
An Introduction to Distributed
Data Streaming
Elements and Systems

Paris Carbone<parisc@kth.se>
PhD Candidate

KTH Royal Institute of Technology

1

2

2

2

2

how to avoid this?

2

how to avoid this?

2

how to avoid this?

Q

2

how to avoid this?

Q = +

Q

Motivation

3

Q = +

Motivation

3

Q = +

Motivation

3

Q Q

Q = +

Motivation

3

Q Q

Q = +

Motivation

3

Q Q

Q = +

Motivation

4

Q

Standing Query

Motivation

4

Q

Standing Query

Motivation

4

Q

Standing Query

Motivation

4

Q

Standing Query

Preliminaries

• Data Streaming Paradigm

• Incoming data is unbound - continuous arrival

• Standing queries are evaluated continuously

• Queries operate on the full data stream or on the
most recent views of the stream ~ windows

5

Data Streams Basics
• Events/Tuples : elements of computation - respect a schema

• Data Streams : unbounded sequences of events

• Stream Operators: consume streams and generate new ones.

• Events are consumed once - no backtracking!

6

f

S1

S2

So

S’1

S’2

Streaming Pipelines

7

stream1

stream2

approximations
predictions
alerts
……

Q

sources

sinks

Core Abstractions

• Windows

• Synopses (summary state)

• Partitioning

8

Windows

Discussion

Why do we need windows?

9

Windows
• We are often interested only in fresh data

• f = “average temperature over the last minute every 20 sec”

• Range: Most data stream processing systems allow window
operations on the most recent history (eg. 1 minute, 1000 tuples)

• Slide: The frequency/granularity f is evaluated on a given range

10

#seconds40 80

Average #3

Average #2

0

Average #1

20 60 100

f

W: 1min, 20sec

Window Types

11

#sec
40 80

Average #2

0

Average #1

20 60 100

#sec
40 80

Average #3

Average #2

0

Average #1

20 60 100

#sec
40 80

Average #2

0

Average #1

20 60 100

120

120

Sliding

Tumbling

Jumping

range > slide

range = slide

range < slide

Synopses
We cannot infinitely store all events seen

• Synopsis: A summary of an infinite stream

• It is in principle any streaming operator state

• Examples: samples, histograms, sketches, state machines…

12

f

s
a summary of everything

seen so far
1. process t, s
2. update s
3. produce t’

t t’

What about window synopses?

Synopses-Aggregations

• Discussion - Rolling Aggregations

• Propose a synopsis, s=? when

• f= max

• f= ArithmeticMean

• f= stDev

13

Synopses-Approximations

14

• Discussion - Approximate Results

• Propose a synopsis, s=? when

• f= uniform random sample of k records over the
whole stream

• f= filter distinct records over windows of 1000
records with a 5% error

Synopses-ML and Graphs

15

• Examples of cool synopses to check out

• Sparsifiers/Spanners - approximating graph
properties such as shortest paths

• Change detectors - detecting concept drift

• Incremental decision trees - continuous stream
training and classification

Partitioning
• One stream operator is not enough

• Data might be too large to process

• e.g. very high input rate, too many stream sources

• State could possibly not fit in memory

16

f
s

f
s

f
s

parallel instances

How do we
partition the input streams?

f
s

Partitioning
• Partitioning defines how we allocate events to each

parallel instance. Typical partitioners are:

• Broadcast

• Shuffle

• Key-based

17

f
s

f
s

f
s

f
s

f
s

f
s

P

P

P

by
color

Putting Everything Together

18

Fire Detection
Pipeline

{area,temp}

{area,smoke} {loc,alert!}

• operators
• synopses
• windows
• partitioning

trigger
on detection

trigger
periodically

?

Operators

19

A
s

F
s

Rolling Arithmetic Mean of Temperatures

State Machine-based Fire Alarm

{area,temp} {area,avgTemp}

{alarm}

Src

Sensor Data Sources
{area,temp}

Src

{area}
Periodic Temperature Updates

Smoke Detections

trivial…

What is the state and its transitions?

Partitioning
• We are only interested in correlating smoke and

high temperature within the same area

• Events carry area information so we can partition
our computation by area

20

Src P
key:area

Windowing
• Individual sensor data could be potentially faulty

• We need to gather data from all temperature sensors
of an area and produce an average

• We want fresh average temperatures

21

Src P
key:area{area,temp} A

s

A
s

w

w

w = ?

The Fire Alarm

22

The Fire Alarm

22

F
s

The Fire Alarm

22

F
s

T : avgTemp>40
T : avgTemp<40
S : Smoke

The Fire Alarm

22

F
s

T : avgTemp>40
T : avgTemp<40 …TTTSTTSTTTT….
S : Smoke

The Fire Alarm

22

F
s

T : avgTemp>40
T : avgTemp<40 …TTTSTTSTTTT….

OK

HOT

SMOKE

FIRE

T

T

T
S

S

T

T

S : Smoke

The Fire Alarm

22

F
s

T : avgTemp>40
T : avgTemp<40 …TTTSTTSTTTT….

OK

HOT

SMOKE

FIRE

T

T

T
S

S

T

T

synopsis= 1 state

S : Smoke

Putting Everything Together

23

{area,temp}

{area,smoke}

Src

Src

P

P

A
s

A
s

key:area

key:area

w

w

F
s

F
s

P
key:area

{area, alert}

{area,avg_temp}

{area,smoke}

Systems: The Big Picture

24

Proprietary Open Source

Google
DataFlow

IBM
Infosphere

Microsoft
Azure

Flink

Storm

Samza

Spark

Evolution

25

’95
Materialised

Views

’01
Complex

Event
Processing

’03
TelegraphCQ

’03
STREAM

’05
Borealis

’15
User-Defined

Windows

’12
Policy-Based
Windowing

’88
Active

DataBases

’88
HiPac

’12
Twitter
Storm

’12
IBM

System S

’13
Spark

Streaming

’14
Apache

Flink

’13
Parallel

Recovery

’05
Decentralised

Stream Queries

’05
High Availability

on Streaming

concepts

systems
’13

Google
Millwheel

’13
Discretized

Streams

’00
Eddies

02
Aurora ’12

Twitter
Storm

Programming Models

26

Compositional Declarative

• Offer basic building blocks
for composing custom
operators and topologies

• Advanced behaviour such
as windowing is often
missing

• Custom Optimisation

• Expose a high-level API
• Operators are higher order

functions on abstract data
stream types

• Advanced behaviour such
as windowing is supported

• Self-Optimisation

Programming Model Types

27

DStream, DataStream,
PCollection…

• Direct access to the
execution graph / topology

• Suitable for engineers

• Transformations abstract
operator details

• Suitable for engineers
and data analysts

Standing Queries with
Apache Storm

28

• Step1: Implement input (Spouts) and intermediate operators
(Bolts)

• Step 2: Construct a Topology by combining operators

Spout Bolt Bolt

Spouts are the
topology sources

The listen to data
feeds

Bolts represent all intermediate computation
vertices of the topology

They do arbitrary data manipulation

Each operator can emit/subscribe to Streams
(computation results)

Example: Topology Definition

29

numbers new_numbers

numbers new_numbers

toFile

Standing Queries with
Apache Flink

30

Flink Runtime

Flink Job Graph Builder/Optimiser

Flink Client

Streaming
Program

• Operator fusion
• Window Pre-aggregates

• Deploy Long Running Tasks
• Monitor Execution

Distributed Stream
Execution Paradigms

31
(Hadoop, Spark) (Spark Streaming)

1) Real Streaming (Distributed Data Flow)

LONG-LIVED TASK EXECUTION STATE IS KEPT INSIDE
TASKS

2) Batched Execution

Windows in Action

32

• DStreams are already
partitioned in time windows

• Only time windows supported

• Windows decomposed into
policies

• Policies can be user-defined too

range

slide

Windows on Storm?

33
src-http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

src-http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

Partitioning in Action

34

forward()
shuffle()
broadcast()
keyBy()

partitionCustom()

shuffleGrouping()
allGrouping()
fieldsGrouping()

customGrouping()

repartition(num)
reduceByKey()
updateStateByKey()

no fine-grained control full control

Synopses in Action

35

implementing a rolling max per key

State in Spark?

36

• Streams are partitioned into small batches
• There is practically no state kept in workers (stateless)
• How do we keep state??

(Spark Streaming)

put new states in output RDDdstream.updateStateByKey(…)

In S’

Implementing the alarm in
Flink

37

So everything works

38

{area,temp}

{area,smoke}

Src

Src

P

P

A
s

A
s

key:area

key:area

w

w

F
s

F
s

P
key:area

{area,avg_temp}

{area,smoke}

or…

Unreliable Sources

39

Standing Query

Q

Unreliable Sources

39

Standing Query

Q

Unreliable Sources

39

Standing Query

Q

Unreliable Sources

39

Standing Query

add more sensors

Q

Unreliable Processing

40

Standing Query

Q

Unreliable Processing

40

Standing Query

Q

recovered!

Unreliable Processing

40

Standing Query

Q

recovered!

Unreliable Processing

40

Standing Query

Q
lost smoke events

Resilient Brokers

Main Features

• Topic-based partitioned queues

• Strongly consistent offset mapping to records

41

Processing Guarantees
• Kafka solves the source consistency problem

• How about the rest of the states of the computation ? (e.g. alert
operator state)

• Each system offers different guarantees

42

Guarantees Technique

Storm at least once event dependency tracking

Spark exactly once source upstream backup

Flink exactly once periodic snapshots

43

Q

Standing Query

Mission Accomplished

Research Topics at
KTH/SICS

• Exactly-Once-Output Guarantees

• State management and auto-scaling

• Streaming ML pipelines

• Streaming Graphs

44

