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Preliminaries

• Data Streaming Paradigm 

• Incoming data is unbound - continuous arrival 

• Standing queries are evaluated continuously 

• Queries operate on the full data stream or on the 
most recent views of the stream ~ windows
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Data Streams Basics
• Events/Tuples : elements of computation - respect a schema 

• Data Streams : unbounded sequences of events  

• Stream Operators: consume streams and generate new ones. 

• Events are consumed once - no backtracking!
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Streaming Pipelines
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Core Abstractions

• Windows  

• Synopses (summary state) 

• Partitioning
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Windows

Discussion

Why do we need windows?
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Windows
• We are often interested only in fresh data

• f = “average temperature over the last minute every 20 sec” 

• Range: Most data stream processing systems allow window 
operations on the most recent history (eg. 1 minute, 1000 tuples)  

• Slide: The frequency/granularity f is evaluated on a given range 
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Window Types
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Synopses
We cannot infinitely store all events seen 

• Synopsis: A summary of an infinite stream 

• It is in principle any streaming operator state 

• Examples: samples, histograms, sketches, state machines… 
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Synopses-Aggregations

• Discussion - Rolling Aggregations  

• Propose a synopsis, s=? when 

• f= max 

• f= ArithmeticMean 

• f= stDev
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Synopses-Approximations
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• Discussion - Approximate Results  

• Propose a synopsis, s=? when 

• f= uniform random sample of k records over the 
whole stream 

• f= filter distinct records over windows of 1000 
records with a 5% error



Synopses-ML and Graphs
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• Examples of cool synopses to check out 

• Sparsifiers/Spanners - approximating graph 
properties such as shortest paths 

• Change detectors - detecting concept drift

• Incremental decision trees - continuous stream 
training and classification



Partitioning
• One stream operator is not enough 

• Data might be too large to process 

• e.g. very high input rate, too many stream sources 

• State could possibly not fit in memory 
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Partitioning
• Partitioning defines how we allocate events to each 

parallel instance. Typical partitioners are: 

• Broadcast 

• Shuffle 

• Key-based
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Putting Everything Together
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Fire Detection 
Pipeline

{area,temp}

{area,smoke} {loc,alert!}

• operators 
• synopses  
• windows 
• partitioning

trigger  
on detection

trigger  
periodically

?



Operators
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State Machine-based Fire Alarm

{area,temp} {area,avgTemp}

{alarm}

Src

Sensor Data Sources
{area,temp}

Src

{area}
Periodic Temperature Updates

Smoke Detections

trivial…

What is the state and its transitions?



Partitioning
• We are only interested in correlating smoke and 

high temperature within the same area 

• Events carry area information so we can partition 
our computation by area 
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Windowing
• Individual sensor data could be potentially faulty 

• We need to gather data from all temperature sensors 
of an area and produce an average 

• We want fresh average temperatures 
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The Fire Alarm
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The Fire Alarm
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The Fire Alarm
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Putting Everything Together
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Systems: The Big Picture
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Proprietary Open Source

Google  
DataFlow

IBM  
Infosphere

Microsoft 
Azure

Flink

Storm

Samza

Spark



Evolution
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Programming Models
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Compositional Declarative

• Offer basic building blocks 
for composing custom 
operators and topologies 

• Advanced behaviour such 
as windowing is often 
missing 

• Custom Optimisation

• Expose a high-level API 
• Operators are higher order 

functions on abstract data 
stream types 

• Advanced behaviour such 
as windowing is supported 

• Self-Optimisation 



Programming Model Types
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DStream, DataStream, 
PCollection…

• Direct access to the 
execution graph / topology

• Suitable for engineers

• Transformations abstract 
operator details

• Suitable for engineers 
and data analysts



Standing Queries with 
Apache Storm
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• Step1: Implement input (Spouts) and intermediate operators 
(Bolts) 

• Step 2: Construct a Topology by combining operators

Spout Bolt Bolt

Spouts are the 
topology sources

The listen to data 
feeds

Bolts represent all intermediate computation 
vertices of the topology

They do arbitrary data manipulation

Each operator can emit/subscribe to Streams 
(computation results)



Example: Topology Definition
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Standing Queries with 
Apache Flink

30

Flink Runtime

Flink Job Graph Builder/Optimiser

Flink Client 

Streaming 
Program

• Operator fusion 
• Window Pre-aggregates

• Deploy Long Running Tasks 
• Monitor Execution



Distributed Stream 
Execution Paradigms
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(Hadoop, Spark) (Spark Streaming)

1) Real Streaming (Distributed Data Flow)

LONG-LIVED TASK EXECUTION STATE IS KEPT INSIDE 
TASKS

2) Batched Execution



Windows in Action
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• DStreams are already 
partitioned in time windows 

• Only time windows supported

• Windows decomposed into 
policies 

• Policies can be user-defined too

range

slide



Windows on Storm? 
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src-http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/

src-http://www.michael-noll.com/blog/2013/01/18/implementing-real-time-trending-topics-in-storm/


Partitioning in Action
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forward() 
shuffle() 
broadcast() 
keyBy() 

partitionCustom()

shuffleGrouping() 
allGrouping() 
fieldsGrouping() 

customGrouping() 

repartition(num) 
reduceByKey() 
updateStateByKey() 

no fine-grained control full control 



Synopses in Action
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implementing a rolling max per key



State in Spark?
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• Streams are partitioned into small batches 
• There is practically no state kept in workers (stateless) 
• How do we keep state??

(Spark Streaming)

put new states in output RDDdstream.updateStateByKey(…)

In S’



Implementing the alarm in 
Flink
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So everything works
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Unreliable Sources
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Unreliable Sources
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Unreliable Processing
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recovered!

Unreliable Processing
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recovered!

Unreliable Processing

40

Standing Query

Q
lost smoke events



Resilient Brokers

Main Features

• Topic-based partitioned queues 

• Strongly consistent offset mapping to records
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Processing Guarantees
• Kafka solves the source consistency problem 

• How about the rest of the states of the computation ? (e.g. alert 
operator state) 

• Each system offers different guarantees 
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Guarantees Technique

Storm at least once event dependency tracking

Spark exactly once source upstream backup

Flink exactly once periodic snapshots
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Research Topics at  
KTH/SICS

• Exactly-Once-Output Guarantees 

• State management and auto-scaling  

• Streaming ML pipelines 

• Streaming Graphs
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