M Advanced topics in
@ Apache Flink™

Maximilian Michels Ufuk Celebi

mxm@apache.org uce@apache.org
@stadtlegende @iamuce

EIT ICT Summer School 2015 dataArtisans

Agenda

= Batch analytics

= |terative processing

= Fault tolerance

= Data types and keys
= More transformations

= Further APl concepts

Batch analytics

Memory Management

e

" T e QQW\&A'\.(d, "LOOP
_ S SN

¢ WS- Cole

/u“"‘“zw(uavno Iy

* Sortie
¢ Nasd - tolJes
¢ Cadal \A&

‘I E UKL Uewnory 37 et

—

[/
17

—

—

A —~— 0/0} (LO-S\\C, ’\—M %CQM
PN = ¢ e Hakon stiuctuses

~ 0

e Sayvice mitalltaticn

Toshk ﬂa'\'\a%er
aVM ‘/\Qo\e 4

Memory Management

Managed memory in Flink g"

Hash Join
Probe side: 64GB

12

4
2
O T T T T T T T T T T T
1 2 3 4 5 6 7 8 9 10 11 12

I Size of build side input in GB

=
o

0o

Execution time in minutes
(@)

Memory runs out

See also: http://flink.apache.org/news/2015/03/13/peeking-into-Apache-Flinks-Engine-Room.html

Cost-based optimizer =

GroupRed GroupRed

sort sort

2 [[]

hash-part [0,1]

forward

[Join Join
Hybrid Hash . (> Hybrid Hash

buildHT probe

W vv\v\\ buildHT probe
broadcast forward hash-,parté [Oé] ha§sh-§pa\r[‘ =
P DataSource
S
Filter lineitem.tbl

Filter

DataSource
DataSource

orders.tbl
orders.tbl

lIZ
)
©

Table API g

customers = env.readCsvFile(..).as('id, 'mktSegment)
.filter()

orders = env.readCsvFile(..)
.filter(o => dateFormat.parse(o.orderDate).before(date))

.as()

items = orders
.join(customers) .where()
.join(lineitems).where()
.select(

result = items

.groupBy/()
.select()

Flink stack

o
~
= o
ofl S o
SR+ =
4V
T

DataSet (Java/Scala) DataStream (Java/Scala)

Streaming dataflow runtime

Iterative processing

10

Non-native iterations L.

for (int 1 = 0; i < maxIterations; i++) {
// Execute MapReduce job

}

1M

Iterative processing in Flink Ly

Flink offers built-in iterations and delta
iterations to execute ML and graph
algorithms efficiently.

ID1 <

D2
ID3

o
“o

12

FlinkML g

= APl for ML pipelines inspired by scikit-learn

= Collection of packaged algorithms
* SVM, Multiple Linear Regression, Optimization, ALS, ...

val trainingData: DataSet[LabeledVector] = ...
val testingData: DataSet[Vector] = ...

val scaler = StandardScaler()

val polyFeatures = PolynomialFeatures().setDegree(3)

val mlr = MultiplelLinearRegression()

val pipeline = scaler.chainTransformer(polyFeatures).chainPredictor(mlr)

pipeline.fit(trainingData)

val predictions: DataSet[LabeledVector] = pipeline.predict(testingData)

13

Gelly =

= Graph API: various graph processing paradigms

= Packaged algorithms

« PageRank, SSSP, Label Propagation, Community
Detection, Connected Components

ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
Graph<Long, Long, NullValue> graph = ...

DataSet<Vertex<Long, Long>> verticesWithCommunity = graph.run(
new LabelPropagation<Long>(30)).getVertices();

verticesWithCommunity.print();

env.execute();

14

Example: Matrix Factorization ..

Factorizing a matrix with
28 billion ratings for

recommendations
Item
W X Y Z
A 4.5 | 2.0 Ali208
B |40 3.5 | Bli40.9
4 ! : ' =

oC 5.0 | ' 2.0 Clisio
D | 35| 40/ 1.0 Dl120s
Rating Matrix User
Matrix

900 13 hours

800
700
600
500
400
300
200
100

From medium
to large nodes

Completion time (minutes)

O
5.5 hours

0 5000 10000 15000 20000 25000 30000
Number of enties (million)

w X Y Z

1.5 1.2 1.0 0.8

1.7, 0.6 | 1.1 0.4

Item
Matrix

More at: http://data-artisans.com/computing-recommendations-with-flink.html 15

Fault tolerance

Why be fault tolerant? Ly

= Failures are rare but they occur

= The larger the cluster, the more likely
failures

= Types of tailures

e ". “ .Q
 Hardware

» Software

V| ! nout! S

17

Recovery strategies Ly

Batch
= Simple strategy: restart the job/tasks

= Resume from partially crated intermediate
results or re-read and process the entire
Input again

Streaming

= Simple strategy: restart job/tasks

= We loose the state of the operators

= Goal: find the correct offset to resume from

Streaming fault tolerance g°

= Ensure that operators see all events
* "At least once”

* Solved by replaying a stream from a
checkpoint, e.g., from a past Katka offset

= Ensure that operators do not perform
duplicate updates to their state

» "Exactly once”
» Several solutions

19

Exactly once approaches Ly

= Discretized streams (Spark Streaming)
 Treat streaming as a series of small atomic computations

+ "Fast track” to fault tolerance, but restricts computational
and programming model (e.g., cannot mutate state
across “mini-batches” window functions correlated with
mini-batch size)

= MillWheel (Google Cloud Dataflow)

* State update and derived events committed as atomic
transaction to a high-throughput transactional store

* Requires a very high-throughput transactional store ©

= Chandy-Lamport distributed snapshots (Flink)

20

Initiate Checkpoint

JobManager

Replay will start from here

21

Barriers “push” prior events
(assumes in-order delivery in
individual channels)

JobManager

Operator checkpointing

starting

Operator checkpointing in
progress

Operator checkpointing
finished

22

Pluggable mechanism. Currently
either JobManager (for small state)
or file system (HDFS/Tachyon). WiP

for in-memory grids

Operator checkpointin
JObManager taEes snapshot cl?f state%fter
ack’'d data have updated the
State backup state. Checkpoints currently
one-off and synchronous,
WiP for incremental and

asynchronous

23

State backup

At failure,
recover last

checkpointed
state and restart
sources from
last barrier. This

guarantees at
least once

State’snapshots at sinks
signal successful end of this
checkpoint

24

Best of all worlds for streaming ..

= Low latency
* Thanks to pipelined engine

= Exactly-once guarantees
* Variation of Chandy-Lamport

= High throughput

+ Controllable checkpointing overhead

= Separates app logic from recovery
* Checkpointing interval is just a config parameter

25

Fault Tolerance Demo

26

What kind of data can Flink handle?

Type System and Keys

27

Apache Flink’s Type System ..

= Flink aims to support all data types
* Ease of programming
* Seamless integration with existing code

= Programs are analyzed before execution
+ Used data types are identified
» Serializer & comparator are configured

28

Apache Flink’s Type System ..

= Data types are either
« Atomic types (like Java Primitives)
« Composite types (like Flink Tuples)

= Composite types nest other types

* Not all data types can be used as keys!
* Flink groups, joins & sorts DataSets on keys
» Key types must be comparable

29

Atomic Types

BasicType

ArrayType

WritableType

GenericType

Java Primitives
(Integer, String, ...)

Arrays of Java primitives
or objects

Implements Hadoop’s
Writable interface

Any other type

Yes

No

Yes, if implements
WritableComparable

Yes, if implements
Comparable

Composite Types Ly

= Are composed of fields with other types
* Fields types can be atomic or composite

= Fields can be addressed as keys
* Field type must be a key type!

= A composite type can be a key type
- All field types must be key types!

31

PojoType

= Any Java class that
* Has an empty default constructor

 Has publicly accessible fields
(Public or getter/setter)

public class Person A
public int id;
public String name;
public Person() {};
public Person(int id, String name) {..};

}

DataSet<Person> p =
env.fromElements(new Person(1l, "Bob”)); .

PojoType

= Define keys by tield name

DataSet<Person> p = ..
// group on “name” field
d.groupBy(“name”).groupReduce(..);

33

Scala CaseClasses ..

= Scala case classes are natively supported

case class Person(id: Int, name: String)
d: DataSet[Person] =
env.fromElements(new Person(1l, “Bob”)

= Define keys by field name

// use field “name” as key
d.groupBy(“name”).groupReduce(...)

34

Composite & nested keys Ly

DataSet<Tuple3<String, Person, Double>> d = ..

= Composite keys are supported

// group on both long fields
d.groupBy(@, 1).reduceGroup(..);

= Nested fields can be used as types

"

// group on nested “name” field
d.groupBy(“fl.name”).reduceGroup(..);

= Full types can be used as key using “*" wildcard

// group on complete nested Pojo field
d.groupBy(“f1.x").reduceGroup(..);

« "*" wildcard can also be used for atomic types

Join & CoGroup Keys Ly

= Key types must match for binary operations!

DataSet<Tuple2<Long, String>> dl = ..
DataSet<Tuple2<Long, Long>> d2 = ..

// WOrks
dl.join(d2).where(0).equalTo(1l).with(..);

// works
dl.join(d2).where(“f0"”).equalTo(0).with(..);
// does not work!
dl.join(d2).where(1).equalTo(0).with(..);

36

KeySelectors Ly
= Keys can be computed using KeySelectors

public class SumKeySelector implements
KeySelector<Tuple2<Long, Long>, Long> {

public Long getKey(Tuple2<Long, Long> t) {
return t.f0 + t.f1;

Fr

DataSet<Tuple2<Long,Long>> d = ..
d.groupBy(new SumKeySelector()).reduceGroup(..);

37

Getting data in and out

Advanced Sources and Sinks

Supported File Systems Ly

= Flink build-in File Systems:
* LocalFileSystem (file://)
* Hadoop Distributed File System (hdfs://)
* Amazon S3 (s3://)
* MapR FS (maprts://)

= Support for all Hadoop File Systems
* NFS, Tachyon, FTP, har (Hadoop Archive), ...

39

Input/Output Formats Ly

= FilelInputFormat
(recursive directory scans supported)

* DelimitedInputFormat
 TextlnputFormat (Reads text files linewise)
* CsvinputFormat (Reads field delimited files)

* BinarylnputFormat
* AvrolnputFormat (Reads Avro POJOs)

= JDBClnputFormat (Reads result of SQL query)

* HadooplnputFormat
(Wraps any Hadoop InputFormat)

40

Hadoop Input/OutputFormats ..

= Support for all Hadoop I/OFormats

= Read from and write to
* MongoDB
* Apache Parquet
» Apache ORC
+ Apache Kafka (for batch)
« Compressed file formats (.gz, .zip, ...)
* and more...

41

Using InputFormats Ly

ExecutionEnvironment env = ..

// read text file linewilse
env.readTextFile(..):

// read CSV file
env.readCsvFile(..);

// read file with Hadoop FileInputFormat
env.readHadoopFile(..);

// use regular Hadoop InputFormat
env.createHadoopInput(..);

// use regular Flink InputFormat
env.createInput(..);

42

Transformations & Functions

43

Transformations L.

= DataSet Basics presented:
* Map, FlatMap, GroupBy, GroupReduce, Join

= Reduce

= CoGroup

= Combine

= GroupSort

= AllIReduce & AllGroupReduce

= Union
= see documentation for more transformations

44

GroupReduce (Hadoop-style) ..

= GroupReduceFunction gives iterator over
elements of group

* Elements are streamed (possibly from disk),
not materialized in memory

* Group size can exceed available JVM heap

= Input type and output type may be different

45

Reduce (FP-style) ..

* Reduce like in functional programming

* Less generic compared to GroupReduce
* Function must be commutative and associative
* Input type == Output type

* System can apply more optimizations
* Always combinable
* May use a hash strategy for execution (future)

46

Reduce (FP-style) Ly

DataSet<Tuple2<Long,Long>> sum = data
.groupBy(0)
.reduce(new SumReducer());

public static class SumReducer implements
ReduceFunction<Tuple2<Long, Long>> {

@Override
public Tuple2<Long,Long> reduce(

Tuple2<Long,Long> v1,
Tuple2<Long,Long> v2) A
vl.fl += v2.f1;

return vl1;

}

CoGroup Ly

= Binary operation (two inputs)
* Groups both inputs on a key

* Processes groups with matching keys of both
Inputs

= Similar to GroupReduce on two inputs

Key Field
N »u !
A E—

-

48

CoGroup Ly

DataSet<Tuple2<Long,String>> dl1 = ..;
DataSet<Long> d2 = ..;

DataSet<String> d3 =
d1.coGroup(d2).where(0).equalTo(1).with(new CoGrouper());

public static class CoGrouper implements
CoGroupFunction<Tuple2<Long,String>,Long,String>{

@Override
public void coGroup(Iterable<Tuple2<Long,String> vsl,

Iterable<Long> vs2, Collector<String> out) {
if(!'vs2.iterator.hasNext()) {
for(Tuple2<Long,String> v1 : vs1) {
out.collect(vl.f1);
s
I3
P} 49

Combiner ..

= Local pre-aggregation of data
+ Before data is sent to GroupReduce or CoGroup
* (functional) Reduce injects combiner automatically
* Similar to Hadoop Combiner

= Optional for semantics, crucial for performance!
* Reduces data before it is sent over the network

50

Combiner WordCount Example

(A, 3)
Combine &
(B, 2)
Reduce g
(A, 2) (C, 4)
(C, 2)
Combine ‘
(B, 2)
A 3) Reduce
(C,1)

Combine

51

Use a combiner g

= Implement RichGroupReduceFunction<I, 0>
* Qverride combine(Iterable<I> in, Collector<0>):
- Same interface as reduce() method
* Annotate your GroupReduceFunction with @Combinable

* Combiner will be automatically injected into Flink
program

= Implement a GroupCombineFunction

- Same interface as GroupReduceFunction
- DataSet.combineGroup()

52

GroupSort

= Sort groups before they are handed to
GroupReduce or CoGroup functions

* More (resource-)efficient user code
 Easier user code implementation

* Comes (almost) for free

 Aka secondary sort (Hadoop)

DataSet<Tuple3<Long,Long,Long> data = ..;

data.groupBy(0)
.sortGroup(l, Order.ASCENDING)

.groupReduce(new MyReducer());

53

AllReduce / AllGroupReduce ..

= Reduce / GroupReduce without GroupBy
* Operates on a single group -> Full DataSet
* Full DataSet is sent to one machine
* Will automatically run with parallelism of 1

= Careful with large DataSets!
* Make sure you have a Combiner

54

Union g

= Union two data sets

 Binary operation, same data type required
* No duplicate elimination (SQL UNION ALL)
* Very cheap operation

DataSet<Tuple2<String, Long> dl
DataSet<Tuple2<String, Long> d2 = ..;

DataSet<Tuple2<String, Long> d3
dl.union(d2);

55

RichFunctions ..

= Function interfaces have only one method
* Single abstract method (SAM)
* Support for Java8 Lambda functions

* There is a "Rich” variant for each function.

* RichFlatMapFunction, ...

- Additional methods
- open(Configuration c)
. close()
« getRuntimeContext()

56

RichFunctions & RuntimeContext ..

= RuntimeContext has useful methods:
- getIndex0fThisSubtask ()
- getNumberOfParallelSubtasks()

- getExecutionConfig()

= (ives access to:

* Accumulators
» DistributedCache

flink.apache.org 57

Further APl Concepts

Broadcast Variables L.

Example: Tag words with IDs in text corpus

Text
data set

broadcast (small)
dictionary to all

Dictionary Mappers

Broadcast variables L.

= register any DataSet as a broadcast
variable

= available on all parallel instances

DataSet<Integer> toBroadcast = env.fromElements(1l, 2, 3);
map().withBroadcastSet(toBroadcast, "broadcastSetName");

getRuntimeContext().getBroadcastVariable('"broadcastSetName");

60

Accumulators L.

= Lightweight tool to compute stats on data
* Useful to verify your assumptions about your data
* Similar to Counters (Hadoop MapReduce)

= Build in accumulators
* Int and Long counters
* Histogramm

= Easily customizable

61

Accumulators L.

Example:
Count total number of words in text corpus

map JobManager
long counter++ counter =

4 +

map 18 +
long counter++
22 =

long counter++

Send local counts from parallel
instances to JobManager

Using Accumulators Ly

= Use accumulators to verify your
assumptions about the data

class Tokenizer extends
RichFlatMapFunction<String, String>> {

@Override
public void flatMap(String val,
Collector<String> out) {
getRuntimeContext ()
.getLongCounter("elementCount").add(1L);
// do more stuff.

}
}

Get Accumulator Results 5.

= Accumulators are available via JobExecutionResult
* returned by env.execute()

JobExecutionResult result = env.execute("WordCount");
long ec = result.getAccumulatorResult("elementCount");

= Accumulators are displayed

* by CLI client
* inthe JobManager web frontend

64

Closing

| @ @, do you? Ly

= Getinvolved and start a discussion on
Flink’s mailing list
= { user, dev }J@flink.apache.org

= Subscribe to news@flink.apache.org

= Follow flink.apache.org/blog and
@ApacheFlink on Twitter

66

BERLIN 12/13 0CT 2015

flink-forward.org

October 12-13, 2015

Call for papers deadline:
August 14, 2015

Discount code: FlinkEITSummerSchool25

67

Thank you for listening!

Flink compared to other projects

Batch & Streamlng projects Ly

Batch only (.
(¢
Q L

Streaming only 5:

Hybrid

70

Batch comparison

API

Data Transfer

Memory
Management

Iterations

Fault tolerance

Good at

Libraries

.Spcnr‘lgZ

low-level high-level high-level
batch batch pipelined & batch
disk-based JVM-managed Active managed
file system in-memory
cached cached streamed
task level task level job level

massive scale out

data exploration

heavy backend &
iterative jobs

many external

built-in & external

evolving built-in &
external

71

Streaming comparison =

< .Spcnr‘lgZ

Streaming “true” mini batches “true”

API low-level high-level high-level

coarse

Fault tolerance tuple-level ACKs | RDD-based (lineage) checkpointing

State not built-in external internal

Exactly once at least once exactly once exactly once

Windowing not built-in restricted flexible

Latency low medium low

Throughput medium high high

72

Stream platform architecture ..

Server Downstream
logs systems
: &3 kafka :
Trxn
logs

Sensor
logs

Gather and backup streams - Analyze and correlate streams
Offer streams for consumption - Create derived streams and state
Provide stream recovery - Provide these to downstream systems

73

What is a stream processor? ..

Pipelining } Basics
Stream replay

Operator state State

Backup and restore

High-level APIs } App development

Integration with batch

. High availability
. Scale-in and scale-out

Large deployments

N U AW N

See http://data-artisans.com/stream-processing-with-flink.html|
74

Engine comparison

MapReduce on k/v pair
A k/v pairs Readers/Writers
Paradigm MapReduce DAG
Optimization none none
Batch Batch
atc .
Execution ol Sort!rTg apd
9 partitioning

Transformations

Spark

lterative

on k/v pair transformations
collections on collections
RDD Cyclic

dataflows

Optimization Optimization
of SQL queries in all APIs
Batch with Stream with
memory out-of-core
pinning algorithms

