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Outline

*  Online social networks: a case study

—network analysis

—measuring homophily

—measuring selection and influence mechanisms
« Mining face-to-face interactions
*  Online vs offline networks

—comparison

—predicting links?



Social networks

* Huge field of research

» Data: mostly small samples, surveys

N

* Multiplexity

> Issue of data mining

° L0n9|tUdma| data McPherson et al, Annu. Rev. Sociol. (2001)




New technologies
 Emall networks

» Cellphone call networks
—Mobility patterns
—Interaction networks

» Real-world interactions
—MIT reality mining
—Sociopatterns.org

* Online networks/ social web

ey

NEW DATASETS,

-longitudinal data
-on vs oftline comparison




Case study: aNobil

(stmilar analysis done also for last.fm and flickr)

* Social network
* ~100 000-150 000 users
* “specialized/topical” content-sharing site

» Users expose profiles (content) and links:
—Books read by user; Wishlist of books
—Tags describing the books
—Groups of discussion
—Geographical information

e Communication between users

anObII Together we find better books



Network properties



Activity measures

Heterogeneity of all users’ activity amounts

Networking

Tagging/Groups

Books

<
=]

10 T T TTTT] T T T TTTT T TTTT

I llllllll | llllllll LA

10
10

10
10

—_—
S S

' '
N

P(0)=0.254

—_— i —
oo O
N

- 1 1 lllllll | 1 lllllll "5 | | lllllll | | lllllll
10 10
10° 10" 10° 10° }00 10" 10° 10°
] llllllll | llllllll 1 llllllll | llllllll - | | | llllll 1 | llllll ]

P(0)=0.48

VI SEVOR

lllllllll lllllllll | 1 lllllll | L Ll
0 1

10° 100 10° 100 10 0 10 10°

| llllllll 1 llllllll | llllllll LI L llll”l LI lllllll LA

P —
o O O O O

[—

P(0)=0.06 P(0)=0.496

| llllllll | llllllll

- | | lllllll | | lllllll | L Ll -
10 10
10° 100 10°  10° 10" 10" 10" 107 10°




Correlations

Correlation between user’s activity types:

T L TrTTT Il l v ]
o <ng(kout) > o8
10°F
Sharing and |
annotating  10%F )
activities i
10'E
loog
1 ral 3 1l e |
10" 10’ 10° 10°
kout

Social networking



Mixing patterns

average activity of nearest neighbors
as a function of own activity

[ A2
10 : LI ll”lll LI ll”ll' ST o lll”ll :
The more a user is - M) e
active, the more his/her | : oo%;iof:gfi;o o
. - %
neighbours are active L ,,°‘*°h“"3~§‘5 Y
‘ o o0 ° % %o‘b o°
| IR TTT] R 111111; °°°1 8) ‘1,111111
10 o 2
10" 100 ,10° 10’
4 {
10 § LI lllllll LI l”l"l LI lllllll LI lllllll g
Assortative mixing, - :
usual 1n social networks pein .
2L -
10 E Ll lllllll 11 lllllll | .| lllllllo l%l°l llllll :
0 1
10° 10" 10> 100 10°

n,

2 n 1 P rrrn 1 T rrrn 1 LI
C n (ng) -
- g,nn -
- 0p -
o % o
i ° 00 of so 7
- .Q °570 -G
o %Wam & ©
%oow T oﬂgf.
- o0 o4 -
°o° o °
) ° © ° o ?
1 | Ll llllll | 1l llllll % | Ll
10 " 5
10 10", 10
g
LI llll]ll || ll”"l 1 llllonll g 11T
2| —
10" F :
'y 7
- o . -
Ll lllllll Ll lllllll l 9 llfﬂll f Ll
1 4
10 10 10 10 10
w




Homophily?



Is geography important?
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Geography

Dataset peculiarities
Many users specify their home country (97%) or town (38%)
Particular geographical distribution

1%

UK
— |
I 3%
60% 30 Others
Italy N.A.

=> need to compare with null model
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Geography

City
Country

Abroad
Unknown
City (shuffled)
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Abroad (shuffled)
Unknown (shuffled)

Distance on network




Topical alignment of users’ profiles!?

* Measure: common books, tag usage patterns, shared
groups

* global?

* |ocal? (between neighbors on the social network)

* dependence on distance on the social network??

measures of alignment:

e # common books of two users

e # distinct tags shared between two users
* # groups shared

e similarity measures (normalized)




Alignment of users’ profiles

random pairs of users:

» no alignment (small average # of common tags/groups/books)
» most likely case: no shared tags/groups/books
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Alignment along the network
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Lexical/topical alignment:
building a null model

» conserve the structure of the social graph

» keep unchanged the statistical properties
» tag frequencies
» activity of users
» correlations between activities
» mixing patterns

* but: remove assortativity-related alignment



Alignment along the network
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=> Genuine HOMOPHILY eftect,
not only due to assortativity w.r.t.
amount of activity
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Alignment along the network
and the communication network
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Homophily:
Selection or influence?



Dynamics

Successive snapshots at intervals of 15 days
* New nodes
* New links from new to old nodes

Every 2 weeks:
— 2000 to 3000 new users
— 20000 to 30000 new links

However: all statistical properties remain stationary

7 Measure: homophily

* New links between old nodes N
_ , _ _ because of
» Evolution of users’ profiles *Selection?

eInfluence?




Dynamics: new links

m—u New links a->b
A—A New links a<->b
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Triangle closure
(many new links

between users who
were at distance 2)
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hence many new
links between users
more similar than
random



Dynamics: selection or influence?

<n,,> O, <ng,> o,
Al a,tc>j Sli(;h that 002 | 142061 005 New links
ab between
Simple closure already
(a->b with 18.2(0.09) | 0.04 1.81 (0.45) 0.1 present users
dab=2)
Double closure a b
(a <-> b with 0.05 | 2.2(0.36) 0.12 v
dab=2)

Larger average similarity at t for pairs which become linked between t and t+1
(and smaller proba to have 0 similarity)



Dynamics: selection or influence?
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Influence In the adoption of books
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Distribution of the fraction/number of neighbours who have read book b at time t,
for ‘adopters’ of book b between t and t+1, 1.e., users:

-without book b at time t

-with book b at time t+1
and for non-adopters (users without the book at both t and t+1)



Influence in the adoption of books
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Adopters have been more ‘exposed’ to the book than non-adopters



Influence in the adoption of books
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What about predicting new links?

Creation of new links influenced by:

-Proximity on the graph (friends of friends,...)
-Strength of communication
-Selection mechanism (profile similarity)

=> use topological + profile features, train classifier to select most predictive
features, create recommendation system



What about predicting new links?

Test set of users making at least 20 new ties at distance 2
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relevant features and for two unsupervised baselines (common neighbors and library
similarity). Right: Relative improvement on the classifier-based approach over the
baselines.

=> not so good results, due to low activity, small fraction of new links
at d=2, directionality of links, topicality of social network?



Dynamical real-world
social/behavioral networks

Mining social interaction networks

— Bluetooth, wifl (O’ Neill et al 2006; Scherrer et al 2008; Eagle, Pentland 2009)
— MIT Reality mining project (sociometric badges)
— MOSAR european project (hospitals)

SocioPatterns: large-scale time-resolved data on
face-to-face proximity across a variety of contexts

(Ciro Cattuto’s talk on monday)



The SocioPatterns collaboration

(\ iﬂ J SocioPatterns.org

/

what are the statistical and dynamical properties
of the networks of contact and co-presence
of people in social interaction?

d (1) .’. e
)

fine-grained spatial (~ m) and temporal (<min) resolution



Infrastructure: active RFID badges
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(®penBeacon.org

* Short distance (~1-1.5 m)

* Detection of face to face proximity
* temporal resolution: 20s

* Small, Scalable




DATE
May 2008

Jun 2008
Oct 2008
Dec 2008
Apr-Jul 2009
Jun 2009
Jun 2009
Jul 2009
Oct 2009
Nov 2009
Jun 2010
Apr 2010
Jul 2010
2010, 2012

Nov 2011, 2012

EVENT
Workshop, Torino, IT

IS| offices, Torino, IT

ISI workshop, Torino, I’

Chaos Comm. Congress, Berlin,

Science Gallery, Dublin, IE
ESWCO09, Crete, GR
SFHH, Nice, FR

&' and more....

Primary school, Lyon, FR

Bambino Gesu Hospital, Rome, IT

ESWC10, Crete, GR
Practice Mapping, Gijon, ES
H-Farm, Treviso, IT
Hospital, Lyon, FR
High school, Marseilles, FR

SIZE DURATION
~65 3 days
~25 3 weeks
~75 3 days
DE ~600 4 days

~30,000 3 months
~180 4 days
~360 2 days
~120 3 days
~250 2 days
~250 10 days
~200 4 days
~100 10 days
~200 6 weeks
~100 10 days
~150 1 week
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dynamical network of f2f proximity
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cumulative contact networks

» heterogeneity
» homophily

» clustering

» small diameter




...and many research
directions...



On- and off-line social networking
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On- and off-line social networking

Live Social Semantics

* Based on the SocioPatterns platform

* Integrates
* Face-to-face real-time proximity data (RFID badges)
* Semantic web data
e Data on online social networks

* Deployed at:
* European Semantic Web Conference 2009, Heraklion, May 31-June 6
e ACM Hypertext 2009, Torino, June 29-July 2
 Extended Semantic Web Conference 2010, Heraklion, June 1-4



On- and off-line social networkin
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On- and off-line social networking
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+Direct feedback of information to participants

*Suggestions for new online links




Network comparison

» Set of N nodes (here individuals)

* Two (or more) types of relationships/links
between nodes
Q)

@
Interplay?
How to measure 1t?

()



Network comparison

» Weighted conference social network (CSN):
information on face-to-face contacts

(i.5): [AtD, A2, .., At (i) ]
<At”(k)>, maX(AtU(k)), W|J=2Atu(k), nu

* Online social network (OSN)



Online and off-line degrees
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Network comparison

Total contact duration w;=2,At;®)

Ex: ESWC
» Averaged over all links in the CSN: 160s

* Averaged over links belonging to both
networks: 900s



Network comparison

Distributions
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Network comparison

Distributions
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Behavioral similarity |

Similarity of neighborhoods of irand jin a
weighted network:

* For each node: vector of normalized weights
« Similarity (i,))= scalar product of vectors of i and |

. . Wik Wik
sim(i, j) = )
)2 )2
k \/Zz Wi D Wi
sim(1,])=0 1f no common contacts

sim(1,])=1 1f same contacts and same relative amounts of time spent
with the various contacts




P (sim)

Behavioral similarity |

10

10

10~

— link i) in CSN
~ link i-j in OSN
— link i-j in OSN and CSN




Behavioral similarity |

RFID badges: send packets to readers

!

For each badge, “fingerprint”= at each time t,
number of packets received by each antenna during [t-Dt,t]

1

Similarity between badges’ fingerprints (averaged over time) gives
a proxy for the similarity of trajectories of participants in physical
space



Behavioral similarity |
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On- vs off-line

Between online-linked attendees:
— More frequent, longer real-world contacts
— Stronger behavioral similarity
— Stronger (spatial) trajectory similarity

=Link prediction ? i.e., given the conference social
network links, predict online social links?
using
* Total time spent in face-to-face interaction (w)
* Number of face-to-face interactions (n)
 Largest contact duration
* Trajectory similarity



Link prediction

Quantifying the goodness of the prediction

Predicted Real
True positive
False positive 0
True negative 0 0
False negative 0
true positive rate (TPR) false positive rate (FPR)

TPR=TP/P=TP/(TP+FN) |FPR=FP/N=FP/(FP+ TN)




Link prediction

True ESWC
Positive

Rate 1

0.8

| | I | I | |
0 0.2 04 0.6 0.8 1
False Positive Rate



Link prediction

Tru.e | HT
Positive
Rate 1

I . I .
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False Positive Rate
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Link prediction

True
Positive
Rate

1

0.8

0.6

Recall

0.4

0 02 04 06 08 1
FPR



Contacts between co-authors

per edge

Characteristics all participants [coauthors FB Twitter
average contact duration (s)|42 75 63 72
average edge weight (s) 141 4470 830 1010
average number of events|3.37 60 13 14

Table 5. F2F contact characteristics between (1) all LSS users, (i1) LSS users who are coauthors,
(ii1) LSS users who are friends on Facebook, and (iv) pairs of users who are linked on Twitter.




Session chairs

Characteristics all participants, 2009 |chairs 2009 |all participants, 2010|chairs, 2010
average degree 55 77.7 54 776
average strength 8590 19590 7807 22520
average weight 159 500 141 674
average number of events 3.44 8 3.37 12
per edge

Table 4. Some characteristics of the ESWC 2010 chairs, and of the links between chairs, com-
pared with the overall averages.



2 different years

contact events per cdgc

Characteristics all participants,/all participants, common partici-|common partici-
2009 2010 pants, 2009 pants, 2010

Average degree 55 54 73 62

Average strength 8590 7807 16426 13216

Average weight 159 141 416 404

Average contact dura-|46 42 52 57

tion in seconds

Average number of|3.44 3.37 8 7

Table 3. Average characteristics in each year of the participants to both ESWC 2009 and ESWC
2010, and of the contact patterns between these returning participants, as compared to the average

over all participants.

61




In summary

* Between online-linked attendees:
— More frequent, longer real-world contacts
— Stronger behavioral similarity
— Stronger trajectory similarity
 Link prediction
—Very good results

— Better results when including face-to-face contact
information

* Also:
— Strong effect for coauthorship and chairs
— Comparison of two successive years



Some perspectives &
work In progress

% Real-world contact patterns
“Atlas” of human interaction patterns,
Similarities and differences across contexts

% Time-varying networks: fundamental and applied issues:

» characterization, modeling, visualization
» role of causality constraints
» characterization of “central”, “important” nodes
» representations, “summary” of dynamical networks?
» applications to
» spreading of information/diseases

» social network analysis from
(i) behavior
(i) online data
(iii) combine with survey data

MULTIPLEXITY OF (TEMPORAL) NETWORKS



Collaborators: Online social networks
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