

JCatascopia: Monitoring Elastically Adaptive Applications in the Cloud

Demetris Trihinas, George Pallis, Marios D. Dikaiakos {trihinas, gpallis, mdd}@cs.ucy.ac.cy

14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid 2014) May 26-29, Chicago, IL, USA

Presentation Outline

- Elasticity in Cloud Computing
- Cloud Service Monitoring Challenges
- Existing Monitoring Tools and their Limitations
- JCatascopia Monitoring System
 - Architecture
 - Features
 - Evaluation
- Conclusions and Future Work

Elasticity in Cloud Computing

• Ability of a system to *expand* or *contract* its dedicated

resources to meet the current demand

Cloud Monitoring Challenges

- Monitor heterogeneous types of information and resources
- Extract metrics from multiple levels of the Cloud
 - Low-level metrics (i.e. CPU usage, network traffic)
 - High-level metrics (i.e. application throughput, latency, availability)
- Metrics collected at different time granularities

Cloud Monitoring Challenges

- Operate on any Cloud platform
- Monitor Cloud services deployed across multiple Cloud platforms
- Detect configuration changes in a cloud service
 - Application topology changes (e.g. new VM added)
 - Allocated resource changes (e.g. new disk attached to VM)

Elasticity Support

Existing Monitoring Tools

Demetris Trihinas

CCGrid 2014, Chicago, IL, USA, 27 May 2014

Cloud Specific Monitoring Tools

Benefits

- Provide MaaS capabilities
- Fully documented
- Easy to use
- Well integrated with underlying platform

Limitations

 Commercial and proprietary which limits them to operating on specific Cloud IaaS providers

General Purpose Monitoring Tools

Benefits

• Open-source

Laboratory for

- Robust and light-weight
- System level monitoring

Suitable for monitoring Grids and Computing Clusters

Limitations

- Not suitable for dynamic (elastic) application topologies
- Limited application-level monitoring

Monitoring Tools with Elasticity Support

- [de Carvalho, INM 2011]
 - Nagios + Controller on each physical host to notify Nagios Server with a list of instances currently running on the system
- Lattice Monitoring Framework [Clayman, NOMS 2011]
 - Controller periodically requests from hypervisor list of current running VMs

Limitations

- Special entities required at physical level
- Depend on current hypervisor

JCatascopia Monitoring System

Demetris Trihinas

CCGrid 2014, Chicago, IL, USA, 27 May 2014

JCatascopia Monitoring System

Open-source

Multi-Layer Cloud Monitoring

✓ Platform Independent

Capable of Supporting Elastic Applications

🗸 Interoperable

🗸 Scalable

JCatascopia Architecture

Demetris Trihinas

CCGrid 2014, Chicago, IL, USA, 27 May 2014

Monitoring Agents

 Light-weight monitoring instances

Laboratory for Internet Computing

- Deployable on physical nodes or virtual instances
- Responsible for the metric collection process
- Aggregate and distribute collected metrics (pub/sub)

Monitoring Probes

- The actual metric collectors managed by Monitoring Agents
 - Collect system-level and application performance metrics
 - JCatascopia Probe API

Laboratory for nternet Computing

Dynamically deployable to

Monitoring Agents

Filtering mechanism at Probe level

Monitoring Servers

- Receive metrics from
 Monitoring Agents
- process and store metrics in Monitoring Database

Laboratory for Internet Computing

- Handle user metric and configuration requests
- Hierarchy of Monitoring
 Servers for greater scalability

JCatascopia Architecture

Laboratory for

Internet Computing

- JCatascopia REST API
- JCatascopia-Web User
 Interface
- JCatascopia Database Interface
 - Allows users to utilize their own
 Database solution with JCatascopia
 - Currently available: MySQL, Cassandra

Dynamic Agent Discovery

Benefits

- Monitoring Servers are agnostic of Agent network location
- Agents appear dynamically

Eliminated the need to

- Restart or reconfigure Monitoring System
- Depend on underlying hypervisor
- Require directory service with Agent locations

Dynamic Agent Removal

- Heartbeat monitoring to detect when Agents:
 - Removed due to scaling down elasticity actions
 - Temporary unavailable (network connectivity issues)

Metric Subscription Rule Language

 Aggregate single instance metrics

SUM(errorCount)

 Generate high-level metrics at runtime

DBthroughput =

Laboratory for Internet Computing

AVG(readps+writeps)

<SubscriptionRule> ::= <Filter>, <Members>, <Action>

```
<Filter> ::= <MetricName> = <Expression> | <GroupFunction>(<Expression>)
<Expression> ::= <Operand> | <Operand> <Op> <Expression>
<Operand> ::= <Number> | <MetricName> | (<Expression>)
<Op> ::= +|-|*|/
<MetricName> ::= <String>
<GroupFunction> ::= AVG|SUM|MIN|MAX
```

```
<Members> ::= MEMBERS = ({<AgentID>,} <AgentID>)
<AgentID> ::= <String>
```

```
<Action> ::= ACTION = NOTIFY(<Act>) | PERIOD(<Number>)
<Act> ::= ALL | {<Relation> <Number>,} <Relation> <Number>
<Relation> ::= <|>|=|!=|>=|<=
```

Subscription Rule Example

Average DBthroughput from the low-level

metrics readps and writeps of a database

cluster comprised of N nodes:

DBthroughput = AVG(readps + writeps)
MEMBERS = [id1, ..., idN]
ACTION = NOTIFY(<25,>75%)

Adaptive Filtering

- Simple fixed uniform range filter windows are not effective:
 - i.e. filter currentValue if in window previousValue ± R
 - No guarantee that any values will be filtered at all
- Adaptive filter window range
 - window range (R) is not static but depends

on percentage of values previously filtered

JCatascopia Evaluation

Demetris Trihinas

CCGrid 2014, Chicago, IL, USA, 27 May 2014

Evaluation

- Validate JCatascopia functionality and performance
- Compare JCatascopia to other Monitoring Tools
 - Ganglia
 - Lattice Monitoring Framework
- Testbed
 - Different domains of Cloud applications
 - Various VM flavors
 - 3 public Cloud providers and 1 private Cloud

Testbed

Cloud Provider	VM no.	VM Flavor	Applications	
GRNET Okeanos public Cloud	15	1GB RAM, 10GB Disk, Ubuntu Server 12.04 LTS	12 VMs Cassandra 3 VMs YCSB Clients	
Flexiant FlexiScale platform	10	2 VCPU, 2GB RAM, 10GB Disk, Debian 6.07 (Squeeze)	HASCOP	
Amazon EC2	10	m1.small with CentOS 6.4 (1VCPU, 1.7GB RAM, 160GB Disk)	an attributed, multi-	
OpenStack Private Cloud	60	2 VCPU, 2GB RAM, 10GB Disk, Ubuntu Server 12.04 LTS	algorithm	

We have deployed on all VMs JCastascopia Monitoring Agents, Ganglia gmonds and Lattice DataSources

Testbed - Available Probes

Probe	Metrics	Period (sec)
CPU	cpuUserUsage, cpuNiceUsage, cpuSystemUsage, cpuIdle, cpuIOWait	10
Memory	memTotal, memUsed, memFree, memCache, memSwapTotal, memSwapFree	15
Network	netPacketsIN, netPacketsOUT, netBytesIN, netBytesOUT	20
Disk Usage	diskTotal, diskFree, diskUsed	60
Disk IO	readkbps, writekbps, iotime	40
Cassandra	readLatency, writeLatency	20
YCSB	clientThroughput, clientLatency	10
HASCOP	clustersPerIter, iterElapTime, centroidUpdTime, pTableUpdTime, graphUpdTime	20

Experiment 1. Elastically Adapting Cassandra Cluster

- Scale out Cassandra cluster to cope with increasing workload
- Experiment uses 15 VMs in Okeanos cluster
- Subscription Rule to notify

Provisioner to add VM when

scaling condition violated:

cpuTotalUsage = AVG(1 - cpuIdle) MEMBERS = [id1, ..., idN] ACTION = NOTIFY(>=75%)

VMs	Probes
YCSB Clients	YCSB
Cassandra	CPU, Memory, Network, DisklO, Cassandra

Experiment 1. Elastically Adapting Cassandra Cluster

Monitoring Agent Runtime Impact

Experiment 2. Monitoring a Cloud Federation Environment

- Monitor an application topology spread across multiple Clouds:
 - OpenStack (10 VMs)
 - Amazon EC2 (10 VMs)
 - Flexiant (10 VMs)
- Compare JCatascopia, Ganglia and Lattice runtime footprint
- Compare JCatascopia and Ganglia network utilization

Laboratory for Internet Computing

Experiment 2. Monitoring a Cloud Federation Environment

Monitoring Agent Runtime Impact

Monitoring Agent Network Utilization

When in need of application-level monitoring, for a small runtime overhead, JCatascopia can reduce monitoring network traffic and consequently monitoring cost

Experiment 3. JCatascopia Scalability Evaluation

- Experiment uses the 60 VMs on
 OpenStack private Cloud to scale
 a HASCOP cluster
- 1 Monitoring Server for 60
 Agents
- Subscription Rule:

hascopIterElapsedTime = AVG(iterElapTime)
MEMBERS = [id1, ..., idN]
ACTION = NOTIFY(ALL)

Scalability Evaluation

Archiving time grows linearly

Laboratory for

Internet Computing

Experiment 3. JCatascopia Scalability Evaluation

New Setup

- 2 Intermediate Monitoring
 Servers which aggregate
 metrics from underlying
 Agents
- 1 root Monitoring Server

When archiving time is high, we can redirect monitoring metric traffic through Intermediate Monitoring Servers, allowing the monitoring system to scale

Laboratory for

Internet Computing

Conclusions

- Experiments on public and private Cloud platforms show that JCatascopia is:
 - capable of **supporting automated elasticity controllers**
 - able to adapt in a fully automatic manner when elasticity actions are enforced
 - <u>open-source</u>, interoperable, scalable and has a low runtime footprint

Future Work

- Further pursue **adaptive filtering**
- Enhance Probes with **adaptive sampling**
 - Adjust sampling rate when stable phases are detected
- Integrate JCatascopia with cloud cost-evaluation system

Acknowledgements

www.celarcloud.eu

co-funded by the European Commission

JCatascopia

Laboratory for Internet Computing

https://github.com/CELAR/cloud-ms

Laboratory for Internet Computing Department of Computer Science University of Cyprus

http://linc.ucy.ac.cy

BACKUP SLIDES

Demetris Trihinas

CCGrid 2014, Chicago, IL, USA, 27 May 2014

Monitoring Agents

Laboratory for

Internet Computing

Monitoring Servers

Dynamic Agent Removal

- Heartbeat monitoring to detect when Agents:
 - Removed due to scaling down elasticity actions
 - Temporary unavailable (network connectivity issues)

