Performance Evaluation of Mobile Agents: Issues
and Approaches

Marios D. Dikaiakos and George Samaras

Department of Computer Science
University of Cyprus, CY-1678 Nicosia, Cyprus
{mdd, cssamara}@ucy.ac.cy

1 Introduction

With the emergence of Internet as a world-wide infrastructure for communi-
cation and information exchange, Internet-based distributed applications have
gained remarkable popularity. One of the most promising approaches for de-
veloping such applications is the Java-based mobile-agent paradigm [BI8ITH39].
Mobile Agents (MA) are being used already in a variety of applications ranging
from telecommunications management to Web databases, cooperative environ-
ments information-gathering systems, electronic commerce systems, intelligent
distributed systems, and so on [23]24[7/94]. In that context, a distributed appli-
cation can be considered as a dynamic group of agents working in coordination
to accomplish some goal.

Mobile agents offer a number of diverse advantages in the development of dis-
tributed systems including enhanced programmability through modular, object-
oriented structures and the increased flexibility provided by mobility; perfor-
mance optimization for distributed operations that involve heavy network delays
and/or weak connectivity; extended autonomy in terms of existing support for
asynchronous execution and disconnected operations [6l8]21]. The employment of
MA technologies for the development of next- generation Internet systems opens
numerous research problems related to programming APIs and tools, security,
fault-tolerance, design paradigms and programming techniques, communication,
intelligence, scalability and performance [I§].

The issue of performance, in particular, is very important in emerging
Internet-systems: numerous studies show that performance of systems and ap-
plications determines to a large extent the popularity of Internet services and
user-perceived Quality of Service [13]. Moreover, performance evaluation is cru-
cial for performance “debugging,” that is the thorough understanding of perfor-
mance behavior of systems. Results from performance analyses can enhance the
discovery of performance and scalability bottlenecks, the quantitative compari-
son of different platforms and systems, the optimization of application designs,
and the extrapolation of properties of future systems.

So far, systematic performance studies and experiments have provided impor-
tant insights for the design of parallel and distributed systems and the tuning of
applications [I3JT4T7J29]. Nevertheless, the more complex a system or applica-
tion is, the harder its evaluation becomes, because of the large variety of factors

R. Dumke et al. (Eds.): Performance Engineering, LNCS 2047, pp. 148-[I66] 2001.
© Springer-Verlag Berlin Heidelberg 2001

Performance Evaluation of Mobile Agents 149

that affect its performance [10]. This observation is particularly true for systems
and applications running on top of gigantic platforms like Internet [1]. The per-
formance evaluation of mobile-agent systems is even harder than the analysis
of more traditional parallel and distributed systems, due to the dynamic nature
and agile configuration of mobile agents.

The objective of this chapter is to investigate issues pertinent to perfor-
mance engineering for mobile-agent platforms and systems. First, we describe
briefly the basic characteristics of mobile agents. Then, we explore the notion of
performance evaluation in the context of mobile agents and present an overview
of recent approaches for performance evaluation and analysis of mobile-agent
systems. These approaches include benchmarking efforts, scalability studies, an-
alytical models, and Petri-net modeling.

Finally, we present a novel performance analysis approach that we developed
to gauge quantitatively the performance characteristics of different mobile-agent
platforms [12]29]. We materialize this approach as a hierarchical framework of
benchmarks designed to isolate performance properties of interest, at different
levels of detail [12]29]. We identify the structure and parameters of benchmarks
and propose metrics that can be used to capture their properties. We present a
set of proposed benchmarks and examine their behavior when implemented with
commercial, Java-based, mobile-agent platforms.

2 DMobile Agents

In mobile applications, data may be organized as collections of objects, in which
case objects become the unit of information exchange between mobile and static
hosts. Objects encapsulate not only pure data but also information regarding
their manipulation, such as operations for accessing them. Incorporating active
computations with objects and making them mobile leads to Mobile Agents.

Mobile agents are processes dispatched from a source computer to accomplish
a specified task [2TJ3538/39]. Each mobile agent is a computation along with its
own data and execution state. In this sense, the mobile agent paradigm extends
the RPC communication mechanism, according to which a message is just a
procedure call whereas now it is an object with state and functionality. After
its submission, the mobile agent proceeds autonomously and independently of
the sending client. When the agent reaches a server, it is delivered to an agent
execution environment. Then, if the agent possesses necessary authentication
credentials, its executable parts are started. To accomplish its task, the mo-
bile agent can transport itself to another server, spawn new agents, or interact
with other agents. Upon completion, the mobile agent delivers the results to the
sending client or to another server.

By letting mobile hosts submit agents, the burden of computation is shifted
from the resource-poor mobile hosts to the fixed network. Mobility is inherent
in the model; mobile agents migrate not only to find the required resources
but also to follow mobile clients. Finally, mobile agents provide the flexibility
to adaptively shift load to and from a mobile host depending on bandwidth

150 M.D. Dikaiakos and G. Samaras

and other available resources. Mobile-agent technology is suitable for wireless or
dial-up environments [21]25].

Mobile agents are typically written in interpreted languages, such as Java
and Tcl, and thus tend to be independent of the operating system and hard-
ware architecture. A number of commercial and research projects have developed
mobile-agent environments, such as Aglets by IBM [8], Concordia by Mitsubishi
[40], Voyager by Objectspace [15], Grasshopper by IKV++ [5], Mole by the
University of Stuttgart [33], etc.

3 Different Approaches for MA Performance Analysis

Traditionally, the performance assessment of software systems is conducted
through experimentation and monitoring, simulation, modeling and combina-
tions thereof. The more complex a system is the harder its performance eval-
uation becomes, dictating the employment of these techniques at various lev-
els of abstraction. To this end, software systems are modeled as hierarchical
structures of interacting modules, i.e., subsystems and objects; each module is
assigned a performance model that incorporates performance and load parame-
ters of relevance, and a description of the underlying architecture and workload
[41]. Model development is performed in a “top-down” manner, starting from
high-level structure and moving towards code implementation. Experimentation
and/or simulation can be used at various layers of abstraction to specify the
values of modeling parameters.

The development and assembly of performance models for MA systems is
more complicated than for more “traditional” parallel, distributed or object-
oriented software; when analyzing the performance of MA-based systems, we
must take into account issues, such as:

— The absence of global time, control and state information: this makes it
hard to define and determine unequivocally the condition of a particular
MA-system at a particular moment.

— The complex architecture of MA platforms: simple models and metrics used
for the performance characterization of typical parallel and distributed sys-
tems are not adequate for isolating performance problems of MA systems.
Further investigation and definition of more complex models and metrics are
necessary.

— The variety of distributed computing (software) models that are applica-
ble to mobile-agent applications: this variety dictates the design of different
experiments, tailored to the different software models of interest.

— Construction of simple and portable benchmarks for experimentation is dif-
ficult due to the diversity of operations found in MA platforms.

— The presence of mobility, which makes it hard to establish a concise and
stable representation of system resources that affect MA performance, due
to the dynamic nature and agile configuration of MA systems.

— The additional complexity introduced by issues that affect the performance
of Java, such as interpretation versus compilation, garbage collection, etc.

Performance Evaluation of Mobile Agents 151

A number of recent projects have addressed the issues mentioned above. One
thread of work examines the relative advantages of the mobile-agent paradigm
versus other distributed-computing models from a performance perspective:

For instance, in [34], Strasser and Schwehm introduce a mathematical model
to compare analytically the performance of agent migration and remote exe-
cution with the more traditional approach of remote procedure calls (RPC), in
the case where mobile agents are used for filtering information in information
retrieval applications. Their performance model takes into account issues, such
as network throughput, communication latency, and network load. Furthermore,
the size and execution time for RPCs, the size of agent code, data, and state,
the “selectivity” (filtering ratio) of an agent, etc. The authors use their model to
identify situations where agent migration has performance advantages over re-
mote procedure calls. Analytical results are corroborated with experimentation
using the Mole platform [33].

A similar problem is studied by Puliafito, Riccobene, and Scarpa in [26]. The
authors compare the mobile-agent, remote-evaluation and client-server models
of distributed computing. To this end, they use non-Markovian Petri nets model-
ing, applying probability distributions to model parameters, such as request size,
time for searching data in a server, processing time, size of replies and queries,
code size for migrating codes, and throughput of the communication network.
Petri-net analysis shows that for the scenarios examined, which are pertinent to
information filtering applications, the performance advantage of mobile agents
arises under certain “external” to this model factors, such as network connec-
tivity and speed.

Mathematical modeling is used by Kotz, Jiang, Gray, Cybenko and Peterson
to study a more extended mobile-agent application scenario in [20]. According
to this scenario, mobile agents are used to support a data-filtering application
involving many wireless clients that filter information from a large data stream
arriving across a wired network from a server. The mathematical model is used
to compare analytically two alternative approaches: a) The server combines and
broadcasts all the data streams over the wireless channel and filtering takes place
at each client site. b) Each client dispatches an agent to the server; the agent
monitors and filters the data stream before sending relevant data to its corre-
sponding client. The authors use two performance metrics for their comparison
study: computation and bandwidth requirements. They conclude that the mo-
bile agent approach trades server computation and cost for savings in network
bandwidth and client computation, which is an important remark in the context
of “thin” clients used in mobile-computing applications.

In addition to mathematical analysis and Petri-net modeling, there has been
a range of simulation and experimental studies on mobile-agent systems. In [31],
Spalink, Hartman and Gibson study the performance advantages of employing
a mobile agent for conducting search within a file at the file-server’s location in-
stead of searching remotely over the network. Trace-driven simulation shows that
the MA approach is advantageous when the server’s CPU is not a bottleneck.

152 M.D. Dikaiakos and G. Samaras

Another thread of work employs Petri-net modeling and experimentation to
investigate performance properties of mobile-agent systems: For instance, Gen-
eral Stochastic Petri nets are used by Rana in [27] to investigate the perfor-
mance properties of two agent design patterns [2], “Task” and “Interaction,”
and a combination thereof. The study is performed in the context of an agent-
based, e-commerce application. The Petri-net models introduced are executed
with a Petri-net simulator to study the performance and scalability of the un-
derlying application. Furthermore, Petri nets are used by Rana and Stout in [28)]
to model the performance of multi-agent systems in a way that captures proper-
ties arising both from agent-collaboration requirements pertinent to multi-agent
applications and the performance characteristics of MA systems.

Samaras, Dikaiakos, Spyrou and Liverdos in [29] propose, employ, and val-
idate an approach to evaluate and analyze MA performance in the context of
basic mobile-computing models applied in the provision of distributed database
access over the Web. The proposed experimental setup is used to compare quanti-
tatively two commercial MA platforms and to study the performance of different
approaches for database access over the Web, using mobile agents. In [ITJ12], we
extend our previous work and propose a hierarchical framework that can be used
to investigate quantitatively and experimentally various aspects of mobile-agent
performance. This framework is implemented as a set of benchmarks and used to
study the performance and scalability of a number of commercial MA platforms.
More details are given in subsequent sections. In a similar vein, Silva, Soares,
Martins, Batista and Santos define and run benchmarks in [30], to evaluate the
performance of some of the existing mobile agent platforms.

4 A Framework for Investigating M A Performance

To cope with the complexities of MA performance analysis we propose the adop-
tion of a hierarchical approach inspired by the structure of MA-based applica-
tions. This structure is determined by:

1. The MA platform adopted to program a particular application. Mobile-agent
platforms (such as HI5I5T9189]) are systems that provide some basic func-
tionality supporting the mobility of objects (transportation and location ser-
vices), the communication between them, security, fault-tolerance etc. Access
to this functionality is granted through a platform-specific programming in-
terface provided for the development of applications. Various MA platforms
differ in terms of their functionality, programming interface and performance
characteristics which are dictated by underlying implementation details.

2. The high-level abstractions representing software-design choices made by
developers for a particular application. These abstractions are implemented
with the programming interface of the MA platform employed.

Notably, the differences of mobile-agent platforms and the variety of application
domains result to a huge space of options vis-a-vis MA-system structure. We ab-
stract most of these options away by focusing on Basic Elements and Application
Kernels.

Performance Evaluation of Mobile Agents 153

4.1 Basic Elements and Application Kernels

We define as Basic Elements of mobile-agent platforms a set of basic abstractions
that incorporate the fundamental functionalities commonly found and used in
MA platforms. For the objectives of our work, the Basic Elements of MA plat-
forms are identified from existing, “popular” implementations as follows [4[5]15]
19139]:

— Agents, defined by their state, implementation (bytecode), capability of in-
teraction with other agents/programs (interface), and a unique identifier.

— Places, representing the environment in which agents are created and exe-
cuted. A place is characterized by the virtual machine executing the agent’s
bytecode (the engine), its network address (location), its computing re-
sources, and any services it may host (e.g., a database gateway or a Web-
search program).

— Behaviors of agents within and between places, which correspond to the
basic functionalities of a MA platform: creating an agent at a local or remote
place, dispatching an agent from one place to another, receiving an agent
that arrives at some place, communicating information between agents via
messages, multicasts, or messenger agents, synchronizing the processing of
two agents, etc.

Basic elements of MA systems are combined into scenarios of MA-use, which
we call Application Kernels. Application Kernels define solutions common to var-
ious problems of agent design and are defined in terms of places participating in
a scenario, agents placed at or moving between these places, and interactions of
agents and places (agent movements, communication, synchronization, resource
use). Application Kernels correspond to widely applicable models of distributed
computation on particular application domains [32], and represent widely ac-
cepted and portable approaches for addressing typical agent-design problems
[2]. Typically, Application Kernels are the building blocks of larger MA applica-
tions.

Consequently, we define Application Kernels that correspond to the Client-
Server (C/S) model of distributed computing and its extensions for mobile com-
puting: the Client-Agent-Server model (C/A/S), the Client-Intercept-Server
model (C/I/S), the Proxy-Server model, and variations thereof that use mo-
bile agents for communication between the client and the server (C/S-MA,
C/A/S-MA, C/I/S-MA; see Figures [and [2). More details on these models
are given in [29132].

_/ vxep & wiReLESS Application Application
CONNECTIONS Server -1 — Server

Fig. 1. The Client-Agent-Server and Client-Intercept-Server Models.

154 M.D. Dikaiakos and G. Samaras

Additional Application Kernels correspond to the Forwarding and the Meet-
ing agent-design patterns, defined in [2/8]. The Forwarding pattern “allows a
given host to mechanically forward all or specific agents to another host” [2].
The Meeting pattern provides a way for two or more agents to initiate local
interaction at a given host (see Figure) [2I37]. We chose the Forwarding and
Meeting patterns because they can help us quantify the performance traits of
agents and places in terms of their capability to re-route agents and to host
inter-agent interactions.

FIXED & WIRELESS

CONNECTIONS -0 o @]
~,0 O

CCONNECTIONS | e e

FIXED & WIRELESS

Fig. 2. The Proxy-Server Model and the Meeting Pattern.

4.2 A Hierarchical Performance Analysis Approach

To analyze the performance of mobile-agent applications, we need first to develop
an approach for capturing basic performance properties of MA platforms. These
properties must be defined independently of how particular mobile-agent API’s
are used to program and deploy applications and systems on Internet. To this
end, our approach focuses on Basic Elements of MA platforms and seeks to
expose the performance behavior of these functionalities: how fast they are,
what is their overhead, if they become a performance bottleneck when used
extensively, etc.

Having isolated the performance characteristics of basic MA elements, we
focus on performance traits of Application Kernels in order to explain the per-
formance behavior of full-blown applications, which use these kernels as building
blocks. Performance traits of an Application Kernel depend on the characteris-
tics of its constituent (basic) elements, and on how these elements are combined
together and influence each other. To identify how a kernel affects application
performance, we have first to isolate its basic performance properties, that is
metrics capturing its performance capacity, overheads incurred by the interac-
tion of its constituent elements, bottlenecks affecting kernel-performance, etc.
For example, an Application Kernel could involve an agent residing at a place
on a fixed network and providing database-connectivity services to agents arriv-
ing from remote places over wireless connections. This kernel may exist within
a large digital library or e-commerce application. It may, as well, belong to the

Performance Evaluation of Mobile Agents 155

“critical path” that determines end-to-end performance of that application. To
identify how this kernel affects overall performance, we have to find out what is
the overhead of transporting an agent from a remote place to a database-enabled
place, connecting to the database, performing a simple query, and returning the
results over a wireless connection. Interaction with the database is kept min-
imal because we are trying to capture the overhead of this kernel and not to
investigate database behavior.

Performance analysis of Application Kernels involves the use of simple work-
loads seeking to discover fundamental performance properties. It is very interest-
ing, however, to explore the performance behavior of instances of these kernels
under conditions expected to occur in a real execution of a full-blown application.
To this end, we can enrich the scenarios implemented by Application Kernels by
extending the functionality of mobile agents and by simulating realistic workload
conditions.

In view of the above remarks we propose a framework for the Hierarchical
Analysis of MA-performance. Our framework consists of four layers of abstrac-
tion:

1. At a first layer, it explores and characterizes performance traits of Basic
Elements of MA platforms.

2. At a second layer, it investigates implementations for popular Application
Kernels upon simple workloads.

3. At a third layer, it studies Micro-Applications, that is, implementations of
application kernels which realize particular functionalities of interest (e.g.,
database connectivity), running on realistic workloads.

4. Last but not least, at a fourth layer, our framework studies full-blown Ap-
plications running under real conditions and workloads.

Our approach has to be accompanied by proper metrics, which may dif-
fer from layer to layer, and parameters representing the particular context of
each study, i.e., the processing and communication resources available and the
workload applied. It should be stressed that the design of our performance anal-
yses in each layer of our conceptual hierarchy should provide measurements and
observations that can help us establish causality relationships between the con-
clusions from one layer of abstraction to the observations at the next layer in
our performance analysis hierarchy.

4.3 Parameterizing Basic Elements and Application Kernels

To proceed with performance experiments, measurements and analyses, after the
identification of Basic Elements and Application Kernels, we need to specify the
parameters that define the context of our experimentation, and the metrics mea-
sured. Parameters determine the workload that drives a particular experiment,
expressed as the number of invocations of some Basic Element or Application
Kernel; large numbers of invocations correspond to intensive use of the element
or kernel during periods of high load. Furthermore, the resources attached to

156 M.D. Dikaiakos and G. Samaras

participating places and agents: the channels connecting places, the operating
system and hardware resources of each place, and the functionality of agents and
places.

The exact definition of parameters and parameter-values depend on the par-
ticular aspects under investigation. For example, to capture the intrinsic per-
formance properties of Basic Elements, we consider agents with limited func-
tionality and interface, which carry the minimum amount of code and data
needed for their basic behaviors. These agents run within places, which are free
of additional processing load from other applications. Places may correspond
either to agent servers with full agent-handling functionality or to agent-enabled
applets. The latter option addresses situations where agents interact with client-
applications, which can be downloaded and executed in a Web browser. Partici-
pating places may belong to the same local-area network, to different local-area
networks within a wide-area network, or to partly-wireless networks. Different
operating systems can be considered.

Parameters become more complicated when studying application kernels. For
instance, when exploring Client-Server types of models, we have to define the
resources to be incorporated at the place which corresponds to the server-side of
the model. Resources could range from a minimalistic program acknowledging
the receipt of an incoming request, to a server with full database capabilities.

5 Implementation and Experimentation with Benchmarks

The hierarchical performance analysis framework presented in the previous sec-
tion can be applied to study performance characteristics of different MA plat-
forms and investigate MA-based applications. To this end, we propose three
layers of benchmarks that correspond to the first three layers of the hierarchy
presented in the previous Section. These benchmarks are defined as follows:

— Micro-benchmarks: short loops designed to isolate and measure perfor-
mance properties of basic behaviors of MA systems, for typical system con-
figurations.

— Micro-kernels: short, synthetic codes designed to measure and investigate
the properties of Application Kernels, for typical applications and system
configurations.

— Micro-Applications: instantiations of Application Kernels for real applica-
tions. Here, we involve places with full application functionality and employ
realistic workloads complying to the TPC-W specification [36].

5.1 Experimentation
For our experiments, we focus on a set of micro-benchmarks, and on micro-

kernels corresponding to database access over the Web. We implement these
benchmarks with two commercial MA platforms: IBM’s Aglets and Mitsubishi’s

Performance Evaluation of Mobile Agents 157

Concordia. Before presenting experimental results, we describe the basic char-
acteristics of these two platforms. Further experimental results and comparisons
with other MA platforms can be found in [12/29].

The Aglets Software Development Kit (ASDK) is an environment for
programming mobile Internet agents (Aglets) in the Java programming language
[16]. An Aglet is a Java object that has the ability to move (be dispatched)
autonomously from one computer host to another. This transportation is possible
between hosts with a pre-installed Tahiti server (a “place” in our terminology),
which is an Aglet server program implemented in Java. Tahiti captures arriving
Aglets and provides them with an Aglet context. In this context, Aglets can run
their code, communicate with other Aglets, collect local information and move
to other hosts. The protocol used for the transportation of the Aglet, is the
Aglet Transfer Protocol (ATP) by IBM, [22]. ATP defines four standard request
methods for agent services, which are dispatch, retract, fetch and message.
The Tahiti server (we use v1.0.3 with size 2.25MB) can be installed at any
platform that supports Java Virtual Machine (JVM). Fiji Applet is an abstract
applet class of a Java package called “Fiji Kit”, which allows Aglets to be fired
from applets. For a Java-enabled Web browser (like Netscape Communicator)
to host and fire Aglets, and thus become a “place,” two more components are
required and are provided by IBM: an Aglet (fiji) plug-in allowing the browser
to host Aglets, and an Aglet router that must be installed at the Web server.
The Aglet router’s purpose is to capture incoming Aglets and forward them to
their destination.

Concordia is a framework for the development, execution and management
of mobile agent applications written in Java [19J40]. The Concordia system is
made up of several integrated components. The Concordia server (a “place” in
our terminology) is the major block, inside which the various Concordia Man-
agers reside. One of these managers is the Agent Manager, which provides the
communication infrastructure that enables agents to be transmitted from and
received by nodes on the network, and the management of the life-cycle of the
agent. Communication in Concordia relies on the Java RMI system. One of the
central features of RMI is its ability to download the bytecode of an object’s
class if the class is not defined in the receiver’s virtual machine. To ensure se-
curity of all its transmissions, Concordia uses the SSLv3 (Secure Socket Layer)
protocol to transmit agent information from one system to another. Concordia
provides an abstract class called ConcordiaApplet that extends Java’s applet
class. There is no need to install the Concordia System on a client machine
because ConcordiaApplet implements a class provided by Concordia, namely
AgentTransporter that acts as a lightweight Concordia Server. Concordia im-
plements inter-agent messaging through the concept of events, which are Java
objects posted at the Event Manager of a Concordia Server. Concordia sup-
ports Service Bridges, that is, gateways between Concordia and Java resources
installed locally at the host machine. An agent can call methods of a Service
Bridge and get back its results. Services offered by Service Bridges can be reg-

158 M.D. Dikaiakos and G. Samaras

istered with a directory service running in one or more Concordia Servers. Ex-
periments presented below were done with version 1.1.2 of Concordia.

5.2 Micro-Benchmarks

As described in Section 4, computing models that use MA technology employ
the following basic components: a) mobile agents to materialize modules of the
client-server model and its variations; b) messenger agents as an approach for
flexible communication; ¢) messages as an efficient communication and synchro-
nization mechanism. Therefore, micro-benchmarks devised to test basic perfor-
mance properties of mobile-agent platforms must focus on measuring the perfor-
mance of frequently executed components, i.e., messenger agents and messages.
To this end, we propose the following benchmarks that measure:

— [AC/L]: The overhead of creating and launching messenger agents, which is
represented by the time to create and dispatch mobile agents with minimal
content.

— [MSG]: The overhead of messaging, that is, the time to create and post
messages.

— [ROAM]: The overhead of agent traveling, which is represented by the time
it takes an agent with minimal content to return to its host node after roam-
ing along a given itinerary of hosts. The agent has minimal interaction with
the resources of each host visited, e.g., it just queries the host’s identification.

— [SYNC]: The synchronization overhead, which is represented by the time
to exchange a message between two hosts (equivalent to the “ping-pong”
benchmark [I4]).

Benchmarks are parameterized by the number of iterations they execute. We
measure the total time to completion of each benchmark for a chosen number of
iterations. In our tests, we choose iteration numbers from 1 to 1000.
Micro-Benchmark Experiments: For the quantitative comparison we ran
several tests implementing the micro-benchmarks presented above. In our tests,
we examine two scenarios: the first scenario presumes the installation of the full
agent-execution environment on the hosts of the system under scrutiny. The sec-
ond scenario tests the case where the client has limited computing resources, as
in the case of mobile-computing units, or connects from a machine with mini-
mal configuration, i.e., Internet connectivity and a Java-enabled Web browser.
In the second scenario, the client is communicating with the mobile-agent plat-
form by downloading an applet enhanced with agent-handling capabilities (Fiji
or Concordia applet).
Test 1 corresponds to benchmark [AC/L]. For this test we launch and dispatch
agents from a parked agent to a remote Agent Server. We measure the time it
takes to create and launch the agents. For both platforms, we employ agents
(Aglets and Concordia agents) of identical, minimal, functionality. The size of
the Aglet is 1.64 KB whereas the size of the Concordia agent used is 693 bytes.
The parked Aglet is 3.54 KB and the parked Concordia Agent is 1.65 KB.

Performance Evaluation of Mobile Agents 159

Agent Creation and Launch from Agent to Agent Agent Creation and Launch from Applet to Agent

O Aglets 1600 | [BFITApplet 1585,1
= Concordia m Concordia Applet

1800
300 2751

N
5
3

Seconds
N e N
3 @ 3
3 3 3

@
3

1288
200 1004
4751 109105 964436

1305 3118
04

1 10 50 100 500 1000 1 10 50 100 500 1000
Iterations Iterations

Fig. 3. [AC/L] Benchmark; results from Tests 1 and 2.

Test 2 corresponds to benchmark [AC/L] under the second scenario, where
we use an applet to launch agents. The Fiji Applet is 4.8 KB in size and the
Concordia Applet is 3.61 KB.

Test 3 corresponds to benchmark [MSG]. A parked Aglet/Concordia agent
creates and sends/posts messages/events to a remote Aglet or Event Manager
respectively. The message/event carries a simple piece of information - an integer
expressing its ID. The size of the message is 5 KB whereas the size of the event
is only 286 bytes.

Test 4 corresponds to benchmark [MSG] following the second scenario, where
messages are created and launched from an applet. The applet sizes are 5.19 KB
for Fiji and 3.09 KB for Concordia.

Test 5 corresponds to benchmark [ROAM)] with one hop. An agent launches
another agent to a remote Agent Server. At its arrival, the agent prints its id
and returns back. Upon return to the sender, the agent is re-dispatched towards
the same destination.

Test 6 also corresponds to benchmark [ROAM] with one hop, where applets
act as agent launchers.

Test 7 corresponds to benchmark [SYNC], with message exchange taking place
between two agents. It is a variation of Test 5 using messages: a message (or
event) is sent to a remote receiver. Once this message is received, the receiver
sends it back. The next message is sent after the return of the previous one.
Test 8 corresponds to benchmark [SYNC] with message exchange occurring
between an applet and an agent.

For the above tests we used a Pentium PC at 166MHz with 32MB of RAM
running Microsoft Windows 95 as the PC from where we launched the agents
and the messages and a Pentium Pro at 350 MHz with 64MB of RAM running
Microsoft Windows 95. These computers were connected on a 10 Mbps Ethernet
LAN.

Discussion: Our micro-benchmark tests provide useful insights into three
important aspects of Aglets and Concordia performance: mobile agent dispatch
from agent servers, mobile agent dispatch from applets, and messaging.

In particular, results from Tests 1 and 5 show that Concordia performs sub-
stantially better than Aglets in agent dispatching from agent servers (see the

160 M.D. Dikaiakos and G. Samaras

Message Creation and Posting from Agent Message Creation and Posting from Applet

25 500 467,7

DAglets 450 { [EFIITApplet
m Concordia 196 m Concordia Applet

Seconds

0809 56 1,1

1 10 50 100 500 1000 1 10 50 100 500 1000
Iterations Iterations

Fig. 4. [MSG] Benchmark; results from Tests 3 and 4.

diagrams on the left side of FiguresB and[H). This is attributed to the fact that,
when transporting an agent, Concordia dispatches an image of it. This image
retracts its classes from the sender, on a need-to-use basis. In contrast, Aglets
Workbench dispatches an Aglet together with all the objects reachable from this
Aglet. Furthermore, it is plausible that additional overhead is incurred by Aglets
due to the extra level of indirection introduced by their callback-based transport
model.

Concordia performs worse than Aglets, however, when dispatching agents
from an applet. This can be attested from Test 2 (Figure Bl right) and from
a comparison between the two diagrams of Figure B} note that in Test 6 the
performance difference between Concordia and Aglets is smaller than in Test 5.
This is probably due to the fact that the current handling of applets by the Aglets
Workbench (through IBM’s Fiji Applet and plug-in) is more optimized than
the work-around we did to launch and receive Concordia agents from applets.
This workaround requires manual installation of Concordia/application classes
on the client-machine’s local disk. It should be noted that, across both platforms,
dispatching agents from applets performs substantially worse than dispatching
agents from agent servers.

Agent Ping-Pong from Agent to Server Agent Ping-Pong from Applet to Server

800,0 3000

700,0 688,5 OFIJI Applet 26804
| (BConcorda 2500 { |m Concordia Applet

2000

1500

Seconds
Seconds

1000

500

1 10 50 100 500 1000 1 10 50 100 500 1000
Iterations Iterations

Fig. 5. [ROAM] Benchmark; results from Tests 5 and 6.

Performance Evaluation of Mobile Agents 161

Results from Test 3 (Figure [4) show that Aglets outperform Concordia in
message creation and posting. Concordia, however, performs better in the case
of 1000 iterations. We believe this is an artifact of Tahiti-server performance
behavior, which handles the transmission of incoming and outgoing messages.
Further tests have shown that Tahiti saturates under heavy load. Concordia,
on the other hand, separates the handling of messages (events) from the han-
dling of agents and, apparently, Concordia’s Event Manager is better optimized
to sustain higher messaging loads than Tahiti. Turning to Test 7 (Figure [B),
we observe a significant degradation of Aglets performance under the [SYNC]
benchmark, with an increasing number of benchmark iterations. We believe this
degradation is related to the implementation of message reply under Aglets, and
with the erratic performance of the Tahiti server under heavier loads.

Interestingly, Concordia outperforms Aglets in message transmission from an
applet, and in message exchange between an applet and an agent (see Tests 4
and 8, Figures @land [6)). In our experiments, the use of applets under the Aglets
platform has an additional overhead factor, which is due to security limitations:
for a FijiApplet to communicate with an agent server (Tahiti), it has to make an
extra hop and go through the Web server, where from the applet was downloaded
to the client machine. This is not the case with the Concordia work-around we
employed to dispatch and receive agents from an applet.

Another interesting observation from micro-benchmark measurements is
that, in contrast to Aglets, Concordia performance scales impressively well as
we increase the number of benchmark iterations. This is attributed to the way
Concordia handles agent transportation by creating and maintaining a persistent
image of an agent before dispatching it to another machine. Hence, Concordia
avoids class loading on subsequent transfers, whereas Aglets must continuously
load the needed classes on every Aglet transfer.

Message Exchange from Agent to Agent Message Exchange from Applet to Agent

250 2302 600 5473

OF1JI Applet
m Concordia m Concordia Applet

IS a
3 3
8 3

Seconds
Seconds
w
8
3

1 10 50 100 500 1000 1 10 50 100 500 1000
Iterations Iterations.

Fig. 6. [SYNC] Benchmark; results from Tests 7 and 8.

5.3 Web Database Micro-Kernels

In this chapter, we focus on micro-kernels that use mobile agents to provide
database access over the Web and correspond to the computational models pre-

162 M.D. Dikaiakos and G. Samaras

Table 1. Micro-kernels materialized with Mobile Agents.

Computing Model Kernel Comments
C/S-MA Framework 1 Baseline
C/A/S-MA Framework 2 Using messenger agents
C/A/S Framework 3 Using messages
C/A/S-MA-CSB |Framework 4|Using Service Bridges and messenger agents
C/A/S-CSB Framework 5 Using Service Bridges and messages

sented earlier. We propose a micro-kernel consisting of a short transaction (three
queries) between a client and a remote database. The queries select all entries
of a small student database. We measure the time required to launch an agent
(or a message) from the client site, the time to carry this agent to the database
server, the time to connect to the database and execute the query, and the time
to bring the results back to the client. We measure the time to query the remote
database for the first time and for any subsequent request. We expect these two
measurements to be different, as the time of the first query includes the connec-
tion to the database and the downloading of the JDBC drivers from the client
or its surrogates.

The kernel is implemented with mobile agents following the computing mod-
els C/A/S and C/A/S-MA. We also implement the kernel according to the
“mobile” client-server model (C/S-MA). Concordia Service Bridges represent
an alternative non-dynamic way to materialize the server-side of the C/A/S and
C/A/S-MA models. Therefore, we implement our Web-database kernel with Ser-
vice Bridges, adding another two frameworks in our benchmark suite. Table [T
summarizes the application kernels employed in our tests and the notation we
use for them subsequently.

Tests: We ran tests to evaluate the five frameworks presented in Table [
Details about the tests are given below. The measurements are presented in
Figure [7

Framework 1 implements the C/S-MA model for Web-database connectivity.
The client-side is implemented as an applet, which is downloaded by a client
machine with a Java-enabled Web browser. Communication between the client
and the server is done through the DBMS-agent launched by the applet. Upon
arrival to the server, the DBMS-agent downloads the appropriate JDBC driver
and connects to the database. Subsequently, it carries client queries and query
results between the client and the remote database.

Framework 2 implements the C/A/S-MA model. The client-side is again im-
plemented as an applet, which is downloaded to a client machine with a Java-
enabled Web browser. The applet launches two agents to the database server.
One of these agents “parks” to the server and is responsible for downloading
the necessary JDBC driver, connecting to the database and querying it. The
other agent is the messenger that undertakes the responsibility of transferring
the results to the client and the new client requests to the “parked” agent. The

Performance Evaluation of Mobile Agents 163

“parked” agent is transported and connected to the database server only for the
first query.

Framework 3 implements the C/A/S model. Implementation is similar to
Framework 2 except for the communication between the client and the database
server, which employs messages instead of agents.

Framework 4 implements the C/A /S-MA-CSB model: we created a Concordia
Service Bridge that performs the Web access on behalf of an incoming agent.
The incoming agent carries the SQL statement from the applet client to the
Service Bridge, and returns the results back to the client.

Framework 5: This framework uses events for the communication between
the applet and the Service Bridge. Both the applet and the Service Bridge are
connected to the Event Manager of the Concordia Server at the database machine
and they exchange Access Request events and Access Results events.

Web Access Frameworks Web Access Frameworks

35
7.2 DAglets 15t Query a1 DAglets Subsequent Query
69 - B Concordia 1st Query, \

m Concordia Subsequent

6,2

o o N o

Seconds
'S
Seconds

o -~ N W

Framework Framework Framework Framework Framework
1 2 3 4 5

Fig. 7. Performance of Web-database kernel.

Discussion: Figure [1 presents our measurements from the frameworks pre-
sented above. A first remark is that the Aglets Workbench outperforms Concor-
dia for the first query, as shown in the left diagram of Figure [l This observa-
tion is consistent with the results of Test 2, and with our remarks on applet-
performance under Concordia (Figure [, right diagram). Concordia, however,
outperforms Aglets in subsequent queries. For Frameworks 1 and 2, this obser-
vation is consistent with our results from Test 6 (see Figure B right diagram).
In the case of Framework 3, the improvement of Concordia’s performance over
Aglets agrees with our [SYNC] micro-benchmark (see Figure [G)).

The better performance displayed by Framework 1 with respect to Frame-
work 2 for the first query, is due to the extra overhead incurred by the dispatch of
a second agent under Framework 2. This agent parks at the server and results in
the improved performance displayed by subsequent queries under Framework 2
over Framework 1.

It is also interesting to point out that the small performance difference be-
tween Frameworks 1 and 3 for the first query, is due to the more limited func-
tionality of the agent sent to park at the server-side under Framework 3 (C/A/S
model). This agent is “lighter” than the agent dispatched under Framework 1

164 M.D. Dikaiakos and G. Samaras

(C/S-MA model), as it does not have to cope with dispatching itself back and
forth to the client. Another interesting point is the performance benefit of using
messages over messenger agents. This is expected, though, as messenger agents
are "heavier” objects than messages, both in Aglets and Concordia. Messenger
agents, however, offer greater flexibility as they can roam the network collecting
more information before reaching their destination. Finally, Concordia’s Service
Bridges represent a very efficient approach for providing services to incoming
agents at the server side. This approach, however, lacks the flexibility of dynam-
ically “parking” a mobile agent at the server-side, at run-time, and having this
agent negotiate with the server the services it will provide to incoming agents.

6 Conclusions

In this chapter we presented a short overview of various approaches for perfor-
mance evaluation and analysis of mobile-agent applications and systems. Then,
we described a quantitative performance analysis methodology that we devel-
oped to investigate performance properties of MA platforms and systems. We im-
plemented this methodology with a hierarchy of benchmarks (micro-benchmarks
and micro-kernels), which we ran on top of two popular Java-based mobile-
agent platforms, IBM’s Aglets and Mitsubishi’s Concordia Results from micro-
benchmark tests revealed interesting aspects of Aglets and Concordia perfor-
mance, and enabled us to interpret the performance of micro-kernels. On the
other hand, micro-kernel-performance measurements helped us assess the dis-
tributed computing models examined. Furthermore, these measurements confirm
the validity and usefulness of the proposed micro-benchmarks. As expected, both
platforms have their pros and cons, with Concordia providing better performance
and robustness and Aglets offering improved flexibility. We are currently devel-
oping further benchmarks to extend our approach for assessing the performance
of mobile-agent-based distributed applications.

References

1. Internet Performance Modeling. Workshop on Internet Performance Modeling. De-
partment of Computer Science, University of Dortmund, October 1999.

2. Y. Aridov and D. Lange. Agent Design Patterns: Elements of Agent Application
Design. In Proceedings of Autonomous Agents 1998, pages 108—115. ACM, 1998.

3. N. Bhatti, A. Bouch, and A. Kuchinsky. Integrating user-perceived quality into
Web server design. In Proceedings of the 9th International World-Wide Web Con-
ference, pages 1-16. Elsevier, May 2000.

4. W. Brenner, R. Zarnekow, and H. Wittig. Intelligent Software Agents. Foundations
and Applications. Springer, 1998.

5. M. Breugst, I. Busse, S. Covaci, and T. Magedanz. Grasshopper — A Mobile Agent
Platform for IN Based Service Environments. In Proceedings of IEEE IN Workshop
1998, pages 279-290, Bordeaux, France, May 1998.

6. A. Carzaniga, G.P. Picco, and G. Vigna. Designing Distributed Applications with
Mobile Code Paradigms. In Proceedings of the 1997 International Conference on
Software engineering, pages 22—-32, May 1997.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

Performance Evaluation of Mobile Agents 165

A. Castillo, M. Kawaguchi, N. Paciorek, and D. Wong. Concordia as Enabling
Technology for Cooperative Information Gathering. In Japanese Society for Arti-
ficial Intelligence Conference, June 1998.
http://www.meitca.com/HSL/Projects/Concordia/ .

D. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison Wesley, 1998.

M. Dikaiakos and D. Gunopoulos. FIGI: The Architecture of an Internet-based
Financial Information Gathering Infrastructure. In Proceedings of the Interna-
tional Workshop on Advanced Issues of E-Commerce and Web-based Information
Systems, pages 91-94. IEEE-Computer Society, April 1999.

M. Dikaiakos, A. Rogers, and K. Steiglitz. Performance Modeling through Func-
tional Algorithm Simulation. In G. Zobrist, K. Bagchi, and K. Trivedi, editors,
Advanced Computer System Design, chapter 3, pages 43—62. Gordon and Breach,
1998.

M. Dikaiakos and G. Samaras. A Performance Analysis Framework for Mobile-
Agent Platforms. In Proceedings of Workshop on Infrastructure for Scalable Mobile
Agent Systems, Autonomous Agents 2000, 2000.

M. Dikaiakos and G. Samaras. Quantitative Performance Analysis of Mobile-
Agent Systems: A Hierarchical Approach. Technical Report TR-00-2, Department
of Computer Science, University of Cyprus, June 2000.

M. Dikaiakos and J. Stadel. A Performance Study of Cosmological Simulation on
Message-Passing and Shared-Memory Multiprocessors. In Proceedings of the 10th
ACM International Conference on Supercomputing. ACM, May 1996.

J. Dongarra and W. Gentzsch, editors. Computer Benchmarks. North Holland,
1993.

G. Glass. Overview of Voyager: ObjectSpace’s Product Family for State-of-the-Art
Distributed Computing. Technical report, ObjectSpace, 1999.

J. Gosling and H. McGilton. The Java Language Environment. A White Paper.
Sun Microsystems. http://java.sun.com/docs/white/index.html.

W. Meira Jr., T.J. LeBlanc, and V. Almeida. Using the Cause-Effect Analysis to
Understand the Performance of Distributed Programs. In Proceedings of Sympo-
sium on Parallel and Distributed Tools, pages 101-111. ACM, 1998.

N.M. Karnik and A.R. Tripathi. Design Issues in Mobile-Agent Programming
Systems. IEEE Concurrency, 6(3):52-61, July-September 1998.

R. Koblick. Concordia. Communications of the ACM, 42(3):96-99, March 1999.
David Kotz, Guofei Jiang, Robert Gray, George Cybenko, and Ronald A. Peterson.
Performance Analysis of Mobile Agents for Filtering Data Streams on Wireless
Networks. In Proceedings of the Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWiM 2000), pages 85-94. ACM Press, August
2000.

D. B. Lange and M. Oshima. Seven Good Reasons for Mobile Agents. Communi-
cations of the ACM, 42(3):88-91, March 1999.

D.B. Lange and Y. Aridov. Agent Transfer Protocol — ATP/0.1. IBM Tokyo
Research Laboratory, March 1997. http://www.trl.ibm.co.jp/aglets/.

T. Magedanz and A. Karmouch. Mobile Software Agents for Telecommunication
Applications. Computer Communications, 23(8):705-707, 2000.

S. Papastavrou, G. Samaras, and E. Pitoura. Mobile Agents for WWW Distributed
Database Access. In Proceedings of the Fifteenth International Conference on Data
Engineering, pages 228-237. IEEE, March 1999.

E. Pitoura and G. Samaras. Data Management for Mobile Computing. Kluwer
Academic Publishers, 1998.

166

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

M.D. Dikaiakos and G. Samaras

A. Puliafito, S. Riccobene, and M. Scarpa. An Analytical Comparison of the
Client-Server, Remote Evaluation and Mobile Agents Paradigms. In Proceedings
of the Joint Symposium ASA/MA ’99. First International Symposium on Agent
Systems and Applications (ASA ’99). Third International Symposium on Mobile
Agents (MA °99), pages 278-292. IEEE-Computer Society, October 1999.

O.F. Rana. Performance Management of Mobile Agent Systems. In Proceedings of
Autonomous Agents 2000, pages 148-155. ACM, June 2000.

O.F. Rana and K. Stout. What is Scalability in Multi-Agent Systems? In Proceed-
ings of Autonomous Agents 2000, pages 56—63. ACM, June 2000.

G. Samaras, M. Dikaiakos, C. Spyrou, and A. Liverdos. Mobile Agent Platforms
for Web-Databases: A Qualitative and Quantitative Assessment. In Proceedings
of the Joint Symposium ASA/MA ’99. First International Symposium on Agent
Systems and Applications (ASA ’99). Third International Symposium on Mobile
Agents (MA °99), pages 50-64. IEEE-Computer Society, October 1999.

L.M. Silva, G. Soares, P. Martins, V. Batista, and L. Santos. Comparing the
Performance of Mobile Agent Systems: a Study of Benchmarking . Computer
Communications, 23(8):769-778, 2000.

T. Spalink, J. Hartman, and G. Gibson. The Effects of a Mobile agent on File
Service. In Proceedings of the Joint Symposium ASA/MA ’99. First International
Symposium on Agent Systems and Applications (ASA ’99). Third International
Symposium on Mobile Agents (MA ’99), pages 42—49. IEEE-Computer Society,
October 1999.

C. Spyrou, G. Samaras, E. Pitoura, and P. Evripidou. Wireless Computational
Models: Mobile Agents to the Rescue. In 2nd International Workshop on Mobility
in Databases € Distributed Systems. DEXA 99, September 1999.

M. Strasser, J. Baumann, and F. Hohl. Mole - A Java Based Mobile Agent System.
In J. Baumann, editor, 2nd ECOOP Workshop on Mobile Object Systems, 1996.
M. Strasser and M. Schwehm. A Performance Model for Mobile Agent Systems. In
Proceedings of the International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 97), pages 11321140, June 1997.

D.L. Tennenhouse, J.M. Smith, W. D. Sincoskie, and G.J. Minden. Itinerant
Agents for Mobile Computing. Journal of IEEE Personal Communications, 2(5),
October 1995.

Transaction Processing Performance Council (TPC). TPC Benchmark W (Web
Commerce) - Draft Specification, December 1999.

J. White. Telescript Technology: Mobile Agents. In J. Bradshaw, editor, Software
Agents. MIT Press, 1997.

J.E. White. General Magic White Paper. http://www.genmagic.com/agents, 1996.
D. Wong, N. Paciorek, and D. Moore. Java-based Mobile Agents. Communications
of the ACM, 42(3):92-95, March 1999.

D. Wong, N. Paciorek, T. Walsh, J. DiCelie, M. Young, and B. Peet. Concordia:
An Infrastructure for Collaborating Mobile Agents. Lecture Notes in Computer
Science, 1219, 1997. http://www.meitca.com/HSL/Projects/Concordia/.

M. Woodside. Software Performance Evaluation by Models. In C. Lindemann
G. Haring and M. Reiser, editors, Performance Evaluation: Origins and Directions,
pages 283-304. Springer, 1999.

	Introduction
	Mobile Agents
	Different Approaches for MA Performance Analysis
	A Framework for Investigating MA Performance
	Basic Elements and Application Kernels
	A Hierarchical Performance Analysis Approach
	Parameterizing Basic Elements and Application Kernels

	Implementation and Experimentation with Benchmarks
	Experimentation
	Micro-Benchmarks
	Web Database Micro-Kernels

	Conclusions

