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This paper presents a comparison study of popular clustering and mapping heuristics which are used to 
map task-flow graphs to message-passing multiprocessors. 7b this end, we use task-graphs which are rep- 
resentative of important scientific algorithms running on datasets of practical interest. The annotation 
which assigns weights to nodes and edges of the task-graphs is realistic It reflects current trends in pro- 
cessor, communication channel, and message-passing interface technology and takes into consideration 
hardware characteristics of state-of-the-art multiprocessors. Our experiments show that applying realistic 
models for task-graph annotation affects the effectiveness and functionality of clustering and mapping 
techniques. Therefore, new heuristics are necessary that will take into account more practical models 
of communication costs. We present modifications to existing clustering and mapping algorithms which 
improve their efficiency and running-time for the practical models adopted. 

KEY WORDS: %sk flow graphs, clustering, mapping, message passing. 
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1. INTRODUCTION 

In this paper we present a comparison study of popular clustering and mapping 
heuristics which are used to map task-flow graphs to message-passing multiproces- 
sors. To this end, we use task-graphs which are representative of two important 
algorithms for the N-Body problem, running on data-sets of practical interest. The 
annotation which assigns weights to the nodes and the edges of the task-graphs 
is realistic. It reflects current trends in processor, communication channel, and 
message-passing interface technology and takes into consideration hardware char- 
acteristics of state-of-the-art multiprocessors. Our experiments show that applying 
realistic models for task-graph annotation affects the effectiveness and functionality 
of clustering and mapping techniques. Therefore, new heuristics are necessary that 
will take into account more practical models of communication costs. We present 
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284 M. D. DIKAIAKOS, A. ROGERS AND K. STEIGLITZ 

modifications to existing clustering and mapping algorithms which improve their ef- 
ficiency and running-time with the practical models adopted. 

Task-graphs are derived with FAST, a software system that is built to evaluate the 
execution of parallel scientific algorithms on message-passing systems [5, 71. These 
graphs are a special case of the data dependence graphs (DDG's) that are used 
frequently as abstract representations of parallel programs [lo, 16, 17-19, 211. The 
nodes of DDG's correspond to single program instructions or sets of instructions, 
depending on the DDG-granularity desired. Their arcs correspond to dependences, 
which enforce a partial order of execution on program statements. 

A key issue that arises in systems employing data dependence graphs is the ex- 
ecution of these graphs on the processors bf a parallel computer. There are many 
approaches for addressing this problem, most of which can be classified as static 
or dynamic. Static schemes apply in systems where the DDG's can be constructed 
before program execution. In that case, the user-program or the compiler can take 
advantage of information pertinent to the DDG for making decisions that will guide 
the assignment of graph-nodes to different processors, and the scheduling of tasks 
within each processor [I, 211. It is not always possible, however, to create the DDG's 
before the program execution. In that case, execution of DDG's is accomplished 
with dynamic schemes that are enforced through the operating system or the hard- 
ware. 

In this paper we examine algorithms used in static schemes. Such algorithms as- 
sume for simplicity that the processors of a parallel system form a clique intercon- 
nection topology (Fully-connected network). Mapping is usually accomplished in two 
phases [lo, 18, 191: 

1. The clusrering or internalization phase, seeks to minimize communication over- 
head and improve parallel time by deciding that certain tasks must go together on 
the same processor, even if other processors are available. 

2.  The mapping or processor assignment phase, maps the groups of tasks formed 
by the clustering phase to the processors of the parallel architecture at hand. At the 
same time, it seeks to preserve a small parallel time. 

In conjunction with clustering and mapping, it is necessary to perform scheduling of 
tasks that are assigned to the same cluster. 

The organization of this paper is as follows: in the next section we give the graph- 
theoretical framework that we use to implement and evaluate clustering and map- 
ping heuristics. In Sections 3 and 4 we describe the clustering and mapping heuris- 
tics studied and suggest modifications that will improve their effectiveness and per- 
formance, given the practical annotation model adopted. Section 5 presents simula- 
tion results and comparison-studies, and Section 6 gives our conclusions. 

2. MODELING PARALLEL EXECUTIONS 

The task-graphs used in our study are called parallel-execution graphs and follow 
the Macro-Dataflow model of computation [18]. In this model, each task starts exe- 
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MAPPING TASK FLOW GRAPHS 285 

cuting upon receipt of all incoming messages and continues to completion without 
interruption. Upon completion, it forwards its results to adjacent tasks. Each node 
in a parallel-execution graph is assigned the computation time of the corresponding 
task and each edge is assigned the latency of the respective message. A parallel- 
execution graph is an abstraction of the parallel execution, which enables us to 
estimate parallel time and available parallelism easily, and study the mapping of the 
parallel computation onto some realistic message-passing multiprocessor. Parallel- 
execution graphs are formally defined as follows: 

Gpe = G(V,Epe,proc,T,D) 
where: 

1. V is the set of tasks. 
2. E,, = EU Esch is the set of edges. Edges in E correspond to explicit mes- 

sages, and represent program-determined dependences between tasks. Esch is a set 
of edges introduced in the graph to define the order of execution among tasks 
mapped on the same processor and with no program-determined dependences be- 
tween them. 

3. proc: A mapping from the set of task nodes V to the set of processors P : 
Vv E V, proc(v) gives the processor in P that executes task v. 

4. T(v), v E V is the time it takes processor proc(v) to perform v's computations. 
5. D(e), e = (u,v) E E is the weight assigned to edge e. D(e) denotes the time- 

interval between the time that task u finishes its execution and the time that task 
v gains access to the data carried by edge e. If u and v are mapped onto different 
processors, D(e) is equivalent to the interval between the time when proc(u) has 
finished executing task u, and the time when message e has been loaded into the 
buffers of the destination processor's proc(v) network interface. For a single-hop 
message, it is: 

where: rdel,,(e) is the delay between the time the sending processor issues the Send 
instruction initiating message e, and the time that this processor starts loading the 
message body to the buffers of its network interface. So.,(e) is the time it takes the 
sending processor to load its network interface's output buffers with the contents of 
message e and with control information (setup cost). W(e) is the number of bytes 
carried by message e, B is the bandwidth of the communication links (in bytes per 
second), t,,,,,,,ion(e) is the time e spends waiting in busy queues of the intercon- 
nection network, and R,,(e) is the time it takes a message to be loaded in the in- 
put buffers of the receiving processor's network interface. Additionally, we use 6(e) 
to denote the time it takes the message to propagate through the communication 
channels and then to be loaded into the input buffers of its destination's network 
interface. For one-hop messages this is equal to: W(e)/B + fcongeStion(e) + Rov(e). 

On the parallel-execution graph we can now define the Parallel Time as the weight 
of its critical path, i.e., of the path with the largest sum of node and edge weights. 
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Figure 1 Blocking vs. non-blocking Send's. 

Message-Passing Interface Primitives 

Point-to-point communications in parallel systems are implemented with Send and 
Receive primitives issued by parallel tasks. These primitives can be characterized 
as blocking or non-blocking, and as synchronous or asynchronous (41. Such charac- 
terizations determine the point in time when a communication primitive returns 
control to the task that called it. Also, they define the semantics of communication, 
and affect its performance. In the Macro-Dataflow model of computation edges in 
E represent pairs of Send and Receive primitives. Send's can be either blocking or 
non-blocking, and synchronous or asynchronous. Receive's must be blocking because 
of the definition of Macro-Dataflow. According to the non-blocking communication 
paradigm, messages are dispatched simultaneous& at the end of the execution of 
a task. In contrast, according to the blocking paradigm, messages are transmitted 
serially from tasks with no overlap between the loading of a buffer and the subse- 
quent message-dispatches or computation (see Figure 1). Therefore, the choice of 
message-passing interface primitive affects the annotation of task-graph edges and, 
hence, the clustering and mapping steps taken. 
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MAPPING TASK FLOW GRAPHS 

PT- 10 

Figure 2 Different clustering choices. 

3. CLUSTERING 

Clustering specifies the sequential units of computation in a parallel program by 
mapping tasks to clusters. A cluster is a set of tasks that execute sequentially on the 
same processor. The principle goal of clustering is to achieve the minimum parallel 
time for a given task graph on a clique architecture, with as many processors as 
tasks ("abundant" clique). If communication overhead were zero, the trivial solution 
to clustering would assign each task to a different processor of an "abundant" clique. 
In the realistic case, however, a parallel execution that assigns every node of a task- 
graph to a different processor of an "abundant" clique might not achieve minimum 
completion time because of communication delays and overhead. For example, 
in Figure 2 (left), each task is assigned to a different processor and the parallel 
time of the execution graph is 24. In contrast, in Figure 2 (right), nodes A, B, and 
D are clustered within the same processor and the parallel time is only 16. This is 
because clustering eliminates the communication cost of messages (A,B) and 
(B,D). 

Formally, clustering is the problem of partitioning the nodes of a parallel-execu- 
tion graph G,, into clusters, and deriving the clustered parallel-execution graph 
with the shortest parallel time among all possible clustered graphs Gi, mapped 
on "abundant" cliques. It has been proven that finding the optimal clustering of 
a directed acyclic graph that follows the Macro-Dataflow model of computation is 
NP-hard in the strong sense, if the cost function is the minimization of parallel time 
of the graph on an "abundant" clique architecture [18]. A number of heuristics have 
been developed to cope with the clustering problem [8, 12, 18, 201. 
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A. ROGERS AND K. STEIGLlTZ 

Figure 3 Scheduling edges. The bold arrows denote the sequential path of execution in 1he clusters. 

Clustering heuristics applied to Gpc will update its proc information to reflect the 
formation of clusters. If, for instance, nodes u and v are clustered within the same 
cluster L, then proc(u) = proc(v) = L. Furthermore, clustering alters E, the set of 
edges of Gpc, by introducing new "scheduling" edges that express the scheduling 
priorities among nodes belonging to the same cluster. For example, in Figure 3, 
cluster L merges with node D. If task D is scheduled to run after task A and 
before task B, the edges (A,D) and (D,B) are inserted in the clustered graph to 
determine the new schedule. 

Finally, clustering heuristics change the weights assigned to the edges of G,,. For 
example, we consider a node u E V that sends n + 1 messages to nodes wl, wz, . . . , 
wk, V, wk+l,. . ., wn, in that order (see Figure 4). Assume that proc(w;) f proc(wj) # 
proc(u) f proc(v), Vi  f j .  If the clustering heuristic assigns nodes u and v to the 
same cluster, the weights of the outgoing edges (u, wl), . . ., (u, wk) of u will remain 
the same. The weight of (u, v) will be changed from: 

to: n 

DC(u, V) = C sov(u, wi) 
i = l  

(see Figure 4). The weights of edges (u, w ~ + ~ ) ,  . . ., (u, w,) will be reduced to 

These formulas correspond to the case where the message-passing interface of the 
"abundant" clique provides a blocking Send communication primitive. Most cluster- 
ing heuristics, however, have been designed with the assumption that, after cluster- 
ing, DC(u, v) will be equal to zero and DC(u, w;) will be the same as D(u, w;). 
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Figure 4 Edge weights (blocking Send's). 

4. CLUSTERING HEURISTICS 

The clustering heuristics examined here perform a number of refinement steps on 
the input parallel-execution graph. Each step performs a refinement on the output 
of the previous clustering step by merging two clusters, and scheduling their tasks 
within the newly formed clusters. In the initial parallel-execution graph, each task- 
node is a cluster by itself. The heuristics complete and report a final clustering when 
an end-condition is satisfied. 

We focus on edge-zeroing heuristics with no backtracking. These algorithms pro- 
ceed by merging connected nodes of the parallel-execution graph. Assigning two 
connected nodes to the same cluster eliminates the message that corresponds to 
the edge connecting them. After clustering, the message will be carried out through 
local memory Write's and Read's at the memory of the processor that executes the 
cluster. There is no backtracking, that is, once a cluster has been formed at one step 
of the heuristic, it cannot be split at a later step. 

Various algorithms belonging to this class of clustering methods can be character- 
ized with respect to: 

1. The method for choosing which edge to eliminate. 
2. The end-condition of the heuristic. 

D
ow

nl
oa

de
d 

by
 [

Pr
in

ce
to

n 
U

ni
ve

rs
ity

] 
at

 1
5:

47
 1

7 
Ju

ne
 2

01
3 



290 M. D. DIKAIAKOS, A. ROGERS AND K. STElGLlTZ 

3. The scheduling heuristic employed when merging two clusters into a sequential 
thread of execution. 

The choice of scheduling heuristic is orthogonal to the method for zeroing edges and 
to the end-condition. Here we give concise presentations of a number of clustering 
heuristics. A comprehensive discussion on clustering can be found in [Ill .  

4.1. Sarkar's Clustering Algorithm 

Sarkar's heuristic clusters a parallel-execution graph in a number of steps described 
below [la]: 

1. Sort the edges e E E of the graph in descending order of their weights D(e).  
2. Merge the two clusters that include the head and tail node of the edge with 

the greatest weight, if this change does not increase parallel time. 
3. Repeat Step 2 until all edges are scanned. 

It is not difficult to see that the complexity of Sarkar's heuristic is O(IE1 .(IVI + 
(El)) .  This results in very high execution times for large graphs. Therefore, we also 
implemented a variation of Sarkar's method that sorts the edges in descending order 
of their weights and examines only a percentage of them, starting from the one with 
the largest weight. 

4.2. Kim and Browne's Algorithm 

Kim and Browne's method takes a different approach to clustering [12]: 

1. Mark all edges in the parallel-execution graph as unexamined. 
2. Find the criticalpath in the graph composed of unexamined edges only. This is 

the path with the longest cumulative weight in the graph. The cumulative weight of 
a path (u l ,  u2),(uz, u3), . . . , ( U , - ~ , U , )  is equal to c:=;'(T(u;) + D(u;, u ; + ~ ) )  + T(u,).  

3. Merge in the same cluster the nodes belonging to the critical path and mark 
all edges incident to nodes of the critical path as examined. 

4. Apply Steps 2 and 3 to the subgraphs formed by nodes and unexamined edges, 
until all edges are examined. 

The complexity of Kim and Browne's heuristic is O(IV1 .(IVI + (El)),  since there 
are at most 1V1 connected components in a graph and it takes O(IV1 + [El )  time to 
find the critical path in each component. 

4.3. Greedy Dominant Sequence Algorirhm 

The clustering algorithm by Yang and Gerasoulis [20], identifies at every step the 
critical path of the graph, named the Dominant Sequence (DS). The heuristic 
chooses one edge belonging to the DS and merges the clusters of its adjacent nodes, 
if this decision leads to a shorter parallel time. After the clustering, the algorithm 
computes the new DS. The complexity of Yang and Gerasoulis' heuristic is O((IE1 + 
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MAPPING TASK FLOW GRAPHS 29 1 

1V 1). log IVI). We implemented a simpler, greedy version of this algorithm, which we 
call Greedy Dominant Sequence (GDS) algorithm: 

1. Identify the Dominant Sequence of the graph. 
2. Choose the edge of the Dominant Sequence whose elimination results in the 

largest decrease of parallel time. Merge the clusters of the nodes adjacent to the 
selected edge. 

3. Repeat Steps I and 2 until there is no edge in the DS whose elimination can 
decrease parallel time. 

Identifying the Dominant Sequence requires a depth-first search of the graph which 
takes O(IE1 + (VI) time. Choosing which edge of the Dominant Sequence to elim- 
inate takes time proportional to the number of edges in the Dominant Sequence 
that is, O(lVI). The algorithm will perform O(IV1) clusterings and, therefore, the 
total complexity of the Greedy Dominant Sequence is O(I V I . (IEl + IV I)). 

4.4. Greedy-Linear Algorithm 

Kim and Browne's heuristic improves parallel time in the case where a simple 
scheme is used to assign weights to edges, and "elimination" of an edge results 
in zeroing its weight. Under the more realistic scheme employed in our study, how- 
ever, Kim and Browne's heuristic may result in clustered graphs with larger parallel 
times than the unclustered ones. With this consideration in mind, we modified this 
heuristic and introduced a version that we call Greedy-Linear. This algorithm is 
called "linear" because, as in K m  and Browne's method, it outputs clusters that are 
linear chains of task-nodes. The heuristic works as follows: 

1. Mark all edges in the parallel-execution graph as unemmined. 
2. Find the critical path in the graph composed of unexamined edges only. 
3. For every edge of the critical path, cluster its adjacent nodes only if this does 

not result in a larger parallel time. Mark all the edges incident to nodes of the 
critical path as examined. 

4. Apply Steps 2 and 3 to the subgraphs formed by nodes and unexamined edges, 
until all edges are examined. 

Testing whether the clustering of an edge results in a larger parallel time can be 
accomplished in constant time, without having to recompute the parallel time of 
the graph. Therefore, the complexity of this algorithm is O((V1 . (IVI + [El)) as well. 

5 .  MAPPING 

Clustering produces a clustered parallel-execution graph with a number of clusters 
usually much larger than the number of available processors of the target archi- 
tecture. Optimal Mapping is the problem of finding an assignment of clusters to 
processors, leading to a parallel time shorter than the times derived by all other 
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292 M. D. DIKAIAKOS, A. ROGERS AND K. STEIGLITZ 

assignments, for the given number of processors [15]. The Optimal Mapping prob- 
lem of a clustered directed acyclic graph has been proven to be NP-complete [MI. 
In this section, we present a number of heuristics used to map parallel-execution 
graphs following the Macro-Dataflow model, to a given set of processors. 

5.1. Sarkar's Algorithm 

Sarkar's heuristic is a modified version of the Priority List Scheduling algorithm 
[19]. It uses a list, pblock, of size P, where P is the number of available processors. 
pblock entries are initially empty. When the algorithm completes, pblock[i] contains 
the tasks assigned to processor i, for i = 1,. .., P. The algorithm creates a priority 
list of task-nodes, according to a topological-sort ordering of the graph. Then, at 
each step, it processes the next node T in the priority list. If T has not already been 
assigned to a processor, the algorithm performs the following tasks: 

1. Choose a processor i, such that, the merging of clusters proc,(T) and pblock[i] 
will result in a parallel time shorter than the one derived from the merging of 
proc(T) with any other cluster pblock[j]. 

2. Merge clusters proc,(T) and pblock[i], and assign the result to pblock[i]. 
3. Assign all task-nodes of cluster proc[T] to processor i. 
4. Reduce the number of clusters by one. 

The algorithm completes when the total number of clusters in the graph becomes 
equal to P. It is not difficult to see that its computational complexity is O ( P .  Iproc) . 
((VI + IEI)), where (procl is the initial number of clusters. 

5.2. SNC Heuristic 

Sarkar's mapping algorithm is slow because of the large constants involved in its 
complexity. We implemented a modified version to improve its running time, al- 
though without achieving a better asymptotic complexity. This version follows ex- 
actly the same steps as the original heuristic. It does not, however, take into con- 
sideration communication costs when calculating parallel time. We call it SNC, that 
is Sarkar's algorithm with No Communication Costs. 

5.3. Yang and Gerasoulis' Algorithm 

In [21], Yang and Gerasoulis introduced a fast heuristic for mapping a clustered 
graph to the processors of a parallel system. This algorithm seeks to optimize the 
load-balancing of the available processors. It is comprised of four steps: 

1. Estimate the average processing time, A, of the processors, as the sum of the 
processing times of all clusters, over the number P of processors. 

2. Sort the clusters in an increasing order of their loads. 
3. Assign each cluster with a processing time higher than the average A to a 

different processor. 
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MAPPING TASK FLOW GRAPHS 293 

4. Use a wrap mapping for the remaining clusters, that is, number these clusters 
from 1 to their total number; then, assign each of them on the processor whose 
number is equal to the number of the cluster modulo P .  

The complexity of this method is O(IV I . log JV I + IE I). 

5.4. Priority List Scheduling Heuristics 

We also implemented two versions of Priority List Scheduling [3], which apply di- 
rectly to nonclustered graphs. In Priority List Scheduling, each task is assigned a 
priority. The tasks are inserted in a priority list according to the descending order 
of their priorities. Subsequently, they are assigned to processors following the order 
defined by the priority list. Before presenting the scheduling heuristics implemented, 
we introduce some useful notation. Given a directed-acyclic graph G = G(V, E), we 
denote by V, the set of "input" nodes, that is, nodes in V with no incoming edges. 
With Vo, we denote the set of "exit" nodes, that is, nodes in V with no outgoing 
edges. We define ptime(u) as the total weight of the longest path from node u to 
the nodes of V,. Similarly, we define stime(u) as the total weight of the longest path, 
among all possible paths going from the nodes of V, to u, not including T(u). Finally, 
we define the level of a node in the graph as follows: level(u) = max, ,=n(~ ,~)  IIaII, 
where II(V,,u) represents the set of all possible paths in G from the nodes in V, to 
node u, and llall represents the number of edges in path T ,  that is, the length of a. 

The first heuristic orders nodes of the graph according to the Topological Sorll 
Earliest Task First (TSETF) approach [14]. It performs a topological sort of the 
parallel-execution graph and assigns level values to its nodes. If node u precedes 
node v in the topological-sort order, that is, level(u) < level(v), then u will be as- 
signed a higher priority to the node with the smaller slime value. The relative prior- 
ities of nodes with equal level and slime values, is assigned by TS/ETF randomly. 

The second heuristic implements the CPMISF principle [13]. It uses topological 
sort and critical-path information to construct a priority list of nodes. Nodes are in- 
troduced in the priority list according to the descending order of their plime values. 
For nodes with the same ptime value, CPMISF assigns a higher priority to the ones 
with the larger number of immediate successors, that is, with the larger number of 
outgoing edges. 

After constructing the priority lists, the heuristics traverse them and map each 
task to the processor that will start executing it at the earliest possible time. 

6. SCHEDULING 

The scheduling problem arises during the merging of two clusters, when their tasks 
have to be ordered according to some sequential order of execution. A schedul- 
ing algorithm should specify an ordering of tasks that achieves the shortest parallel 
time and, at the same time, complies to existing precedence constraints. For general 
directed-acyclic parallel-execution graphs, the problem of finding the optimal task 
sequences that minimize overall parallel time is NP-complete [19]. Consequently, 
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Table 1 Hardware Parameters Used in Our Experiments 

Sov Rw 
Machine (in psec) (in psec) Bandwidth 

iPSU860 (in E3ytes per psec) 

msg < lOObytes 37.25 37.25 2.3 
msg > lOObytes 85.99 85.99 2.52 

for our experiments, we implemented the CPNISF scheduling heuristic, which is 
based on the principles of Priority List Scheduling. The results do not change.when 
using TSETF. 

7. EXPERIMENTAL RESULTS 

In this section we present experimental results using the clustering, scheduling, and 
mapping presented in the previous sections. We give data derived when using these 
heuristics on parallel-execution graphs representative of two algorithms solving the 
N-Body problem. The first graph has 1445 task-nodes and 12,860 message-edges. 
It corresponds to the parallel computation of one time-step of the Fast Mukipole 
Mefhod (FMM) on 1000 bodies [6, 91. The second graph has 2532 task-nodes and 
12,918 message-edges. It represents the parallel computation of one time-step of the 
Barnes-Hut (BH) algorithm on 1000 bodies [2, 61. Further experiments, performed 
on task-graphs representing other instances of the two algorithms, corroborate the 
results presented in the following sections. 

The clustering algorithms used the CPNISF heuristic for scheduling. For the 
annotation of the task-graphs we used values representative of Intel's iPSC/860 mul- 
tiprocessor, which has very high So, and R,, values (see Table l). 

7.1. Clustering 

Figure 5 shows the ratio of the parallel time of the clustered parallel-execution 
graphs over the parallel time of the unclustered graphs, for a number of different 
clustering techniques and for two message-passing interface paradigms (blocking 
or non-blocking Send's): Sarkar's method; Greedy-Linear algorithm (GL); Kim and 
Browne's method (K&B); running Greedy-Linear on the graph and then applying 
Sarkar's heuristic for only the 20% of the edges (GUS-20%), and Greedy Dom- 
inant Sequence approach. In most cases, the clustering heuristics do not improve 
the parallel time of the clustered graph with respect to the parallel time of the 
unclustered graph. Only when applying GDS and Sarkar's heuristics to the task- 
graph of the Barnes-Hut algorithm, do we get improvements larger than 20% and 
50% (respectively). This remark holds for both message-passing interface paradigms 
adopted (blocking or non-blocking Send's). 

The diagrams in Figure 6 present the numbers of the clusters produced by the 
different clustering heuristics. This is an interesting metric, since the performance of 
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MAPPING TASK FLOW GRAPHS 295 

VI 3 
Clustering ~eur ist lc~  Clustering HeuristicU 

Figure 5 Effecw of clustering to parallel time. (a) Wst Multipole Method task-graphs. (b) Modified 
Barnes-Hut task graphs. 

mapping algorithms depends on the number of clusters generated by the clustering 
heuristics which precede mapping; clearly, mapping is faster for clustered graphs 
with fewer clusters. As expected, applying Sarkar's heuristic results in the smallest 
number of tasks. The reason is that the algorithm considers all the edges in the 
graph for "zeroing." 

In contrast, the Greedy Dominant Sequence method results in a number of clus- 
ters almost identical to the initial number of tasks. GDS eliminates only edges be- 
longing to the Dominant Sequence (that is, the critical path of the parallel-execution 
graph) and, thus, clusters few of the tasks belonging to the DS. Under the realistic 
model used here, however, clustering these tasks does not necessarily alter the DS. 
Hence, the algorithm can complete without further clustering. 

The Greedy-Linear (GL) and Kim & Browne's heuristics do not check the Domi- 
nant Sequence only. Instead, after performing clustering on the DS, they proceed by 
clustering tasks belonging to the critical paths of the subgraphs formed when delet- 
ing edges adjacent to the initial DS. The GL method results in a large number of 
clusters in the case of blocking Send's than in the case of non-blocking Send's. This 
is due to the fact that "zeroing" an edge on the critical path of a parallel-execution 
graph, will always result in a smaller cumulative weight for this path, if the message- 
passing interface paradigm provides for non-blocking Send's. This is not always the 
case with blocking Send's and, thus, there are fewer opportunities for the clustering 
heuristic to perform effective clusterings. 
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Clustering Heurlstlc Clustering Heuristic 

(a) (b) 
Figure 6 Number of clusters. (a) Fast Multipole Method task-graphs. (b) Modified Barnes-Hut task 
graphs. 

Kim and Browne's method performs the clustering of linear chains of tasks, even 
if such an alteration results in a larger parallel time. Therefore, the cluster-numbers 
reported for this algorithm are relatively small, both for the blocking and the non- 
blocking paradigms. 

Finally, GL&S-20% reports cluster numbers which are proportional to the num- 
bers reported by Sarkar's algorithm. This is expected since, in its first pass, the 
method applies GL to the graph. This does not decrease the number of clusters 
substantially. The second pass applies Sarkar's heuristic, but only for the 20% heav- 
iest edges. 

In Figure 7, we present a plot of execution-time measurements for the various 
clustering heuristics examined. The execution times represent measurements on 
FAST simulations of the FMM running on a DEC-Alpha workstation. As expected, 
Sarkar's algorithm is substantially slower than the other heuristics. 

7.2. Mopping 

To compare the mapping algorithms implemented in FAST, we applied them to 
the clustered parallel-execution graphs derived kom the examples of the previous 
section, and mapped the clusters to 16 processors connected in a clique topology. 
Experiments with different numbers of processors resulted in similar conclusions. In 
Figure 8, we present speedups for twelve different combinations of clustering and 
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MAPPING TASK FLOW GRAPHS 

Figure 7 Execution times of clustering heuristics. 

mapping algorithms. The speedup is defined as the ratio of the sequential time of 
the task-graph, that is, the sum of the weights of all the tasks, over its parallel-time. 
It represents a measure of the efficiency of the parallel computation described by 
the parallel-execution graph. Therefore, it can be used as a metric for the effective- 
ness of the mapping techniques applied. 

Table 2 explains the notation used in the plot of Figure 8. In addition to the re- 
sults corresponding to combinations of clustering and mapping heuristics, we present 
speedups obtained with an ad-hoc approach for partitioning and parallelizing the 
problems under consideration. From Figure 8, we can see that the various combina- 
tions of heuristics perform differently for the two task-graphs examined. This differ- 
ence is due to the different characteristics of the task-graphs: the computation-to- 
communication ratio (average task execution time over the average message delay) 
is much higher in the task-graph that corresponds to the Fast Multiple Method than 
in the task-graph corresponding to the Barnes-Hut algorithm. 

In the case of the task-graph representing a parallel execution of an instance 
of the Fast Multipole Method (Figure 8, left) the measured speedup depends pri- 
marily on the choice of the mapping heuristic. More specifically, Sarkar's mapping 
method achieves the best results regardless of the clustering heuristic adopted. The 
SNC approach performs almost as well as Sarkar's method, although it disregards 
communication costs in the parallel-execution graph. Therefore, the reason that the 
measured speedups are lower than the ideal linear speedups is not communication 
overhead but lack of load-balancing and the data-dependences in the task-graph 
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MappiagIScbeduling Heuristics 

Figure 9 Execution times for the Mapping heuristia. 

In the case of the task-graph representing an instance of the modified Barnes- 
Hut algorithm, our experiments show that the speedups depend more on the choice 
of the clustering than on the mapping heuristic. More specifically, speedups derived 
from mapping the graph clustered with Sarkar's heuristic, are higher than speedups 
derived from mapping graphs clustered with other heuristics (see Figure 8, right). 
Moreover, Priority List Scheduling with no clustering performs poorly. 

Another observation that can be drawn from Figure 8, is that the speedups re- 
ported from simulations of the non-blocking Sendblocking Receive primitives are 
20% to 50% higher than the speedups reported for blocking Sendblocking Receive 
primitives. This is expected since the non-blocking Send's incur smaller communi- 
cation overhead to the processors of a parallel system. The speedup improvement 
is higher in the case of Barnes-Hut task-graphs than in the case of Fast Multipole 
Method graphs, since the former have a lower computation-to-communication 
ratio. 

In  Figure 9, we present a diagram of execution time measurements for the various 
mapping algorithms. These measurements were extracted from FAST simulations of 
the Fast Multiple Method. Sarkar's algorithm is the slowest. SNC, which performs 
the mapping without taking into consideration communication delays and overhead, 
has a moderate execution time. Therefore, the high running-time of Sarkar's ap- 
proach is partly a result of the overhead for estimating communication costs while 
testing the different mapping choices at each step of the method. For the cases 
where Sarkar's clustering algorithm was used before the mapping, the running-time 
of the mapping was smaller. This is because Sarkar's clustering heuristic results in 
low numbers of clusters. 
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8. CONCLUSIONS 

In this paper we examined popular clustering and mapping heuristics used for as- 
signing task-graphs to message-passing multiprocessors. We used task-graphs rep- 
resentative of the two most popular algorithms for the N-Body problem and em- 
ployed a realistic scheme for annotating these graphs and accurately modeling task- 
processing time and communication delay. 

Our experiments reveal interesting aspects of the effectiveness of clustering heu- 
ristics. We conclude that for graphs of coarse-granularity (Fast Multipole Method 
graphs), with a high ratio of average task execution time to average message delay, 
clustering does not improve the parallel time of the graph substantially. 

In contrast, for graphs with average task execution time comparable to the aver- 
age message delay (Barnes-Hut graphs), clustering does improve the parallel time 
of the task-graph. The greatest improvement is achieved with Sarkar's algorithm 
(more than 50% for both blocking and non-blocking Send's). The next biggest im- 
provement is achieved with the GDS algorithm (more than 20%). In contrast, Kim 
and Browne's method results in an increase of parallel time after clustering, in the 
case of blocking Send's; this is a side-effect of the realistic scheme we employed to 
annotate the task-graph. The GL heuristic introduced in t h s  paper, which is based 
on a principle similar to that of Kim and Browne's takes into consideration the real- 
istic modeling of computation and communication costs and improves parallel time 
by approximately 10%. 

All the clustering heuristics examined, except GDS, result in numbers of clusters 
which are significantly smaller than the number of tasks; partitioning a task-graph 
into a smaller number of clusters expedites the mapping process that follows clus- 
tering. 

Data from mapping experiments show that, in the case of coarse-grain task- 
graphs, all mapping heuristics that are used in conjunction with some clustering 
heuristic have similar effectiveness, regardless of the clustering heuristic used. For 
fine-grain task-graphs, however, the mapping heuristics examined report very low 
speedups, except in the case where the task-graphs were previously clustered with 
Sarkar's clustering method. Finally, it is clear that combining clustering and map- 
ping heuristics gives consistently better results than one-phase mapping algorithms, 
such as Priority List Scheduling. 

Our experiments reveal a critical tradeoff between the effectiveness and the run- 
ning time of clustering and mapping heuristics. Best results, in terms of number 
of clusters and speedup, are achieved when using Sarkar's clustering and map- 
ping heuristics. Their running time, however, is prohibitively high for task-graphs 
of medium to large size. Another remark is that communication overhead does not 
play an important role in the mapping of clustered task-graphs to processor+the 
mapping heuristic SNC does not take into consideration communication costs. Nev- 
ertheless, it reports speedup figures which are close to the ones reported by Sarkar's 
heuristic, which does account for communication overhead. 

We conclude that, mapping task-graphs to message-passing multiprocessors effec- 
tively and efficiently requires a clustering heuristic that will minimize communi- 
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MAPPING TASK FLOW GRAPHS 301 

cation overhead and decrease parallel time under the practical communication- 
cost model presented earlier, and for task-graphs of various granularities. Such 
a clustering heuristic can then be combined with a fast, "communication-cost in- 
sensitive" method, such as SNC, for mapping the clustered task-graphs to the 
limited number of available processors, and achieving load-balancing of the proces- 
sors. 
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