Distributed Large-Scale Data Collection
in Online Social Networks

Hariton Efstathiades, Demetris Antoniades, George Pallis and Marios D. Dikaiakos
Department of Computer Science
University of Cyprus
Nicosia, Cyprus
e-mail: [h.efstathiades, danton, gpallis, mdd]@cs.ucy.ac.cy

Abstract—The popularity and huge amount of information
published in Online Social Networks (OSN) established them as
one of the main data sources for a variety of research community
fields. However, the design of a large-scale dataset collection
campaign is a major problem for organizations and researchers
who aim in addressing their research questions by analyzing this
type of data. OSN platforms provide Application Programming
Interfaces (API) to third party developers, which enable them to
retrieve and use this data for applications deployment. However,
due to OSN imposed limitations, the process of retrieving large
scale data with the use of these APIs is challenging and time
consuming, resulting in datasets which are either incomplete or
outdated. It is relatively impossible for an individual scientist or
research group to follow an efficient dataset collection procedure
and build a large sample in a short amount of time. In this paper
we present a framework for efficient crowd crawling of OSN. Our
framework is based on the use of multiple OSN accounts, which
are engaged in an efficient distributed collection process able to
circumvent the imposed limitations without violating the terms
of use. We present an evaluation of the proposed solution and
demonstrate its performance in terms of dataset completeness
and timeliness, for the case study of Twitter, one of the most
popular platforms used in research.

I. INTRODUCTION

The proliferation of Online Social Networks (OSNs) users
over the last decade has enabled many scientific fields, such as
social science and transportation [1, 13, 14], to drive into con-
clusions and validate their theories, through OSN data retrieval
and analysis. For example, a variety of human behavior studies
have been performed by social scientist due to existence of
OSN data [24]. OSNs still experience a rapid increase in their
daily user activity and population. Due to their user friendly
approach, these platforms attract users who belong in different
categories in terms of gender, age, education, job, geographic
location etc. Users of such platforms are thus able to construct
their social graphs, share content and interact with other users,
as they would in their real lives, but in much larger scale and
interaction range.

The large size of user directories and the frequency of
interactions between them have established OSNs as one of
the main actors in the era of “Big Data”. The enormous
number of messages that are published in a short amount of
time, (Twitter users, for example, publish more than 500M
tweets per day), along with the unstructured nature of these
messages describe the 3Vs, of ‘Volume*, “Velocity* and ‘Va-
riety‘ [25]. These characteristics introduce new challenges for
anyone trying to acquire a complete and timely data set from

OSNs. Considering also the data collection limitations imposed
by OSN platforms themselves, the procedure becomes more
challenging.

The design and implementation of a large scale data
collection campaign over these powerful data resources is
not a trivial task for an individual researcher or a single
research group. The most popular platforms, such as Twitter,
Facebook, LinkedIn, Renren, Foursquare, provide methods
for retrieving data through specific Application Programming
Interfaces (APIs). This functionality is useful for develop-
ers who aim in implementing an application on top of an
OSN platform. Through such interfaces, researchers focus on
collecting datasets in order to answer their research ques-
tions [5, 19, 20, 23]. However, due to the strict policies on
API requests [18, 21], an efficient large scale dataset collection
campaign, which results in a complete and timely sample, is
a very challenging process.

Over the years many OSN platforms, like Twitter, have
updated their API data request limitations. This action intro-
duced new challenges in the field, as it has as direct result the
deactivation of well-known and widely used data collection
approaches [9, 15, 16]. Such methodologies were used to
enable large scale crawling of the social graph by improving
the collection throughput rate.

In this paper we design and introduce an OSN data
collection framework that addresses the current challenges and
provides the end-user with large scale crowd crawling capabili-
ties. Furthermore, our proposed framework provides the ability
of performing large scale dataset collection campaigns in the
most efficient way, compared to state-of-the-art. We implement
a crowd crawling prototype, using Twitter, and demonstrate its
performance, with respect to OSN’s request limiting policies.

The main contributions of this paper can be summarized
as follows:

e We design and present a crowd crawling data col-
lection framework, which enables an individual or a
group of researchers to efficiently perform large scale
data collection campaigns with the participation of
OSN users. The proposed solution is able to effi-
ciently: a) Collect historical data in an asynchronous
manner, b) Retrieve the OSN stream in real-time.

e We implement a proof-of-concept prototype, which
demonstrates the system under a case study on Twitter.
We present an extended evaluation on different types

of devices along with a comparison over the state-
of-the-art OSN data collection methods. We evaluate
the proposed framework in both the large scale asyn-
chronous data collection procedure and the collection
of the real-time Twitter activity. Experimental results
show that the proposed solution provides improve-
ments in both data collection functionalities by more
than 100x and 3x respectively.

The rest of the paper is organized as follows: Section II
presents related work and challenges in the field of data
collection from OSN; Section III presents the architectural
design of the proposed framework; Section IV showcases and
evaluates the system with an experimental study on Twitter
and discusses the improvements over state of the art. Finally,
Section V concludes the paper.

II. RELATED WORK

The content that is generated through the interaction of
users in Online Social Networking platforms is of high interest
for the research community. However, the collection of a
large-scale dataset is not a trivial task for researchers due to
several challenges that are introduced mostly by the resources’
limitations [3, 25].

Cho et al. [6] study the design of an effective web crawler.
They present several problems in crawling procedure created
by the rapid increment on the size of the Web. They propose
multiple architectures for parallel distributed crawling frame-
work and identify the challenges in the field of crawling the
Web, similarly with [7]. Several challenges are also identified
in the design and implementation of an effective large scale
dataset collection framework, as the increasing quantity of
information that is published in OSN platforms introduce
relevant problems. The majority of these platforms maintain
monitoring services to control the data throughput, introducing
several additional challenges to the parallel data collection
campaigns.

A major problem in a data collection campaign is the one
of requests rate limiting policies of OSN providers. In the
recent years major OSN platforms have used IP-based policies,
which restrict a single machine to perform a certain number of
requests [21]. The solution on addressing this challenge was
straight-forward: a distributed data collection procedure was
able to effectively overcome this limitation. Ding et al. [8]
present the different categories of challenges for building a
crowd crawling system, highlighting the resource diversity of
the different parts, the different rate limiting policies from
OSN providers, and the data fidelity. They propose a frame-
work of crowd crawling, where a team of multiple research
groups share resources in order to efficiently collaborate in a
data crawling procedure. Their prototype is implemented over
Planetlab, from which they take advantage of the availability
of multiple nodes with different IP addresses.

Coalmine [27] is a social network data-mining system,
which implements its own mechanism for collecting the data
from Twitter and is able to retrieve data using the official
APL. Its overall architecture is based on distributed principles,
where multiple IP addresses are used. Gjoka et al. [14] propose
another similar framework for large scale dataset collection
from Facebook. They design and implement a distributed tool

which is able to overcome IP-based limitations and collect a
large sample.

However, OSN platforms, such as Twitter, have changed
the IP-based policy to Application-based. The latter restricts
a single application from performing a large number of re-
quests. Thus, this update makes a large scale dataset collection
procedure more complicated, as the distributed design in the
proposed fashion is not functional. In this paper we propose
a framework which is able to overcome the newly introduced
challenges in the field and perform a large scale data col-
lection campaign in the most efficient way. Furthermore, a
basic low-resource demanding configuration of the proposed
solution enables the collection of more than 2M complete
user information in one day, while state-of-the-art requires
a much more resource demanding configuration to achieve
similar performance.

III. PROPOSED FRAMEWORK DESIGN

In this section we present the design of the proposed
framework, by introducing the basic components and their core
functionalities. Furthermore, we describe the communication
between the different components of the system, and how each
one of them contributes to the goal of increasing the efficiency
in a large scale dataset collection campaign.

OSN platforms, such as Twitter, Facebook and LinkedIn,
represent information in similar abstractions. Each user has a
unique identifier, usually of type long. Similar identifiers are
assigned in messages posted by the user, like Tweets and Posts
in Twitter and Facebook respectively. The connections between
the users are retrievable as edge lists, which denote either
a reciprocal (friend) or direct (follower) connection between
two users. The retrieval of this information can be achieved
either using OSN provided API or through Web Scraping.
However, the terms-of-services of popular OSN prohibit the
data collection through automatic Web Scraping ' 2.

A data collection campaign can be either i) Resource
Specific collection or ii) a Real-Time stream collection. The
first case provides retrieval services for a specific resource
(e.g a user’s profile, a tweet or post), while the latter enables
the sample collection of real-time information that is being
published in the OSN. Our proposed framework provides two
different services in order to enable both cases of a data
collection campaign, which are 1. Resource Specific Data
Collection, and 2. Real-Time Stream Collection.

A. Crowd Crawling: Building the Tokens Repository

As mentioned in section II, a newly introduced challenge in
data collection procedures is the update of IP-based limitations
to Application-based ones. For a complete presentation of our
crowd crawling approach we first describe the traditional data
collection procedure, established through the available OSN
API. An individual who aims in using the services of an OSN
API is required to create an application in the specific platform.
In our case, the requests are related with data collection,

]https://twitter.com/tos, Twitter Terms of Service (Last Accessed: October
2016)

Zhttps://www.facebook.com/apps/site_scraping_tos_terms.php,
Terms of Service (Last Accessed: October 2016)

Facebook

OSN Platform

- _ B3

Crawling Coordinator Tokens Repository

]

Data Management

S S

Data Storage
Local Local Local Ilr g - }
Collector Collector Collector] L L |
Schema1 Schema2 Scheman

Fig. 1. General System architecture

either of a specific resource or the public OSN stream. By
creating the application, the user agrees with the terms of
service, and the OSN is able to monitor the requests executed
through it. OSNs API policies restrict a single application
of performing a large number of requests. In order to make
authorized calls to an OSN API, each application must obtain
a group of access tokens on behalf of a user, usually through
the OAuth 2.0 specification [17]. These tokens are unique
for each application and each user. For example, in the case
of Twitter API, the platform provides four tokens; two are
related with the application while the rest are related with
the user who agrees to authorize the application to execute
requests on user’s behalf. Furthermore, the user has the ability
to revoke the generated tokens at any time. This will result to
the deactivation of the generated tokens; an action that will
restrict from the application to execute API requests on user’s
behalf.

In IP-based limitations, the OSN API monitors the public
IP address of the machine and applies the limitations per IP.
Thus, a distributed data collection campaign in different ma-
chines, but with the same group of tokens, radically improves
the procedure [4, 26]. However, after the latest updates, this
is not possible as the majority of OSN API monitors the
registered applications. As a result, even when an application
(that utilizes the same set of tokens) is distributed in several
machines with different public IP addresses, the limitations that
apply are the same as if it was running on a single instance.
Having this in mind, we proceed in a crowd-crawling approach,
asking from OSN users to contribute to the data collection
procedure by authorizing applications to access the APIL

The procedure that we follow is the one suggested by the
OSN platform. We first register an application in the OSN
API. Then, we develop a service which asks from the users of
our ego-networks (followers and followees) to authorize it to
execute public data retrieval requests. Having the approval of
the user, our service collects the generated tokens and stores
them in a Tokens Repository. This repository contains a number
of tokens that have been generated by OSN users. This crowd
crawling procedure increases the number of tokens/resources
that can be used during the retrieval process in the proposed
system and takes place before the beginning of the data
collection campaign.

Having multiple tokens enables us to activate a different

set of them in order to avoid reaching the resources request
limit; when we hit this limit the group of tokens becomes
invalid for a certain amount of time ¢. We then move to the
next group of tokens and execute the number of requests until
we hit their limit. We follow this procedure repeatedly, until
the condition ¢ — current_time = 0 is satisfied, as the group
of tokens will become active again. Thus, with an n number
of tokens we enable the continuous operation of the data
collection campaign. This procedure is executed in each Local
Collector instance, which is described in this section.

B. Resource Specific Data Collection

The proposed service provides functionalities related to
asynchronous resource specific data collection. With this term
we denote the procedure where we collect resource specific
historical data enabling the retrieval and storage of all the
available data of a user, given user’s unique ID (UID). The
proposed framework is able to crawl OSN platforms with the
use of parallel API instances.

As depicted in Figure 1, the proposed system uses a
Map-Reduce-like approach to overcome this limitation by
partitioning tokens into a large number of small instances,
greater than the available nodes, with some being replicated
for performance objectives. Specifically, the system consists of
three main components: (i) Master Component, (ii) Local Col-
lector Component, (iii) Data Storage Component. The Local
Collector Components are different instances running on dif-
ferent physical machines. Due to the latest API policies, which
remove the IP-based requests limitations, multiple instances
could be run on a single machine. However, the policies update
to Application-based limitations increases the complexity in
data collection process parallelization. The Master component
is responsible to monitor and maintain the different Local
Collectors, taking into consideration the resources demand
and availability. The Master component assigns tasks to Local
Collectors based on the provided UID list and the available
tokens. Through the tokens and UID balancing, Master com-
ponent manages to maintain the collector resources based
on the demand. For example, if a Local Collector does not
need the assigned resources, it returns them to the Master
component which in turn assigns the resources to a more
demanding Local Collector instance. Each Local Collector
instance communicates with the Data Storage Component in
order to store the retrieved data. The main task of the Data
Storage component is to monitor the storage procedure and is
able to perform modifications in the storage functionalities in
order to ensure a maximum throughput rate. For every action
it provides feedback to Master component and proceeds to
modifications if needed (e.g. temporary store data in the file
system, if the database engine is down).

UIDs retrieval: The Master component requires a list of
UIDs to initiate the data collection procedure. Such a list can
be retrieved from the proposed Real-Time Stream Collection
service and/or through OSNs public directories. These directo-
ries are indexes to the public profiles of users, maintained by
popular OSN platforms, such as Twitter® and Facebook*. The
UIDs are used by the Crawling Coordinator, which initializes

3https://twitter.com/i/directory/
“https://www.facebook.com/directory

Local Collector

i
| Local Crawler Pit J

l Local Tokens Index

| Pre-processing] rrrrrrrrrrrrrrrrrrrrrr »—| Data Enrichment |

k| Y
| Data Modeling

1

Storage

4

Data Storage

Fig. 2. Local Collector architecture

and distributes the crawling workload to the different Local
Collectors.

Master Component: The Master Component is responsible
for the workload distribution and monitoring of the data
collection process. It has global knowledge about the system’s
state and maintains the resources based on the corresponding
needs, by obtaining up-to-date crawling information from the
different Local Collector instances. This component gets as
input the list with UIDs that should be collected and calculates
the load needed for each local instance. It then distributes the
tasks and the resources based on the calculations. When a
Local Collector requires more resources it sends a request to
the Master component, which will then check the availability
and update Local Collectors resources pool. On the other
hand, when a Local Collector has reserved resources and
does not need them, it notifies the Master component which
in turn retrieves them back and makes them available for
other resources. With this procedure, the system is maintained
in a state where only the required resources are used, and
each Local Collector has the highest available amount of the
resources that it requires. In general, Master component has as
goal to ensure that each Local Collector runs in full throttle
24/7, addressing API requests limitations.

Data Storage Component: The Data Storage Component is
responsible for aggregating the anonymized results that have
been collected from the different Local Collectors and store
them with the most efficient way. This component is able to
retrieve the data from multiple instances and store them in a
central database. It maintains the storage queues and performs
the necessary actions in order to ensure that it does not act as
a bottle-neck. It is able to run real-time analytics and inform
the Master component about the current metrics and actions
taken. Such actions include the creation of different storage
schema when the analytics suggest so, use of compression
when running-out of space, store data in files when database
engines fail etc. The component ensures that the retrieved data
will be eventually stored in the file system in the most efficient
way, at any given time. For the most efficient configuration,
Data Storage and Master components should be deployed at
the same machine.

Local Collector
In Figure 2 we present the architecture of the Local Collector
component which is one of the main actors of the system.

It is responsible for obtaining a task from Master component
and perform the necessary actions in order to complete this
task. Additionally, it provides real-time information about the
progress to the Master component. Multiple Local Collector
instances are distributed and deployed in different machines,
increasing the efficiency and the throughput of the data collec-
tion system. Here we describe the internal components of the
Local Collector and their tasks in the overall data collection
campaign.

Local Crawler: In each Local Collector there is a Local
Crawler, which is responsible to execute the requests to the
OSN platform through the available API. This component
uses the local tokens index which has been updated by the
Crawling Coordinator of the Master component. Furthermore,
it is responsible to maintain the crawling procedure in order to
overcome the requests limitations, by requesting or dismissing
API tokens. When the Local Crawler hits a request limit, it will
automatically inform the Master component. If the Crawler
Coordinator has available tokens, it will update the local index
with the new tokens. On the other hand, if the Local Crawler
is able to complete the assigned tasks with less tokens, it will
inform the Master component and the Crawler Coordinator
will dismiss the tokens and update the tokens index.

Pre-processing and Data Enrichment: The retrieved infor-
mation is first passed through a pre-processing step, where
is being cleaned and converted to the require encoding (e.g.
convert the non-supported characters to unicode). Furthermore,
during the pre-processing step, the retrieved data are being
anonymized, according to privacy protection policies® and
OSN APIs terms-of-service. During the anonymization proce-
dure we replace the user and posts’ ids with random numbers.
A part of the data is then parsed by the Data Enrichment
step, where the collected information is being enriched from
external sources (e.g. a Tweet is being parsed to NLTK for
sentiment analysis [2], or the post-code of a geo-tagged tweet
or post is being identified).

Data Modeling: After, these two steps the resulted data is
forwarded to the Data Modeling component, where the final
formating applies. Each Local Collector divides the general
task in multiple subtasks, that can be executed in parallel on
the same instance. For example, when a Local Collector gets
the task of collecting 100,000 Twitter users, it is able to execute
the crawling procedure in parallel, by running 5 threads which
each one collects 20,000 users. Following this procedure the
Local Collector is able to take advantage of the local workload
division in smaller subtasks and better monitor the crawling
procedure. The Local Collector communicates with the Data
Storage Component thought a socket. Through this socket, it
sends the data that are handled by the Data Storage component
and stored at the final step in a database schema. In order
to reduce the communication cost, Local Collector is able to
temporary store the retrieved data locally and proceed to bulk
insertions.

Failure Resistance: Each Local Collector instance maintains
a local data storage component, which is activated in cases of
failures in the communication with the Data Storage compo-
nent. Retrieved data are stored in this local component, until

Shttp://ec.europa.eu/justice/newsroom/data- protection/news/20150128 _en.
htm

the communication is restored and transfered to Data Storage.

C. Real-Time Stream Collection

A main limitation in OSN platforms API is the one of filter-
ing their public stream. Twitter, for example, makes accessible
only 1% of the total Twitter stream though the corresponding
API ©. Thus, when a researcher aims at collecting Tweets that
are being published from a specific geographical area, e.g. the
city of London, she will only be able to retrieve the set that
does not exit the threshold of 1% of the total Twitter Stream.
Furthermore, Morstatter et al. conclude that the results of using
the Twitter Streaming API depend strongly on the coverage
and the type of analysis of the study, and highlight the need
of methods and frameworks that compensate the biases in these
types of API [22].

The proposed framework supports Real-time Stream Col-
lection, a service that is able to overcome these limitations and
collect OSN platforms’ stream in the most efficient way. This
service provides the functionality to retrieve the public stream
with 2 different options: (i). Given as input a geographic
boundary box, (if). Given as input a set of terms. For (i) it
constantly listens to the stream of the area that lies in a specific
boundary box, while for (ii) it queries the API for posts which
contain the specific terms.

Master Component: Similarly to Resource Specific Data
Collection service, the Master component is responsible for
monitoring the overall procedure. It takes as input the target
file and the Crawling Coordinator distributes the load in the
different listeners. For example, in the case of monitoring the
stream of a specific location, it takes as input the geographical
coordinates of the under investigation area and divides it in
a grid. It then distributes the different boundary boxes in a
team of Local Collectors, giving them the subtask to collect the
stream of a much smaller geographical area. Data Management
component is responsible to receive the feedback from the Data
Storage and proceed to the necessary actions.

Local Collector: The Local Collector receives a task from the
Master component and is responsible to constantly listen OSN
stream based on the rules received, using the OSN API. Such
rules are a boundary box or a specific set of terms. A Local
Collector is also responsible to monitor its resources and ask
from the Master component to redistribute the API tokens, and
thus the workload, if required. For example, a Local Collector
receives a task to listen to the Twitter stream of a part of the
city of London. During rush hours, this area gets crowded,
thus the stream exits the limits of the Twitter stream API. At
the same time another Local Collector is responsible to receive
the stream of a part of Nicosia, Cyprus, which is much less
crowded than API thresholds. Both Local Collectors report
their monitoring results and request from Master component
to redistribute the load. Master’s Crawling Coordinator then
assigns the resources of the less crowded collector to the
crowded one, by creating a sub-grid, while it assigns a nearby
Local Collector to the part of the city of Nicosia.

IV. EVALUATION

For the evaluation of the proposed framework we de-
veloped a proof-of-concept prototype, following the design

Shttps://dev.twitter.com/streaming/overview

requirements presented in section III. We evaluate the proposed
framework for both provided functionalities, Resource Specific
Data Collection and Real-Time Stream Collection over several
case studies on the Twitter platform. The choice of Twitter for
the evaluation was motivated from the fact that the openness of
this platform has attracted a large number of research groups
to perform analytics and drive into conclusions using data
retrieved from its data servers [25]. In this section we present
the experimental setting and the results of the experiments. We
then discuss our findings and compare with related work.

A. Properties of Interest

The proposed framework visits a Twitter user’s account and
collects the following information:

User profile: Each Twitter user is uniquely identified by his
UID. In the public profile one can find information about the
user’s current status (description) and location. Additionally,
in a user’s profile additional automatic calculated fields can be
found, such as tweets, followers and followees, profile creation
date and profile image URL.

Tweet: a list of statuses are included in a user’s Twitter
account’. Each Tiweet entry contains a unique identifier, the
UID of the publisher, the text and a set of meta-data. Such
meta-data include the timestamp, several flags that denote
if the entry is geo-tagged, retweet, reply, favorite, if it has
been retweeted and how many times, the number of mentions
and hashtags contained and application that was used to get
published. Moreover, for each geo-tagged Tweet, information
about the geographical place is included, such as the country,
country code, place name, street address, place type and a
geographical boundary box. Furthermore, we enrich each geo-
tagged Tweet with its corresponding post-code area.

Ego-network: a users ego-network contains a list of followers
and followees unique UIDs. The followers list contains edges
that are ending on user’s profile, while followees list edges
that start from the user’s profile.

B. Experimental setting

Our proof-of-concept prototype has been developed in
Java. For the data storage component we use MySQL, which
is a widely used relational database management system
(RDBMS). For the integration between the data collector and
storage components we use the JDBC driver.

We deploy a Master component instance on a server with
4-core 2.5GHz processor and 24GB memory. The Master
component initiates four different instances of Local Collectors
on four different machines, running on 4-core 2GHz processor
with 4GB memory each. Additionally, we showcase an exper-
iment on a Raspberry Pi Model B low cost device 3. This
scenario evaluates the execution of parallel instances of Local
Collectors, coordinated by one Master component running on
the infrastructure of a research institution. The Data Storage
component is deployed on the same machine with the Master

TWe are able to retrieve at most the 3,200 most recent Tweets for each user,
due to Twitter API request policy.

SA single-core, low-cost device, running at 700Mhz with 512MB RAM.
https://www.raspberrypi.org/products/model-b

300 400 500
I

#Users

200
I

100
I

T T T T T
0 6 12 18 24

Time from start (Hours)

Fig. 3. Crawling throughput of an average Local Collector component for 24
hours. Each Local Collector is able to retrieve the complete set of Properties
of interest for 397.2 users per minute on average.

[Users [Followers [Followees | Tweets [Places

[2,300,574 [1,220,972,850 [635,276,364 [1,612,766,674 | 1,040,240

TABLE 1. NUMBER OF USERS, FOLLOWERS, FOLLOWINGS, TWEETS
AND PLACES OF GEO-TAGGED TWEETS OF THE RESULTED DATASET.

component, in order to reduce the communication cost between
these two actors.

Use Case Scenarios

Resource Specific Data Collection: In the presented crowd
crawling case study scenario we use the online social network-
ing platform of Twitter, one of the most widely used platforms
in research. In order to generate the UID list we randomly
sampled users from the dataset used in [19] and is publicly
available. For each UID in this list, Local Collector instances
request and store the complete properties of interest.

Real-Time Stream Collection: For this evaluation scenario we
use the option of collecting the public stream of a boundary
box. In order to get better insights on the performance we
needed a scenario where the threshold of 1% of total Twitter
stream will be exit. Thus, we give a boundary box with
the complete world map, which indicates that we need to
collect the public stream of all the locations. We then execute
three different approaches in parallel: We collect the public
Twitter Stream of this area using (i). Single Twitter stream
listener using Twitter Stream API (ii). Multiple instances of
Twitter APL, listening to the same area, (iii). Real-Time Stream
Collection functionality of the proposed framework. We then
compare the results and present the insights.

C. Results

Crawling Throughput

Resource Specific Data Collection: We perform a distributed
crawling procedure, following the described Resource Spe-
cific Data Collection methodology, for 24 hours. Figure 3
summarizes the throughput rate per minute for an individual
Local Collector. Our proof-of-concept was able to obtain
more than two million users during this period, having the
four Local Collector instances collecting about 575,000 users
each, without exceeding 9% of machines’ memory usage. An
average instance is able to collect and store more than 372

#Users

T T T T T T T
0 10 20 30 40 50 60

Time from start (Minutes)

Fig. 4. Crawling throughput of one Local Collector component, running on
a Raspberry PI low cost device. Each Local Collector is able to retrieve the
complete set of Properties of Interest for 147.2 users per minute on average.

=)
o
8 —— Proposed
= | —— multiple
| Single
o
2 g
3 @
£
H*
o
o
o
N
o 4
T T T T T
0 6 12 18 24
Time from start (Hours)
Fig. 5. Crawling throughput of stream listener, compared with single and

multiple instances of Twitter API

users per minute. During the collection procedure an instance
collects the complete properties of interest of the requested
users, as described above. The resulted dataset, presented on
Table I, can be translated in more than 69GB of uncompressed
data per Local Collector. Figure 4 showcases the performance
of an instance running on a Raspberry Pi Model B. As we can
see, in one hour of crawling, a Local Collector instance running
on such device is able to collect the complete set of properties
of interest of 8,820 users, a number which is by 3x higher
than state-of-the-art [8]. These results show that the intelligent
management of resources and tokens radically improves the
traditional distributed methodologies.

Real-Time Stream Collection: Figure 5 summarizes the
throughput rate per minute for the 3 different compared
approaches. As we can see, the proposed system is able to
perform a large-scale real-time monitoring campaign with up
to 3 times higher throughput than the commonly used ap-
proach. The applied procedure on the proposed system resulted
to the collection of more than 9M different Tweets, while
at the same time Twitter Stream API does not return more
than 3M. Furthermore, as we can see from the parallelized
procedure, the Single and Multiple Single instances resulted
to similar throughput, having the latter collecting 40K more
unique Tweets.

D. Discussion

The evaluation of our proposed OSN dataset collection
framework shows the feasibility of utilizing a number of OSN
API Tokens, retrieved through crowdsourcing, to collect a
complete and timely dataset, without violating the terms of use
of the services. As shown above, through smart utilization of
resource, an interested party can collect more data in minimal
time, avoiding any bias in the research outcome, created by
a long lasting data collection campaign. Additionally, through
smart use of resources our framework triples the collection
of the real time stream of OSN services. Such an increase
can be valuable to both research and commercial application
that react based on the real-time census of the active Online
Social Network users. In addition to the evaluation performed
in this section, the proposed framework was used for the data
collection campaigns of [10-12].

V. CONCLUSIONS

This paper presents a framework for efficient data col-
lection from Online Social Networks, enabled through crowd
crawling of API data retrieval tokens. The proposed framework
is based on the use of multiple OSN accounts, which are
engaged in an efficient and smart distributed collection process,
able to circumvent the imposed limitations without violating
the terms of use. In all cases, the proposed solution proceeds
to a pre-processing step where data are being anonymized,
with respect to users’ privacy and OSNs API terms-of-service.
The evaluation of our proposed solution demonstrates its
performance, in terms of dataset completeness and timeliness,
for the case study of Twitter, one of the most popular plat-
forms used in research. The presented framework enables the
collection of more than 2.3M users in one day, retrieving
also their Followers, Followees and Tweets. Furthermore, due
to the intelligent use of resources, our framework triples the
collection of the real-time stream of Twitter APL

VI. ACKNOWLEDGMENTS

This work was partially supported by the iSocial EU Marie
Curie ITN project (FP7-PEOPLE-2012-ITN).

REFERENCES

[1] S. Asur and B. Huberman. Predicting the future with
social media. In Web Intelligence and Intelligent Agent
Technology (WI-IAT), 2010 IEEE/WIC/ACM Interna-
tional Conference on, volume 1, pages 492-499, Aug
2010.

[2] S. Bird. Nltk: The natural language toolkit. In Proceed-
ings of the COLING/ACL on Interactive Presentation Ses-
sions, COLING-ACL ’06, pages 69—72, Stroudsburg, PA,
USA, 2006. Association for Computational Linguistics.

[3] A. Black, C. Mascaro, M. Gallagher, and S. P. Goggins.
Twitter zombie: Architecture for capturing, socially trans-
forming and analyzing the twittersphere. In Proceedings
of the 17th ACM International Conference on Supporting
Group Work, GROUP ’12, pages 229-238, New York,
NY, USA, 2012. ACM.

[4] M. Bosnjak, E. Oliveira, J. Martins, E. Mendes Ro-
drigues, and L. Sarmento. Twitterecho: A distributed
focused crawler to support open research with twitter

data. In Proceedings of the 21st International Conference
on World Wide Web, WWW 12 Companion, pages 1233—
1240, New York, NY, USA, 2012. ACM.

[5] P. Burnap, O. Rana, M. Williams, W. Housley, A. Ed-
wards, J. Morgan, L. Sloan, and J. Conejero. Cosmos:
Towards an integrated and scalable service for analysing
social media on demand. International Journal of Par-
allel, Emergent and Distributed Systems, 30(2):80-100,
2015.

[6] J. Cho and H. Garcia-Molina. Parallel crawlers. In
Proceedings of the 11th International Conference on
World Wide Web, WWW °02, pages 124-135, New York,
NY, USA, 2002. ACM.

[7] M. D. Dikaiakos and D. Zeinalipour-Yazti. A dis-
tributed middleware infrastructure for personalized ser-
vices. Computer Communications, 27(15):1464 — 1480,
2004.

[8] C. Ding, Y. Chen, and X. Fu. Crowd crawling: Towards
collaborative data collection for large-scale online social
networks. In Proceedings of the First ACM Conference
on Online Social Networks, COSN 13, pages 183-188,
New York, NY, USA, 2013. ACM.

[9] K. Driscoll and S. Walker. Big data, big questions| work-
ing within a black box: Transparency in the collection and
production of big twitter data. International Journal of
Communication, 8(0), 2014.

[10] C. Efstathiades, A. Belesiotis, D. Skoutas, and D. Pfoser.
Similarity search on spatio-textual point sets. In Proceed-
ings of the 19th International Conference on Extending
Database Technology, EDBT 2016, Bordeaux, France,
March 15-16, 2016, Bordeaux, France, March 15-16,
2016., pages 329-340, 2016.

[11] H. Efstathiades, D. Antoniades, G. Pallis, and M. D.
Dikaiakos. Identification of key locations based on
online social network activity. In Proceedings of the
2015 IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining 2015, ASONAM
’15, pages 218-225, New York, NY, USA, 2015. ACM.

[12] H. Efstathiades, D. Antoniades, G. Pallis, and M. D.
Dikaiakos. Users key locations in online social networks:
identification and applications. Social Network Analysis
and Mining, 6(1):1-17, 2016.

[13] L. Gabrielli, S. Rinzivillo, F. Ronzano, and D. Villatoro.
From tweets to semantic trajectories: Mining anomalous
urban mobility patterns. In J. Nin and D. Villatoro,
editors, Citizen in Sensor Networks, Lecture Notes in
Computer Science, pages 26-35. Springer International
Publishing, 2014.

[14] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou.
Practical recommendations on crawling online social net-
works. Selected Areas in Communications, IEEE Journal
on, 29(9):1872-1892, October 2011.

[15] O. Goonetilleke, T. Sellis, X. Zhang, and S. Sathe. Twitter
analytics: A big data management perspective. SIGKDD
Explor. Newsl., 16(1):11-20, Sept. 2014.

[16] A.Java, X. Song, T. Finin, and B. Tseng. Why we twitter:
Understanding microblogging usage and communities. In
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007
Workshop on Web Mining and Social Network Analysis,
WebKDD/SNA-KDD ’07, pages 56-65, New York, NY,
USA, 2007. ACM.

[17] M. Jones and D. Hardt. The oauth 2.0 authorization

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

framework: Bearer token usage. Technical report, 2012.
S. Kumar, F. Morstatter, and H. Liu. Crawling twitter
data. In Twitter Data Analytics, SpringerBriefs in Com-
puter Science, pages 5-22. Springer New York, 2014.
H. Kwak, C. Lee, H. Park, and S. Moon. What is twitter,
a social network or a news media? In Proceedings of
the 19th International Conference on World Wide Web,
WWW 10, pages 591-600, New York, NY, USA, 2010.
ACM.

Y. Liu, C. Kliman-Silver, and A. Mislove. The tweets
they are a-changin’: Evolution of Twitter users and be-
havior. In Proceedings of International AAAI Conference
on Weblogs and Social Media (ICWSM’14), Ann Arbor,
MI, USA, Jun 2014.

A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Measurement and analysis of
online social networks. In Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC
’07, pages 29-42, New York, NY, USA, 2007. ACM.

F. Morstatter, J. Pfeffer, H. Liu, and K. M. Carley. Is
the sample good enough? comparing data from twitter’s
streaming api with twitter’s firehose. arXiv preprint
arXiv:1306.5204, 2013.

S. A. Myers and J. Leskovec. The bursty dynamics of the
twitter information network. In Proceedings of the 23rd
International Conference on World Wide Web, WWW
"14, pages 913-924, New York, NY, USA, 2014. ACM.
D. Ruths, J. Pfeffer, et al. Social media for large studies
of behavior. Science, 346(6213):1063-1064, 2014.

K. Tao, C. Hauff, G. J. Houben, F. Abel, and
G. Wachsmuth. Facilitating twitter data analytics: Plat-
form, language and functionality. In Big Data (Big Data),
2014 IEEE International Conference on, pages 421430,
Oct 2014.

A. H. Wang. Don’t follow me: Spam detection in twitter.
In Security and Cryptography (SECRYPT), Proceedings
of the 2010 International Conference on, pages 1-10, July
2010.

J. S. White, J. N. Matthews, and J. L. Stacy. Coalmine:
an experience in building a system for social media
analytics, 2012.

