SECONDS)
  .every(Time.of(5, SECONDS)
  .mapWindow(_avgTemp).flatten().keyBy("area")
```

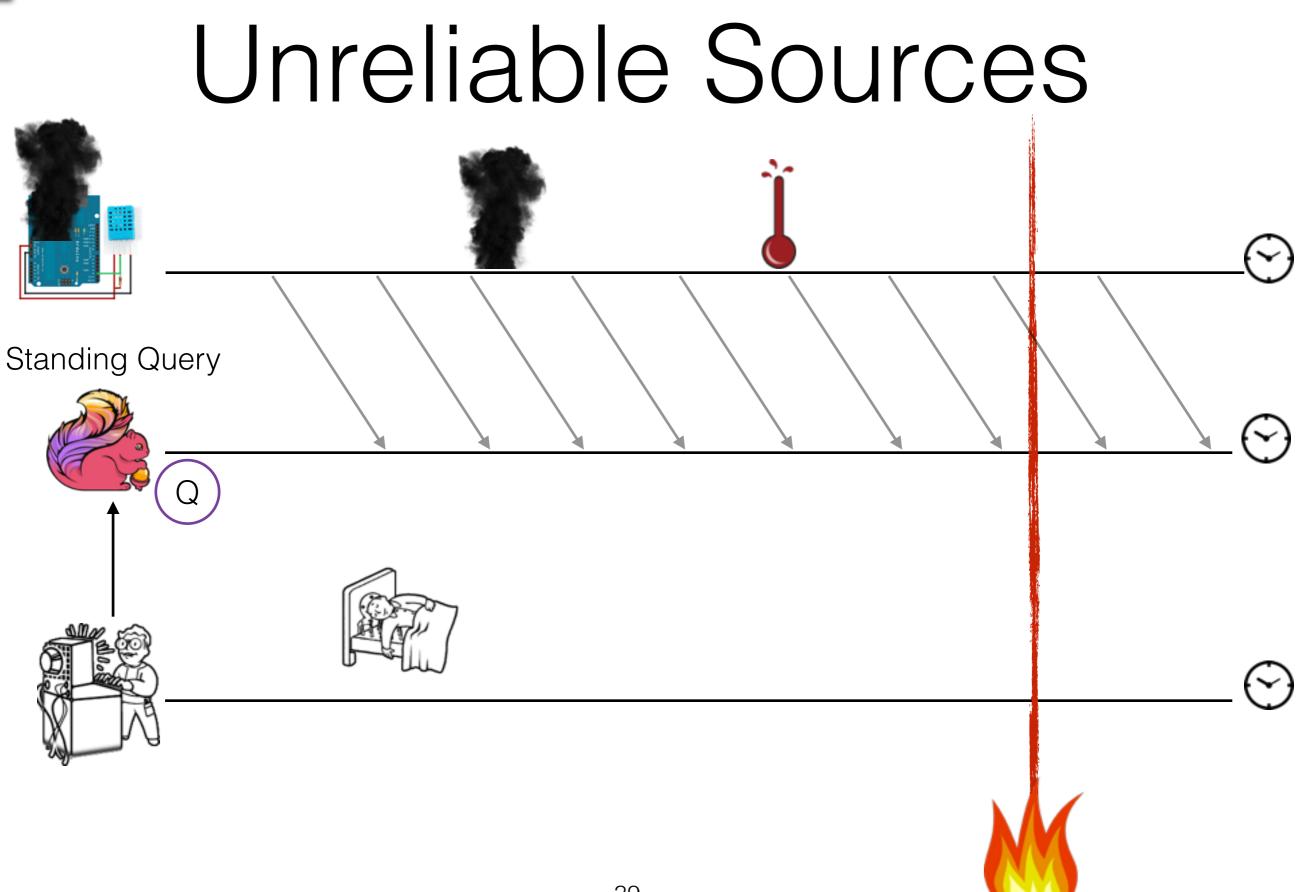
avgTemp.connect(smokes).flatMap(sm_alarm).print()

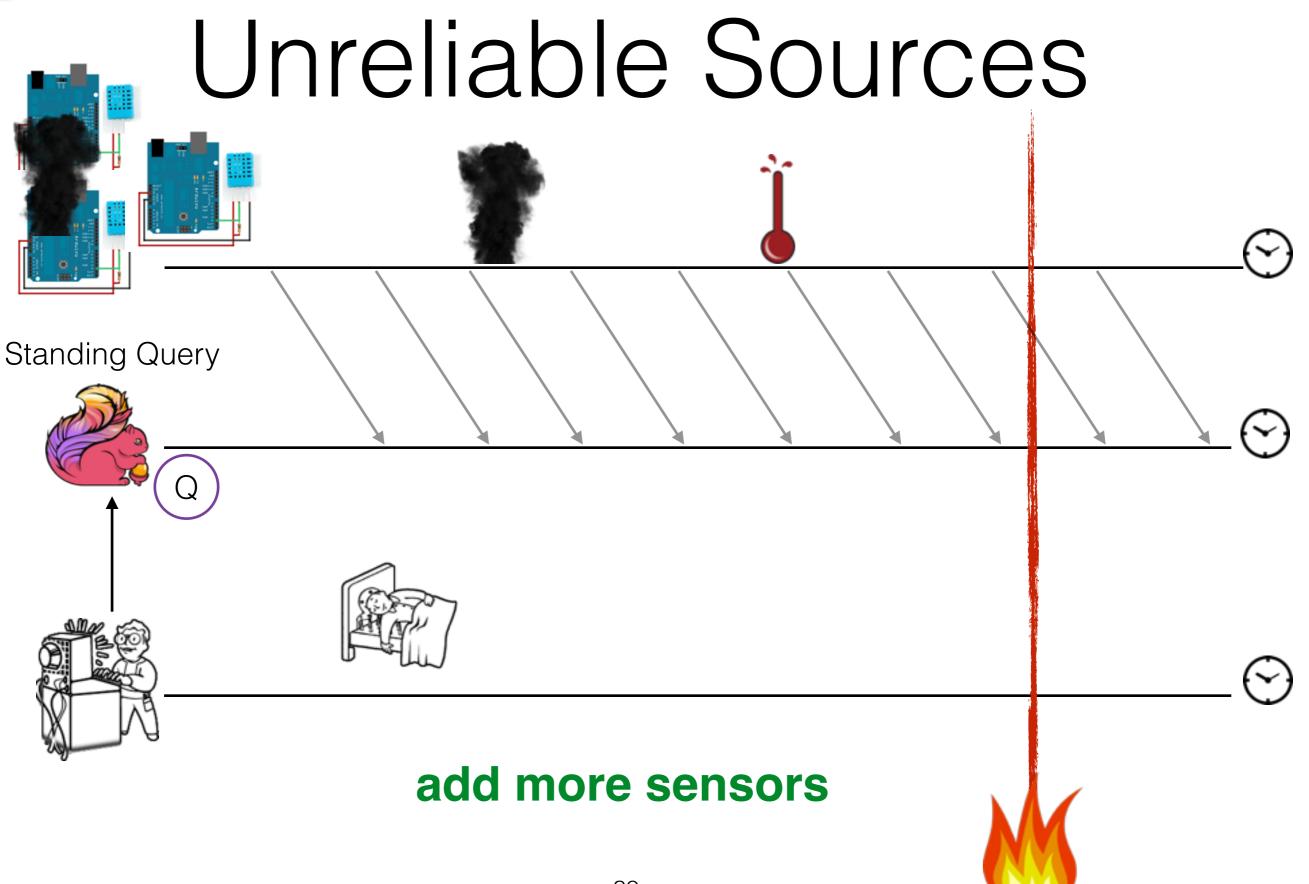
So everything works

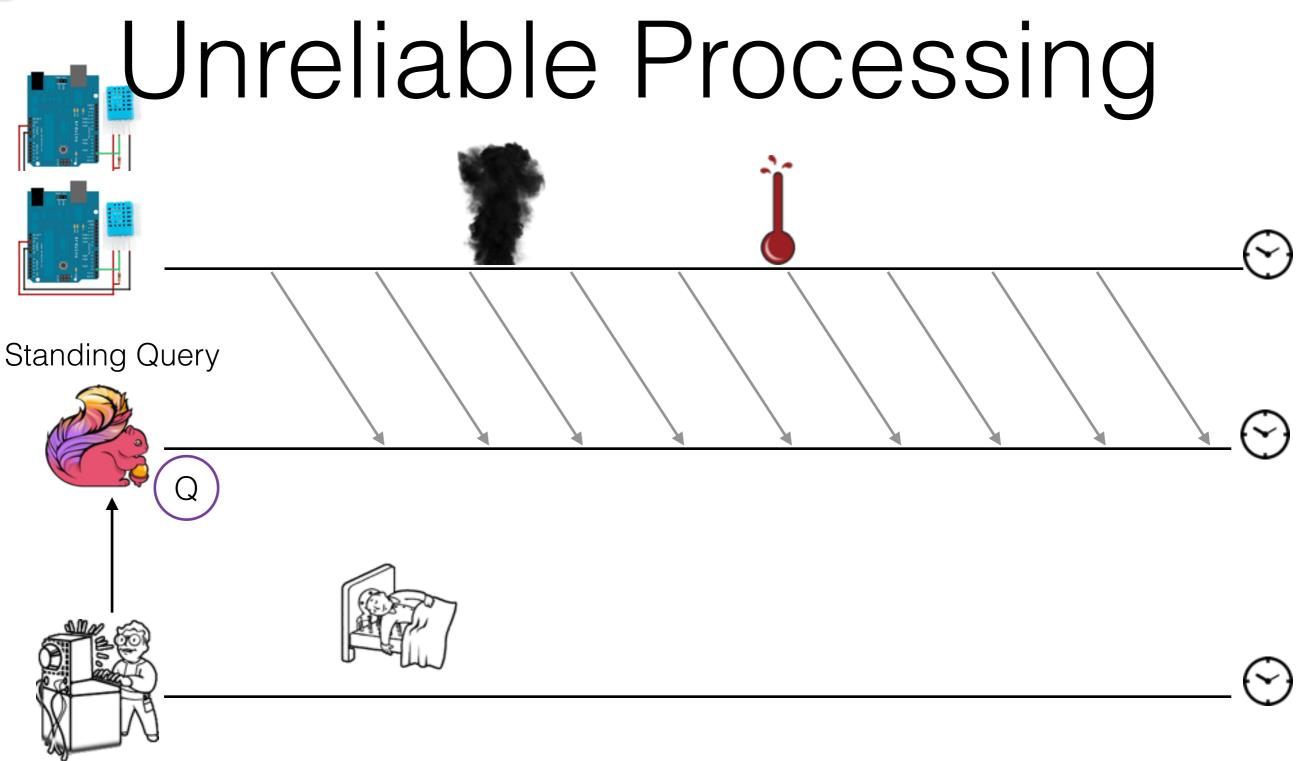


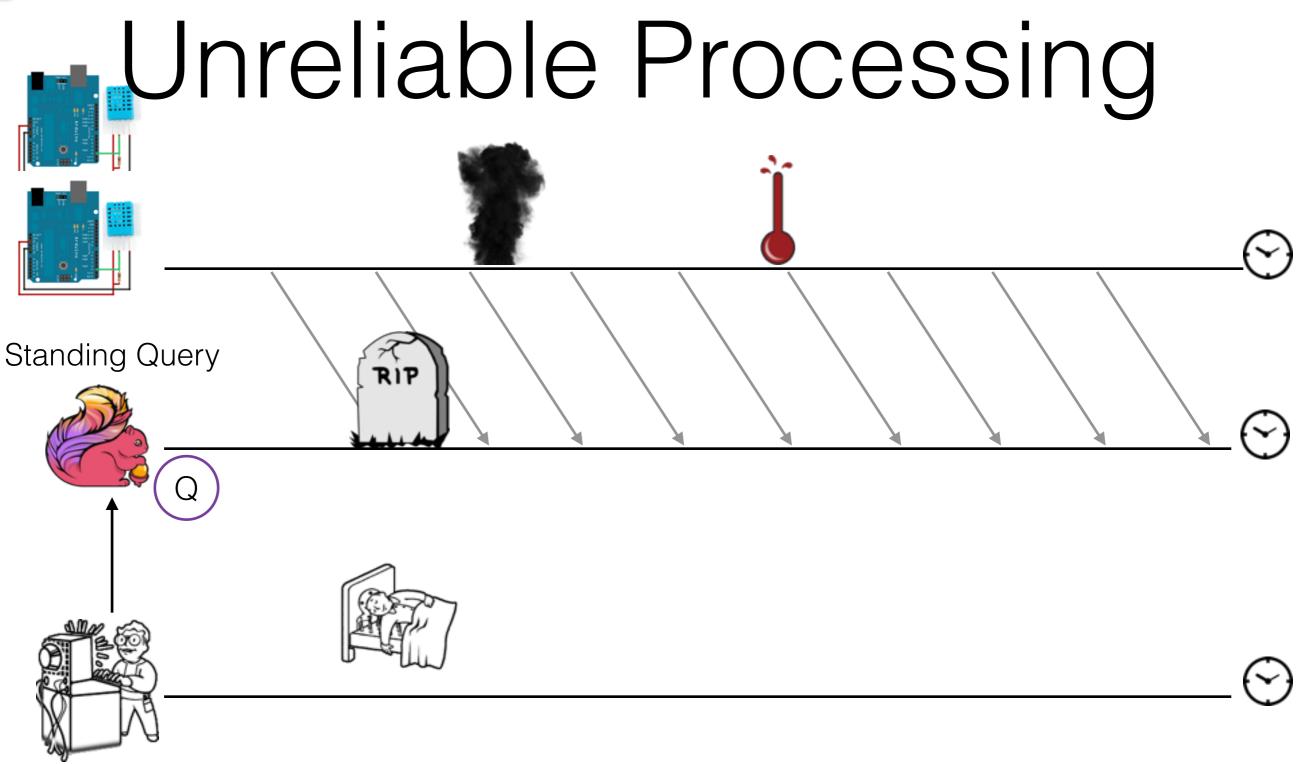


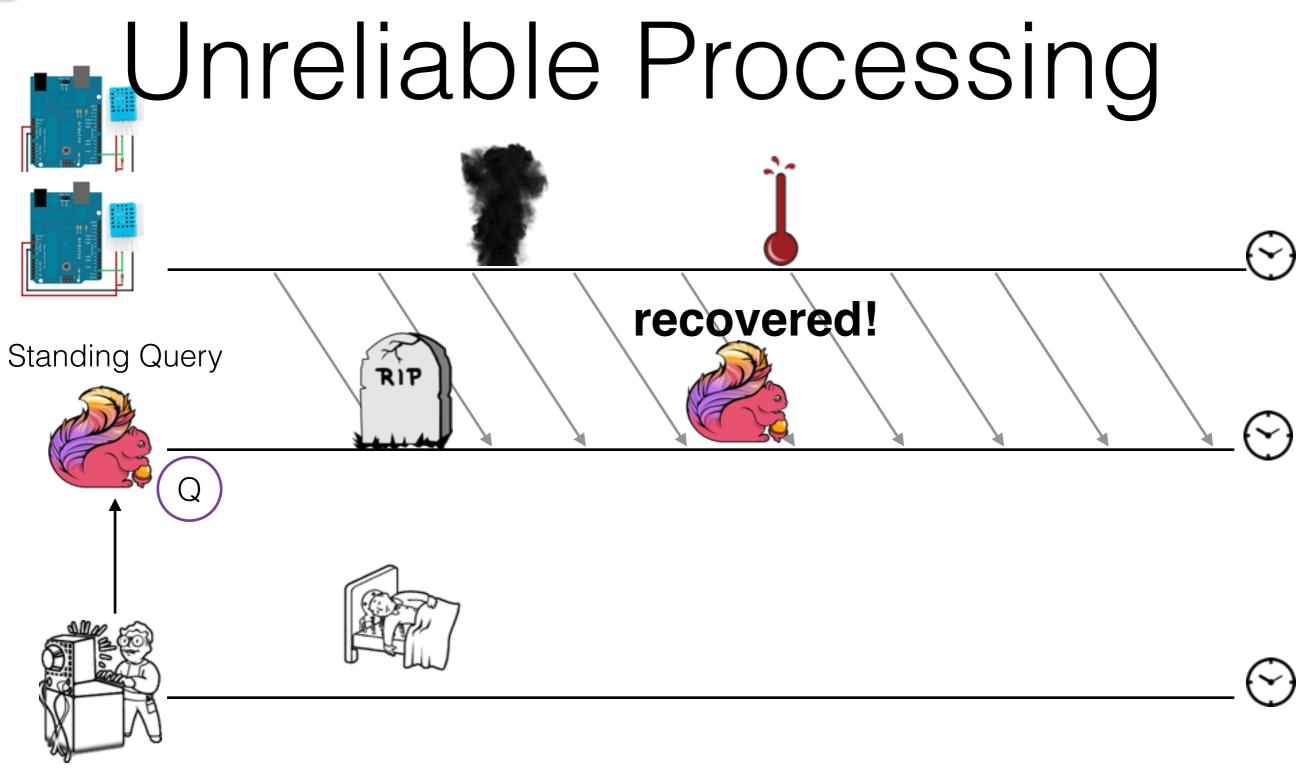


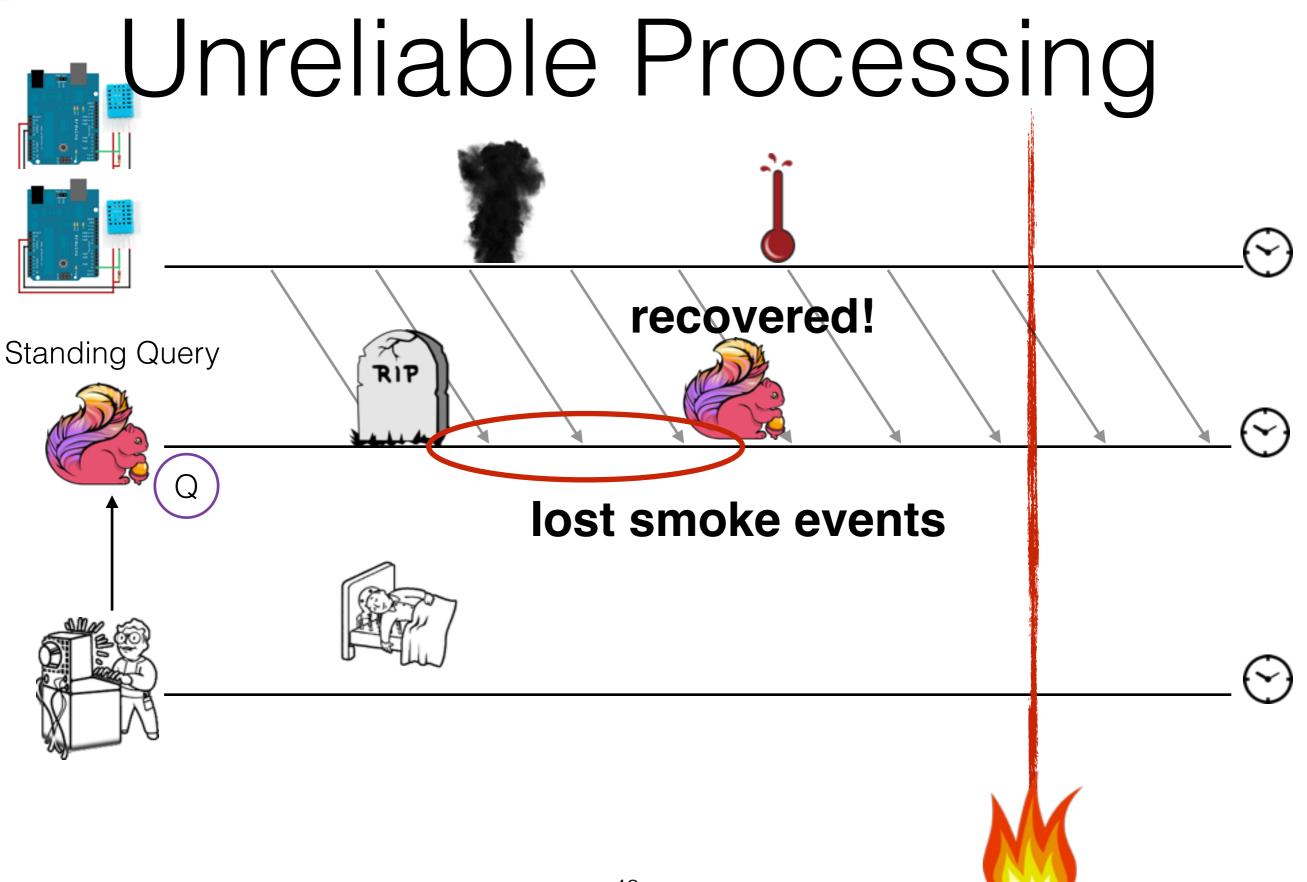












Resilient Brokers

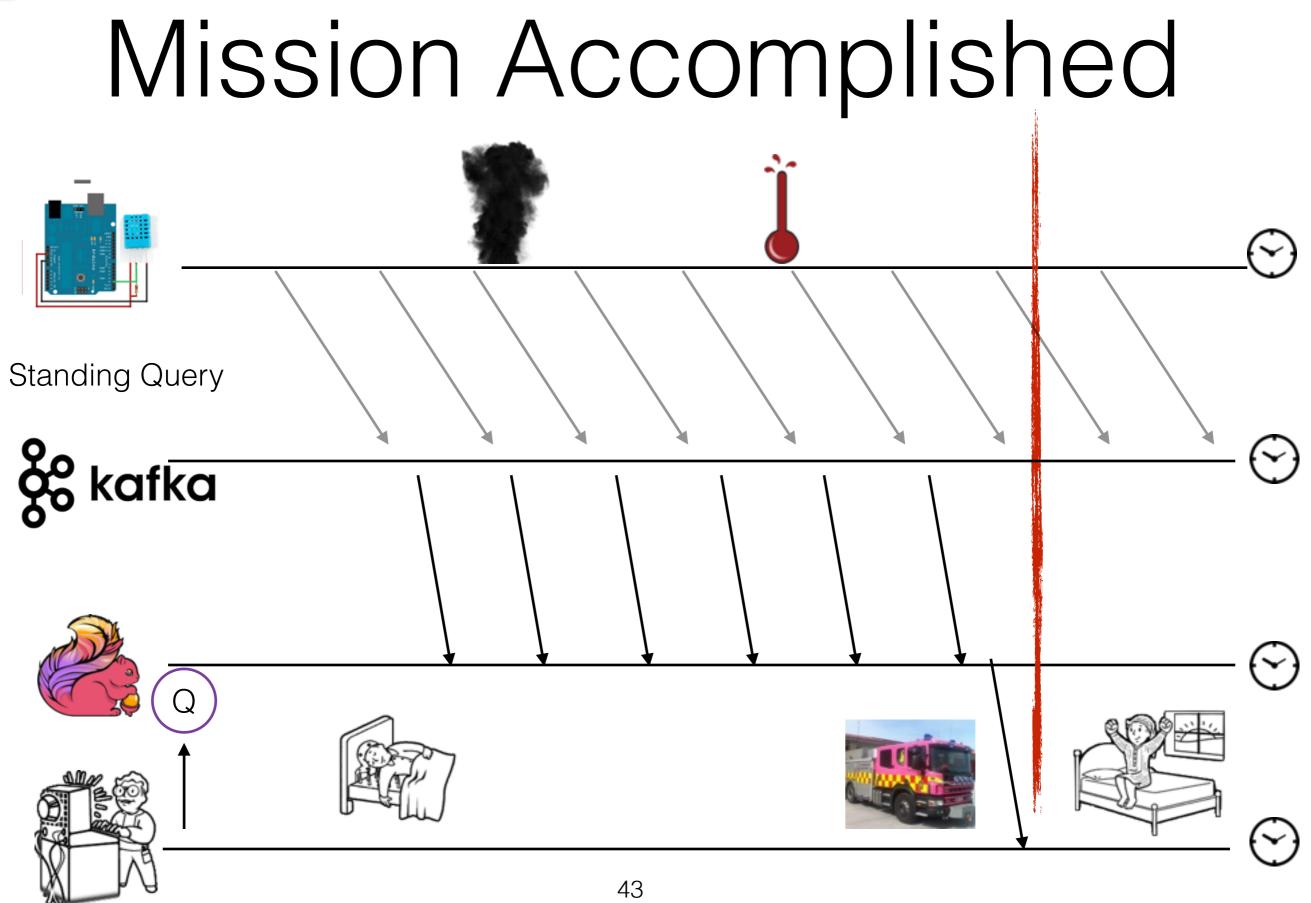
Main Features

- Topic-based partitioned queues
- Strongly consistent offset mapping to records

Processing Guarantees

- Kafka solves the source consistency problem
- How about the rest of the states of the computation ? (e.g. alert operator state)
- Each system offers different guarantees

	Guarantees	Technique	
Storm	at least once	event dependency tracking	
Spark	exactly once	source upstream backup	
Flink	exactly once	periodic snapshots	



Research Topics at KTH/SICS

- Exactly-Once-Output Guarantees
- State management and auto-scaling
- Streaming ML pipelines
- Streaming Graphs